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PREFACE

The topic of optimum structural design has intrinsic importance on account of the motivation of all designers

to evolve the "best" product in terms of cost, weight, aesthetics, reliability, or a combination of these. The

topic Is taking on new and additional importance, however, because cf resource scarcity and escalating costs of

material and fabrication. In ships, for example, the reduction of structural weight directly influences the cost

of fuel required to power them. The same is true of automobiles, aircraft, and other vehicles. Another reason

for heightened interest in optimum structural design is that the great strides in computer hardware are placing

the formidable computational requirements of this topic within reach.

It can be said that the modern era of optimum structural design began about twenty years ago when the poten-

tiality of the newly-developed mathematical programming techniques for this purpose was identified. In succeeding

years many such techniques were adapted to optimum structural design problems. These accomplishments opened the

eyes of many to the possibility of practical optimum design exercises and brought about a re-examination and fur-

ther development of more traditional methods. It should be noted the mathematical programming methods were often

computationally expensive and the development of the traditional methods were made in the hopes of circumventing

this difficulty.

In 1972, in an attempt to bring together the accomplishments of the prior decade, a Symposium on Optimum

Structural Design was held at the University of Wales, Swansea. Nearly a decade has passed since the organiza-

tional efforts leading to that Symposium. The techniques that were described there have advanced considerably.

Some important new techniques have appeared and significant applications have been reported. Thus, it is timely

to convene a Symposium on this topic. Fortunately, this objective is shared by the Office of Naval Research. For

over twenty years that Office has sponsored symposia in diverse fields of structural mechanics. It had not pre-

viously sponsored a program in structural optimization, although activities in that area are within the purview

of modern developments in structural mechanics. It has, therefore, given its support to this program, which is

designated The Eleventh Naval Structural Mechanics Symposium.

Structural optimization is a field with many distinct avenues of investigation. Among those which are

covered in this endeavor are the following:

1. Optimality Criteria Methods and Fully Stressed Design

2. Reliability Based Design

3. Optimal Control Methods

4. Shape Optimization

5. Local vs. Global Optima

6. Linearization and Condensation Methods

7. Mathematical Programming Methods

8. Practical Applications (e.g. steel and concrete design)

9. ulti-Objective Optimization

10. Optimization Software

The International Symposium on Optimm Structural Design was therefore held on October 19-22, 1981 on the

campus of the University of Arisona, Tucson. Planning of the Symposium was coordinated by the Organizing Comit-

r tee listed on the cover page of those proceedings.

VALi



This volume contains all contributed papers received in time for inclusion prior to the press date for publi-

cation as well as summaries of the invited lectures. Approximately 15 of the contributed papers listed in the

program announcement were not received in time for publication. It should be noted that it is planned that full

versions of the invited lectures, plus extended versions of certain contributed papers which are felt to be of

more general interest, will subsequently appear in a book in the J. Wiley Book Co. series "Numerical Methods in

Engineering".

The editors wish to take this opportunity to thank all of those who have contributed to these proceedings

and to the success of the Symposium. Foremost in this regard are the authors themselves. We also wish to

acknowledge the helpful advice and guidance of Dr. N. J. Perrone of the Office of Naval Research. Arrangements

for the symposium were in the hands of the Office of Special Professional Education and we are especially in-

debted to Dr. Charles Hausenbauer, Director, and to Miss Nina Albert of that office. Mrs. Janice Jones and

Mrs. Sharon Thomas of the Department of Civil Engineering were most helpful in numerous typing chores.

Erdal Atrek

Richard Gallagher
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Opening Lecture

STRUCTURAL OPTIMIZATION, SOME KEY IDEAS AND INSIGHTS

Lucien A. Schmit
University of California, Los Angeles, California

Extended Abstract

The central purpose of structural analy- static loading. However, some progress has
sis is to predict the behavior of trial de- also been made on the more difficult problems
signs. The results of structural analyses associated with configuration and topology
are used to assess the adequacy and relative type descriptors.
merits of alternative trial designs with re-
spect to established design criteria. The Prior to introducing the design space
existence of general and reliable structural concept the following terms will be defined:
analysis capabilities coupled with the con- (1) preassigned parameters; (2) design vari-
tinuing growth of digital computing power, ables; (3) load condition(s); (4) failure
at ever lower cost per operation, has led mode(s); and (5) objective function. The de-
rather naturally to a marked increased in 6ign 4pace con.cept, a graphical interpreta-
structural optimization research, development, tion of the inequality constrained minimiza-
and applications activity It will be assum- tion problem, is then illustrated using two
ed iw the sequel that we inow how to predict simple examples involving explicit inequality
the behavior of a significant class of struc- constraints. Since each of these example pro-
tural systems well enough to undertake struc- blems involves only two independent design
tural optimization, variables, the optimum designs are easily

found by simply scanning the design space
Historically, the desire to reduce struc- plots. Examining the characteristics of these

tural weight without unduly compromising optimum designs clearly reveals that, ih gen-
structural integrity, particularly in aero- exat it cannot be anticipated how ma.y ox
space applications, has been a strong driving which inequatity con~ttainUt wit become c.it-
force behind the development of structural icat (i.e. become equatity eonutxain l at the
optimization methods. Today the need for- optimum deign. Because of this the use of
energy conservation in transportation systems inequality constraints is essential to the
via weight reduction provides further motiva- proper statement of the structural design op-
tion for the application of structural opti- timization problem.
mization methods. The growing use of fiber
composite materials in structures is likely Three of the main prevailing ideas in
to increase demand for modern analytical tools structural optimization prior to 1958 are rep-
that will make it possible to fully exploit resented by works dealing with: (1) least
the design potential offered by tailoring of weight layout of highly idealized frameworks;
these new materials. Looking further ahead (2) optimum design of structural components
the possibility of building large structures (columns, wide columns, stiffened panels, etc)
in space may place a new and challenging set based on weight strength analysis or structu-
of demands on our ability to analyze and de- ral index methods; and (3) minimum weight op-
sign structural systems. timum design of simple structural systems

(e.g. planar trusses and frames) based on the
The development of rational automatable plastic collapse or limit analysis design

structural design procedures, aimed at find- philosophy.
and intellectually stimulating in its own The basic theory for optimal layout seeks

right as an abstract concept. However, the an arrangement of uniaxial members that pro-
broad applicability of such methods to struc- duces a minimum weight structure for specified
tural systems that play a central role in loads and materials. Maxwell-Michell theory
civil, mechanical, and aerospace engineering, provides a basis for optimal layout of minimum
as well as naval-architecture, underscores weight trusses under a single load condition
the importance of gaining a deeper understand- and subject to stress constraints only. The
ing and increasing the use of structural opti- resulting structures are statically determi-
m nization methods in practice. nate and potentially unstable if alternative

loads are applied. However, MicheLL AtAuC-
The main body of this lecture will be tuAeA can p4ovide uAe~ut guidanee 6o the tay-

focused on a selected set of key ideas that out o6 4Auctuxat Ay temA, pakticuaAty when
have, in my Qinio,.played an important role a Aingte toad condition iA dominant and AtAeAA
in the development of structural optimization. coR trAdnt a4e 06 p4ima~y concen.
At the outset it will be useful to recognize.
that complete specification of a structural Minimum weight optimum design of basic
system involves a hietadehy o6 deAC4iptoaA as\ aircraft structural components, much as col-
follows: (1) type of structure; (2) general umns and stiffened panels subject to compres-
arrangement (topology); (3) material; (4) sive loads, was initially developed during
geometric layout of elements (configuration); World Work II. The basic approach followed
(5) sizing of elements; and (6) joints, attach- can be characterized as the "AimuttaneouA
ments and fastener details. Much of the struc- 6daiue mode design optimiztion method,"

j tural optimization literature deals with mini- wherein a structural component is proportioned
mum weight sizing of structural systems under so that several preselected failure modes
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become critical simultaneously. Setting the problems. Although the impoktance o0 nontin-
number of simultaneously critical failure ea4 inequaLity con.tkaint4 in p'opety 4tat-
modes equal to the number of independent de- ing theAe moite generaL pxobLem4 wa4 app4eciat-
sign variables conueted the design optimiza- ed, the indtcence o6 thi4 key idea wah ini-
tion problem from an inequaLity con~ttained tiaLLy timited by the fact that example pro-
weight minimization probtem to a set of non- blems were solved by using ctaahicat Lagxange
LineaA simuLtaneouz equation6. From a design mutiptie4 and htack vakiabte conceptA to
space point of view, the solutions obtained by transform the inequaLity conttrained weight
the simultaneous failure mode approach corres- minimization probLem into a Aet o6 nont.neaA
pond to a pteeLected vertex point. By and Aimuttaneou4 equationa. The resulting large
large the success of these methods depended number of equations and unknowns, as well as
on: (1) sound intuition and good physical in- the apparent need to exhaustively sort through
sight for an inspired choice of the "correct all of the solutions, was a grim prospect when
set" of critical constraints; and (2) the fact larger, more realistic design optimization
that even when the true optimum was not at a problems were contemplated.
vertex the error in the optimum weight was
often small. It is also interesting to observe that in

1958 in the course of continuing work on mini-
For structural components such as col- mum weight design of truss and frame struc-

umns and stiffened panels subject to a single tures, within the plastic collapse design
loading condition, the simultaneous failure philosophy, an innovative solution method
mode approach led to a set of constraint emerged which was a precursor of three key
equationA that could often be solved explicit- ideas that would subsequently play important
ly for the design variable values at the pre- roles in the development of structural opti-
selected vertex point. These values frequent- mization methods. Briefly stated these ideas
ly corresponded to the minimum weight optimum were: (1) the integ4ated app4oach to at4uc-
design, and they were commonly expressed as tuatl anatyAiA and dezign optimization where
functions of some appropriate measure of load- these two activities are carried out simul-
ing intensity, which was referred to as a taneously rather than sequentially; (2) the
"structural or loading index." The 4igniji- conversion of an inequality constrained mini-
cance og the "atruatuLaL index" idea AeAideA mization problem to one o& more equivalent
in the Jact that it iA 4etected to be a meaA- unconAtiained minimizationA; and (3) Xeducing
une o6 Loading intenAity 6o& which atr4A dii- the dimenhionatity o6 the Apace in which the
tkibutionA wilt be identical in alt geometri- bulk of the numerical calculations are to be
catty Aimilat elementA. Thus, in addition to made via imaginative changes of variable.
providing explicit and frequently exact op-
timum design solutions, the simultaneous fail- By 1960 it was known that a rather gener-
ure mode-structural index approach provides al class of structural design optimization
results that are applicable to an entire class problems could be stated in standard form as
of components. The "structural index" concept follows: given the prea44igned parametetA and
provides a valuable tool for comparing the Load condilionA, find the vector of deign
weight efficiency of alternative materials and vaxiablt 0 such that
component design configurations. It iz impoa-
tant to 4ecognize that the ztructuAaL index g ( } 0 ; q 6 Q (1)
concept i4 independent o6 the method uAed to q
obtain the optimum deaign data. Therefore, and the objective 6unction
results generated by the simultaneous failure
mode approach, experimental measurement, as M(5) - Min (2)
well as mathematical programming methods can
all be presented in summary form via plots of where the set of inequality constaints repre-
mass index versus loading index. sented by Eq. (1) usually contains one behav-

ior constraint for each 6aiui' e mode in each
Prior to 1958 application of mathematical Load condition as well as side constraints

programming algorithms to structural systems that reflect fabrication and analysis limita-
were limited to truss and planar frame type tions as well as other design guidelines. Al-
problems that could be formulated within the though the validity of this problem statement
context of the plastic collapse design philos- has not been seriously challenged, the last
ophy. Briefly stated this design philosophy two decades have seen a great deal of contro-
seeks to minimize weight while precluding plas- versy over how to solve it efficiently for
tic collapse of the structure when it is sub- practical structures.
jected to one or more overload conditions ob-
tained by scaling up service load conditions. Structural deaign iA 6undamentalLg a mutti-
Within the ptaAtic coltapae deaign philosophy, Level deaign problem involving more detailed
a Aignidicant ctaa4 o6 At4uctultal optimization design descriptors at the component level than
paobtemh could be Soamulated ah Ltinea& prog4am- at the system level. Before turning attention
ming ptobtem4. The fact that these linear to some of the successes and difficulties en-
programming problems had minimum weight opti- countered during early applications of the
mum design solutions corresponding to vertex nonlinear mathematical programming approach,
points in the design space was probably re- it will be useful to diatinguiAh between 4ya-
assuring to users of the simultaneous failure te Level and component LeveL At4ucturat de-
mode appro.,h. 4ign. At the system level gross proportion-

ing, usually based on finite element analysis,
It is interesting to note that it was is carried out subject to strength, deflection,

first recognized in 1955 that a more general system buckling, natural frequency, aeroelas-
class of structural optimization problems could tic, and other constraints. On the other
be viewed as nonlinear mathematical programming hand, detailed design of structural components
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is often carried out one component at a time, and sophisticated system level structural
using special purpose detailed analyses which optimization program available at the end of
consider constraints such as strength, com- the 1960-1970 decade was based on an efficient
ponent buckling, local buckling, and crack finite element displacement method module and
growth limitations, a sound implementation of the feasible direc-

tions algorithm. A form of design variable
During the decade 1960-1970 progress was linking was included so that the number of

made along two main lines. The first cate- design variables was independent of the number
gory includes component type problems of a of finite elements employed in the structural
fundamental and recurring nature. The second analysis model. The importance of reducing
category involved the development of first the number of structural analyses and the
generation system level structural optimiza- number of partial derivative calculations was
tion programs based on combining finite ele- recognized and several devices aimed at im-
ment and nonlinear mathematical programming proving overall efficiency of the design opti-
algorithms. rization procedure were introduced. Never-

theless, by 1970 it had become apparent that
The component type problems were charac- the then available system level structural op-

terized by: (1) relatively small numbers of timization capabilities based on combining
design variables; (2) a wide variety of in- finite element analysis with mathematical pro-
creasingly complex failure modes and loading gramming techniques required inordinately long
environments; and in some instances (3) con- run times to solve structural design problems
sideration of objective functions other than of only modest practical size.
weight. A structural optimization capability
that was representative of the state of the Most of the ideas to be discussed subse-
art in 1968 dealt with the minimum weight quently have emerged in response to the dif-
design of stiffened cylindrical shells. This ficult and challenging task posed by large
particular component type optimum design cap- system level structural optimization problems.
ability will be briefly elaborated on because Therefore, in the sequel, attention will be
of the influence it was to have on future focused on this class of problem. When deal-
developments. The mathematical programming ing with system level q4ructural optimization
statement of the design optimization task was problems, it is particularly important to dis-
transformed into a sequence of unconstrained tinguish between the anaLysis model and the
minimizations using the Fiacco-McCormick in- design modeL. Generating a structural analysis
terio penalty function formulation; that is, model usually involves idealization and dis-
find D such that cretization. In the context of the finite

element method idealization refers to select-
(5,r p) * Min (3) ing the kinds of elements (e.g. truss, beam,

membrane, plate, shell, etc) and di~cAetiza-
where tion refers to deciding on the number and dis-

I tribution of finite elements and displacement
0(5,r ) = M(B) + r (4) degrees of freedom. Once the idealization and

p p q g () discretization judgment decisions have been
made, the structural analysis problem has a

and definite mathematical form. Establishing the
rp+ - C rp ; C < 1 (5) design model involves: (1) deciding on the

kind, number, and distribution of design vari-

ables; (2) identifying the load conditions and
* The constraint repulsion characteristic of constraints to be considered during the opti-

this interior penalty formulation causes suc- mization; and (3) selecting the objective
* cessive designs obtained at the end'of each function. Making these judgments yields a

unconstrained minimization stage p to stay structural design optimization problem with
away from the constraints. This led to the definite mathematical form. This process may
idea that app&oximate aaaLyses could be used be viewed as somew) it analogous to making the
duJAg Mdjo4 po~tion& oJ the design optimiza- judgments that lead to an idealized and dis-
tion ptoee6a, with good expectation that the cretized structural analysis model. It is
sequence of designs generated would remain important to recognize that in many structural
in the feasible region of the design space. design optimization problems the number of
Indeed, by using approxivite buckling analy- finite elements needed in the analysis model,
ses within each unconstr ined minimization to adequately predict the behavior, is much
stage, cylindrical shell buckling analysis larger than the number of design variables re-
run times were reduced by a factor of 75, quired to describe the practical design prob-
while still generating a sequence of noncriti- lem of interest. In some design optimization
cal feasible designs which formed a trajectory problems it may even be necessary to dynamic-
that"funneled down the middle" of the feasible ally update the analysis model as the design
region in design space. In a philosophical evolves. In any event, i should be keeog-
sense, this approximate analysis feature was lized that analysis modeling and desgn model-
a precursor of the approximation concepts An9 involve wo di.Atnct but in t e ated sets
approach to system level structural optimiza- o judgmet decisons.
tion which was to emerge during the next As previously indicated, a rather general
decade (1970-1980). class of system level structural design opti-

mization problems can be properly stated as
During the 1960-1970 tim frame two first multi-inequality constrained minimization pro-

generation system level structural optimiza- blems (see Eqs. 1 and 2), independent of
tion programs were developed by combining whether or not the use of mathematical pro-
finite element analysis methods and mathemati- gramming algorithms is envisioned. Before
cal prograsing algorithms. The most general turning attention to various approaches taken
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in the quest for efficient optimum design pro- trial design toward a design which satisfies
cedures, it is appropriate to enumerate the the previously estabilished set of necessary
chaxactexi.tilc of the ystem level Atrtual conditions. Optimum design procedures based
optimization pAob em that make it dic6icult on optimatity ckitexia methods uAuatty in-
and challenging: volve two distinct types o app4oximation:
(1) in general it cannot be anticipated how (1) those associated with identijying in
many o4 which inequality cont.4aints wilt advance the c4itical conhttainth and the ac-
become c4itical equality constraints at the tive (61ee)/ design vaAiabteA at the optimum;
optimum design; (2) many of the behaviotal and (2) those associated with the develop-
conhtraintA are odten computationally buAden- ment oS Aimple 4ecLL4ive Aedesign tLeA.
Some implicit 6unctions of the design vari- The basic ideas involved in establishing
ables; (3) practical problems frequently in- optimality criteria are initially introducedvolve targe numbe44 oJ ineqatity con~ttaintA in the context of problems involving a single

because it is necessary to guard against var- dominant constraint where all the design var-
ious failure modes under each of several load iables are assumed to be active (free). The
conditions; (4) the numbe4 oJ independent optimum design task is, therefore, simplified
design vaxiabteA required to describe a com- to a multivariable minimization problem sub-
plex structural system can be taxge, parti- ject to a single equality constraint. Using
cularly as attention shifts from preliminary the classical Lagrange multiplier method one
design toward final design. Because of the writes
foregoing characteristics, a direct attack
on the general system level design optimiza- L(D,X) = M(5) - )g(D) (6)
tion problem is difficult and development
efforts that have followed this course have and then the necessary conditions that must
produced structural optimization capabilities be satisfied at the optimum design are
that are computationally inefficient. It is
important to recognize that 4ucce6uLt ap- aL - m i
paoacheA to tage Aystem level 6tiwctuat L : X 0; 1 1,2,...1
optimization pxoblem4 have genetatly been based
on appaoximation concepts o one Ao4t oA an- (7)
othet. It will be useful to classify the var- and
ious optimum design procedures into three main (L
categoti4e as follows: (1) intuitive techni- = g(D) 0 (8)
queA; (2) methods based on optimatity c~it-
er.ia; and (3) methods that make use of mathe- Rewriting Eq. 7 in the form
matical programming algoxithms. In examining
representative design procedures from each of
these catagories attention will be focused on 1,M2(
the approximations involved. X -

The simplest intuitive redesign method
consists of scaling o6 Aizing type design vaL- shows that the optimatity cJitekion 6o& po-
iabtes. Here the .esAlt is appAoximate be- btem4 involving a single ciiticat constiaint
cause the acating a4sumes that the design at- can be stated as 6ollows. At the optimum de-
teady has the piopek proportions and only the sign, the rate of change of the constraint
magnitude of the design vector needs to be function with respect to each design variable
modified. Fully ht4essed design IFSV) tech- Di divided by the rate of change of the ob-
niques are predicated on the assumption that, jective function with respect to that design
for stress limited structures subject to variable is the same for each independent de-
multiple load conditions, a design for which sign variable. If total yolume is taken as
each member is fully stressed in at least one the objective function M(D) to be minimized
load condition corresponds to the minimum and it is assumed that element weight and
weight design. The FSV method is app4oximate stiffness are both linear functions of the
because it Jo4ce4 the dinat design to reside design variables, then 6o vaxiouA 4pec ic
at a conAt4aint vertex point in design Apace. types o4 ingte equality constraint g4f the
However, since the stress constraints for in- opt mum deigr is chaxactetized by an in-
determinate structures are nonlinear functions va44ant enegy density distiibution.
of the design variables, the minimum weight Using the single constraint case, it will
optimum design is not necessarily at a vertex be shown that various redesign rules are im-
point. Note that the FSD method is essenti- plied by assuming the objective function M()
ally the same as the previously discussed and the constraint g(5) to be approximated by
simultaneous failure mode approach employed at certain specialized functional forms. A pax-

glevel. The ticula4 y int4esting and impottan case a-the structural component design lee. h ies wen M(C V i linea4 n the Oi. and g
commonly employed Ates6 Aatio methods of w M
4edesign Seek an FSV design neglecting the is linea& in the xeciprocat vaaiables.
in6tuence 06 6oi~ce tedisttibiution duting each (-.
intue~tion Sin oce theeforce istndrigti~ inh This case corresponds to the minimum weightiteration. Since the force redistributioh in
many indeterminate structures is relatively structural sizing problem subject to a single
insensitive to modest changes in the design, compliance constraint that has been approxi-
the stress ratio method often converges in mated by a first order Taylor series expans-

only a few cycles. ion in terms of reciprocal (iivariables.
Conventional optimality criteria methods When this class of problems was first address-

for structural optimization involve: (1) the e the otal o pro ach t he
dexivation 0 a set 06 neesad4 eonditions ed via the optimality criteria approach, the
that must be satisfied at the optimum design Y'A design variable is said to be active or
and (2) the devetopment o as iteAtiaV le- 6ee when it does not take on its upper or
design paoceduite that drives the initial lower limit value at the optimum design.

4.



appAiximate Sorm o the comptiance con.tAaint4 a small set of generalized coordinates and
we4e Sound by using the virtual load method normal mode basis vectors is a special case
with the a4sumption o constant inteAnal of the general reduced basis idea.
SorceA, which is equivalent to using dirst Prior to 1970 the main obstacles to the
orde& Taylor AekieA expansions in tezmA od development of efficient system level struc-

t tural optimization capabilities, based on the
use of mathematical programming algorithms,For problems involving multiple equality were associated with the fact that the general

constraints the previous Lagrange multiplier formulation (see Eqs. 1 and 2) involved: (1)
approach can be generalized to yield the large numbers of design variables; (2) large
following necessary conditions numbers of inequality constraints; and (3)

many inequality constraints that are compu-
M gq = 0; ieI (10) tationally burdensome implicit functions of
3D i q 3D i  the design variables. During the past decade,

cr these obstacles have been overcome by ke-
and placing the basic p&oblem statement (see Eqs.

1 and 2) with a Sequence o relatively 4mall,
gq(D) = 0 ; qGQcr (11) explicit, approximate pioblema that p4eserve

the essential Seatures o the oliginal design
assuming the set of critical constraints Q optimization problem. This has been accom-
and the set of active design variables 1 cr plished through the coordinated use of ap-
can somehow be determined. Equations 10 and proximation concepts which include: (1) re-
11 represent a set of nonlinear simultaneous duction of the number of independent designvariables by Linking and/ok ba~i4 reduction;
equations in the Di ; ieI and the X ; qGQcr" (2) reduction of the number of constraints
When the M(6) and g (6) are replace5 by
explicit approximations, Eqs. 10 and 11 take considered at each stage by temporary dete-
on specific algebraic form and efficient it- tion o inactive and &edundant constraints;
erative methods of solution can often be de- amd (3) cntiuction oa high quaaity expticit
vised. However, the essential di66iculty appoximation4 So Aetained conAstaint dunc-
involved in applying conventional opt.mality tion.
criteria methods to the general class o In its simplest form design variable link-
Attuctukal optimization problemA posed in Eqs. ing fixes the relative size of some preselect-
I and 2 i4 that o dinding the corAect set ed group of finite elements. The reduced
oJ riticat con~traintA and the associated basis concept in design Apace further reducesaet o6 active ee) design vatiabaet. It is the number of independent design variables by

important to note that recent applications of expressing the vector of I design variables
dual methods of mathematical programming have as a linear combination of prelinked basis
led to design procedures (that can be viewed vectors 1b' that is let
as generalized optimality criteria techniques) B
which conclusively overcome these obstacles 4 . b  [T] (12)
for a significant class of structural opti- = T b b =
mization problems. =

Continuing interest in the development
of efficient system level structural optimi- where the 6b are generalized design variables.
zation procedures for structures represented It is interesting to observe that this reduced
by finite element analysis models stimulated basi4 concept in design Apace may be viewed
work on design oriented 4tJuctuaal analysis as a designeus Ritz method. As in the Ritz
(DOSA) during the 1965-1975 time frame. This method of structural analysis success depends
area of investigation reflected a growing on the quality of the basis vectors selected
realization that structural analysis for de- and the results obtained are in general upper
sign optimization is a task with special bound estimates of the optimum design. In
characteristics. It was recognized that de- the case where only design variable linking is
sign optimization required behavior prediction employed, the matrix ITI contains only one
for many structures of somewhat similar form. nonzero entry per row and it can be replaced
New attention was given to the idea that, in by a pointer vector. It will be argued that
the design context, the objective o6 4t~uc- design variable linking may be viewed: (1) as
tu4al analysis should be to generate, with a sharpening of the original problem statement
minimum eddoAt, an estimate od the critical (e.g. when it imposes symmetry, fabrication,
and potentiallty citical ftpone quantitieA or cost control considerations); or (2) as a
adequate to guide the design modidication special type of basis reduction based upon the
process. Developments in design oriented designer's insight and prior experience.
structural analysis fall into three categor- A general multi-stage strategy for re-
ies: (1) methods for obtaining rates of ducing the number of constraints and employ-
change of response quantities with respect to ing approximate analysis techniques may be
design variables, i.e. behaviox senitivity outlined as follows. Each stage consists of
analysis; (2) techniques for constructing the following steps: (1) carry out a complete
approximate analysis solutions using a few structural analysis; (2) identify the critical
well chosen basis vectors, i.e. aeduced basis and potentially critical constraints and tem-
methods; and (3) ,te-examination o0 how 6inite porarily delete the rest; (3) construct ex-
element aalysis methods are organized, focus- plicit approximations for the inequality con-ing on how to improve their organization so straints retained; (4) carry out a sequence of
that they are better matched to the epecial design improvements considering only the con-
characteristics of the design optimization straints retained in step (2). Regionatiza-
task. It is interesting to observe that the ti0n and tiunCation ep4eent two techniques
common practice in dynamic analysis of using do4 tempolaait lteducing the numbe od in-

equality const'aints Aetained. They are
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nothing more than the systematic implementa- can be brought to bear on the structural opti-
tion of conventional design practice. The mization problem.
regionalization idea can be simply explained It is now well known that a Aignijicant
in terms of static stress constraints as cLadA4 0J minimum Weight 4tAUCtukL sizing
follows. Let the finite element model of a paobtem6 subject to static AtAC6. deiteCtion,
structure be divided up into several regions and minimum membeA 4ize contAainUt Can be
(e.g. regions corresponding to the design t4eated e6i6ciently by hoLving a sequence 06
variable linking scheme). Then execute a appAoxmate paobLems each o0 which has the
complete structural analysis for each of K 6otlowing Joxu in teums o6 inked tecipAocal
loading conditions and retain only the most
critical stress constraint in each region b b
in each load condition. The regionalization
idea works well provided the design changes WC4 ) = w b
made during a stage are small enough so that a i
they do not result in a shift of the critical bB b
constraint location within a region. The
truncation idea simply involves temporary subject to behavior constraints
deletion of constraints for which the ratio h (4) .- C) 2 ;qGQR  (14)
of the response quantity to its allowable q q q
value is so low that the constraint will clear-
ly be inactive during the stage. It should and side constraints
be noted that in the case of linear constraints
it is often possible to identify strictly a L CU)
redundant constraints that can be permanently b ab ab . qGQR  (15)
deleted.

In order to reduce the number of detail- where
ed finite element structural analyses needed
to obtain an optimum design it is appropriate h(
to con tAuct explicit app~oXimati os 6ot the h () Cbqab  R
constraint6 4etained duAing the pt stage o qC(
the design optimization ptocehs. These ex- and QR denotes the set of retained constraints.
plicit approximations of the constraints re-
tained are used in place of the finite element The wb are positive constants corresponding
analysis during the pth stage. In seeking to the weight of the set of finite elements
high quality explicit approximations for con- in the bth linking group when a - 1. The
straint functions it is impo&tant to appxe- set of independent design variables after
Ciate the 6texibitity o66exed &V the use o6 linking is denoted by B and Eqs. 14 and 16
TayLo 4eL.iea expani,7nA in te~ms 06 intex- represent the current linear approximations
mediate design vatiabLes. It should be clear- of the behavior constraints. The (L) and
ly recognized that the direct application of (U)rb
the Taylor series expansion technique to b respectively denote the lower and upper
constraint functions gq(5) does not necessar- limits on the independent reciprocal design
ily yield high quality approximations. It variables ub.
may sometimes be desirable to try and pre- Each appxoximate piuMat ptobtem o the
serve the explicit nonlinearities that are 6o4m given by Eq4. 13-16 can be shown to
apparent when the constraint functions are c044eo 5pond to an expticit dual p~obtem o6 the
viewed as functions of the response quanti- Joloying 604m:
ties. Furthermore, the use of physical in- Find a such that the explicit dual function
sight in selecting intermediate design vari.-
ables is often worthwhile. In the context of w
system structural optimization JiAst oxde, L(t) = -k + X )q[h (')-C0 ] -Max (17)
second okdeA diagonal, and 6utt second oAdex bGB q q q
appkoximation have been used with success.
Depending upon the kind of constraint being subject to non-negativity constraints

approximated dteot 1-Oi, 4ecipaocal UPi( V0. R

and mixed design va4iabtea have been used. X q z 0 ; q (18)
, Once the original problem has been re- where ( ) is given by Eq. 16 and the pri-

placed by a sequence of relatively small ex-
plicit problems various mathematical program- mal variables ab are given explicitly in
ming algorithms can be successfully applied terms of the dual variables Aq by
to the system level structural optimization WL WL 2 -2
task. These include feasible direction if a
methods, SUNT (Sequence of Unconstrained Min- -
imizations Technique) methods based on in- ( 2 2 U 2
teriOr and ixterior penalty functions, and = ; if [aL 2 < (19)
SLP (Sequence of Linear Programs) mehods. It (
uhoular be also noted that posynomialr approx-CU 2 ri
nations can be constructed. When both the if
objective function N(D) and the constraint
functions gq(D) are or can be approximated by
posyncmials geometric prugrasming algorithms where

4A posynamial is defined to be a generalized %wb R
polynemial having positive coefficients and
variables but arbitrary real exponents
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The first derivatives of L(a) are readily analyh-i. zeekb ateA o6 change o6 pxedicted
available since it can be shown that they optimum dedign variable valueA and Lagaange
correspond to the primal constraints, that is multipLieA valuej with 4e4pect to changez in

ptoblem preaAhigned paramete&4 (e.g. allowa..e
displacements, allowable stresses, allowable

b--()-(21) frequencies, load condition data, etc.). In
q )= ab - 1q other words, having obtained a base optimumqdesign sensitivity derivatives are sought that

can be used to estimate the revised optimum
Ouat methods exploit the 4pecial atgeb4aic design, associated with specified perturbations
atuctuke oi the appxoximate primal problem6. of selected problem parameters, without re-
Since the approximate primal problem given by course to reoptimization. The optimum design
Eqs. 13-16 is convex, Aepaxabte, and algebra- sensitivity derivatives provide valuable in-
ically dimple iA it poAhible to conttact formation that can be used to guide trade-off
an explicit dual junction (see Eqs. 17-20). studies. It is also envisioned that optimum
As a consequence, most the computational design sensitivity information, particularly
effort involved in optimization is expended with respect to applied loads, will be useful
on finding the maximum of the explicit dual in multi-level design optimization because it
function t(l), subject only to simple non- may make it possible to replace many subsystem
negativity constraints (Eq. 18). The dimen- optimizations with a simple update, based on
Aionality o6 the dual Apace QR iA telatively sensitivity analysis of a previously deter-
AmaUt jo many pitoblem4 o6 practical interest mined optimum design for the subsystem. The
Furthe4mo4e zpecial maximization algo'tithmA key to obtaining optimum dezign aenhitivity
have been deviaed which Aeek the maxibutm oj inotmation uzuaeey involevA implicit di6eA-
L( I by operaotng in a Aequence o6 dual Aub- entiation o6 the nece44ay conditions chaac-
6paceA with gradually incaeaaing dimenuion, te4izing the baae optimum design with kehpect
auch that the dimen4ionality o6 the mazimiz- to the independent preahhigned parametexA
ation problem never exceedA the number o Aelected Aot perturbation. it iz Auggehted
Atrictly critiCal ConhtkaintA by mote than that the option to call 6A optimum design
one. 6enzitivity indoiLmation 6hould, Zn the 6uture,

Joining approximation concepth and dual be availablte a4 an integral paAt o6 advanced
method4 o6 mathematical programming haA Led attuctuAat optimization capabilitiea.
to a vetg e6 icient method o6 htAuctural opti- The broad scope of the structural opti-
mization that Can be viewed aA a generatized mization field is such that there are, un-
optimatity criteria method. In this design fortunately, many important topics and asso-
optimization procedure finding the correct ciated key ideas that I have not touched on
set of critical constraints and active (free) in the main body of this lecture. These in-
design var ables is an intrinsic part of the clude the following problem areas: (1) opti-
special matnematical programming algorithm mum design of structural systems with coupled
used to locate the maximum of the dual bending-membrane action; (2) optimum design of
function !(3), subject to simple inequality structural systems with discrete design vari-
constrainf-P given by Eq. 18. Thus it is seen ables or mixed continuous-discrete design vari-
that for a pignificant class of minimum ables; (3) extended space formulations and
weight sizing problems the generalized opti- decomposition methods (formal and heurestic)
mality criteria and mathematical programing for large structural systems; (4) reliability
approaches have coalesced to the same method. based optimum design methodology; (5) shape

Sen4itivity analyhiA play an impoktant and/or configuration optimization of
tole in Atneutural analtyi and optimization. structural components and systems; (6) optimum
In the analysis context rates of change of design considering topo.ogical changes and/or
predicted response quantities (e.g. displace- materials selection; (7) optimum design con-
ments, stresses, natural frequencies, normal sidering both elastic (service load) and
modes, etc.) with respect to changes in design plastic collapse (overload) constraints; (8)
variables (e.g. cross sectional areas, thick- optimur design in the dynamic response regime
nesses, nodal positions, etc.) are sought. including consideration of active control de-
These partial derivatives provide valuable vices; (9) optimum design considering complex
information that can be used to guide the failure modes such as elastic stability, aero-
design process even when formal structural elastic behavior, and crack growth limiLations;
optimization is not contemplated. The key to (10) nonconvexity, relative minima, and dis-
obtaining analy~iA 4enaitivity in6ormatiox joint feasible regions; (11) consideration of
uiually involvea implicit di4derentiation 06 objective functions other than weight minimiza-
the peatinent analyiA equat4onA with tepect tions (e.g. cost, performance, reliability);
to the independent dehign uariableh 4etected. (12) optimum design of structural systems for
The option to call 6o icth anallyiA henhi- global damage tolerance (e.g. battle damage);
tivity injotmation ihould be available aA an and (14) development of efficient, easy to use,
integral part o6 any mode4n Sinite element well documented programs for structural opti-
analy6i& prog&m because: (1) it provides mization. Fortunately, man% of these topics
valuable quantitative information that can will be addressed in depth by sessions sche-
help guide design via man-machine interaction, duled for presentation during this symposium.
and (2) it providea a basis for constructing
explicit approximations of response quanti-
ties in terms of design variables.

Optimum deign heniitivity anadtly i i
an important idea that has only recently
(within the last two years) been brought to
the attention of the structural optimization
community. Optimum deaign Aenitiuity
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ACKIEVE4EITS IN STRUCTURAL OPTIMIZATION
USING OPTIMALITY CRITERIA METHODS

N. S. Rhot
Structures and Dynamics Division

Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio 45433

and

L. Berke
NASA Lewis Research Center

Cleveland, Ohio 44135

Abstract The general structural optimization problem when
the member "cost" (weight) is a linear function of the

The essential idea in the development of optimality design variables can be stated as:
criteria methods was to take advantage of the special
nature of structural optimization problems. Principally Minimize
such concepts as statically determinate or indeterminate
structures and certain variational principles of struc- n
tural mechanics have been utilized to develop efficient W p (I)
algorithms for the optimum sizing of structures subject i-l
to stiffness related constraints. The theoretical foun-
dation of the approach have been layed down by Prager Subject to
and co-workers in a number of elegant papers dealing
with simple continuum problems leading to differential
equations as optimality criteria. The solutions to the 9 --C (0 J-1,...,m (2)
differential equations, the Euler equations of the vari- -J-
ational formulation stating the optimization problem, where
defined the optimum shape of the structures. The shape
of a minimum volume column to carry a given compressive - total structural "cost" (weight)
load is a typical example. The approach was viewed
as theoretically powerful, but impractical due to in- variable
ability of application to structures of general shape.
Most practical structures are analyzed by Finite Element
methods and, therefore, it became desirable to find an ii . volume parameter for Ai - 1
approach based on optimality criteria for discretized
rather than continuum mathematical models. This also
meant that the optimization problem is again reduced to "cost" (weight) per unit volume of the
finding solutions to optiality criteria equations which
are slgebiaic rather than differential equations. How- gj . the Jtb constraint
ever, due to the nonlinearity of the overall problem an
iterative approach is necessary to solve the equations.

C . actual value of the jth constraint

In optimality criteria methods the optimization

procedure during each iteration can be divided into two C - desired or limiting value of the Jth
phases. In the fi -t phase a structure is analyzed to constraint

find the response f the structure to the applied loads.
And in the second phase the design variables are modi- n - number of design variables
fied so that the current design moves towards a design
satisfying the applicable optimality criteria. The a - number of constraints

-design satisfying the optimality criteria is then guar-
S anteed to be at least a local optimun. In this see The constraints imposed on the structure can be maximum
the optiality criteria methods are indirect methods of allowable displacement at a node point, maximum allowa-

4 optimization. For a discretized structure the analysis ble stress in an element, system etability, frequency
is performed by using a finite element method. The constraint, minimum or maximum size of a design variable
design variables are changed by using a recurrence rela- etc.
tion derived from the optimality criteria. In the case

of a single constraint or a single dominant constraint Using Eqs. 1 and 2 the Lagrangian can be written as
the recurrence relation actually becomes a formula for
the sizivn of the Members of the structure. If the
internal forces are independent of the member sites, as L(A.X)- I n Z+ I ;L(C -_C (3)

* in the case of statically determinate structures, or L -) ! J-i
nearly independent, then a single or a very few sizing Li J1

iterations will result in an optiam or near optism
S structure. aoweve, for strongly competing constraints, where X are the Lagrange multipliers. Differentiating
or for structures with mber forces sensitive to member Sq 3 with respect to the design variables A and set-
sizes, more nmber of iterations might be necessary even i
for a structure with small amber of mmbers. The po- ting the resulting equations to zero gives

tential strength of the method in practical applications
is tbst the mmber of structural mombers has only a
minor effect o the amber of iterations needed to con- a ac
verso to an optim design. This latter property akes 0, I

+
V I 1 : 0 (4)

thee methods well suited for optima silng of large I j. i
practical structures for stiffness type constraints.
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I

or

3 . 1 p i i A i ( 5 )

where

t o (6)

X gj - 0 (7)

Eq. 5 contains n algebraic equations associated with n
design variables. These equations and Eqs. 6 and 7 are
the optimality conditions or Kuhn-Tucker conditions in
the formal sense of nonlinear mathematical programing.
Depending on the nature of the constraints imposed on
the structure suitable optimality criteria can be ob-
tained by using Eq. 5. The 'n' optimality conditions
and 'im' constraint equations form a set of (m+u) simul-
taneous equations for the solution of n unknowns Ai and
m unknown XJ,

The optimum design must satisfy the optimality cri-
teria. Deriving the criteria is usually the easy part
of the overall procedure. The difficult task is to
develop an algorithm to solve these equations. Since
the equations are generally nonlinear due to the nature
of the problem they have to be solved by an iterative
method. In the last decade a number of algorithms have
been developed with various degrees of approximations to
solve these equations. The commonalities, differences
and relative merits will be discussed in the text of the
paper. Application of various algorithms will be illus-
trated by designing four structures, 1) a 14-bar deter-
minate truss, 2) a 17-bar indeterminate truss, 3) a10-bar truss, and 4) a 49-bar portal truss, with differ-
ent constraint requirements.
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OPTIMAL DESIGN OF A STRUCTURE FOR SYSTEM STABILITY
FOR A SPECIFIED EIGENVALUE DISTRIBUTION

N. S. Khot
Structures and Dynamics Division

Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio 45433

Sumary {[K]-j [KG] }{j }0

A method based on the optimality criterion approach
is presented to design a minimum weight structure with where [K] is the linear total stiffness matrix of the
constrainta on system stability. The stability con- structure, [KG] is the geometric stiffness matrix of the
straints are stated with the requirement that the criti- structure, and [n } is the eigenvector associated with
cal eigenvalues be separated by a specified interval and i
the critical buckling mode be .he preselected one. The the jth eigenvalue P The critical eigenvalue is the
use of the method is illustrated by solving sample first igenvalue Jl' if the igenvalues are arranged in

problems.
ascending order. The linear buckling load of a struc-

1. Introduction ture is given by the product of v and the applied load

The objective In structural optimization is gener- vector, {P}. The geometric stiffness matrix [KG] is a

ally to minimize the weight of the structure and satisfy function of the internal force distribution due to the
all imposed constraints. The loads applied to the applied load, {P). Multiplying Eq. 1 by {q t gives
structure and the geometry of the structure are speci-
fied, and the unknowns are the individual sizes of the
members. The constraints imposed on thA structure may {nj~t[K]{nj)_j{rj}t[K](nj}=0 (2)
include maximum allowable stress, displacement limits at jj
the nodal points, frequency constraints, local and sys-
tem stability, minimum and maximum gauge constraints, Thus the eigenvalue 0 can be written as
etc. In a lightweight structure with a large number of
elements, system stability can become the most critical
constraint. {n)t(K]{}

The algorithm based on an optimality criterion InJt[KG]{nj}

(Refs. 1, 2) uses a recurrence relation to modify the
design variables. The optimality criterion is derived which is the Rayleigh quotient. The gradient of the
by differentiating the Lagrangian with respect to the eigenvalue o can be obtained by differentiating Eq. 3
design variables. The design satisfying the optimality i
criterion is a minimum weight design. This design may with respect to the design variable Ai (See Ref. 10).
be a local minimum or a global minimum depending on the This gives
nature of the problem and the constraints imposed on the
structure.

Initial attempts to optimize structures subjected DAi  A
to stability constraints were made in relation to col- i n ij
umns (Refs. '-7). The objective was to maximize the
buckling load for a given weight of the column. In all where (k]i is the stiffness matrix and {n I is the com-
the above references the model considered was one dimen- i j i
sional with one design variable. The use of a mathemat- ponent of the buckling mode associated with the ith
ical programming approach with a finite element ideali- element.
zation was presented in Ref. 8. In Ref. 9 a recurrence
relation based on an optimality criterion was used to In Eq. 3, the denominator {nj}t[K] }-W repre-
design a column subjected to a distributed load. An ]{nj4. exponential recurrence relation based on an optimality sents the work done by the applied load during the
criterion, using only one critical bunckling mode,- was transition from the unbuckled to the buckled state. If
proposed in Refs. 10 and 11 to design portal frames and the buckled modes are normalized so that the denominator
truss structures. The design of coldmnsa'nd portal in Eq. 3 is equal to unity, then Eqs. 3 and 4 can be
frames with two simultaneous critical modes was consid- written as
ered in Ref. 12. The optimality criterion approach was
used in Ref. 13 to design columns and portal frames for (5)
stability under multiple loading conditions.

In the present paper, finite element analysis is and
used to predict the behavior'of the structure. Three
different recurrence relations based on an optimality__ 1 t
criterion are derived and their use is illustrated by tAt  r j} {k)i{nj1i (6)
designing a truss tower structure with different I
requirements on the critical buckling loads and
associated buckling modes, where

11. Basic lauationa of Analysis - 1(7)0 (n (7)

The linear stability of a structure Is-defined by
the eigenvalue problem

1-3



Eqs. 5 and 6 can also be written as

n B 1- X BiJ 16)ilJ 2'i

A(8) -I AiPi
i or

and
m b

SZ X l(17)
B= ___.31 i P

3Ai  2(9

i where b - is the strain energy density in the ith
where ilj A

2
1
i i

Bij-Ai{h } [k) {11i (10) element due to the jth normalized buckling mode. In Eq.

16 the Lagrange multipliers X associated with the cri-

tical buckling modes are positive and zero for other
In Eq. 8 n is the number of elements in the structure, modes. All Lagrange multipliers satisfy the condition

III. Optimality Criterion Xj( ij-uj )=o (18)

The optimal design problem can be defined as: Eq. 16 or Eq. 17 together with Eq. 18 define the opti-

minimize the weight mality criteion. All the elements in a structure must
satisfy Eq. 16, except those whose sizes are fixed by

n some other requirement.
W = PiAili (11)

i il If a j=1 for all the buckling modes, then the design

satisfying the optimality criterion is a simultaneous
subjected to mode design. The design, where the buckling load asso-

g >0 (12) ciated with all the critical buckling modes is the same,
- is known to be sensitive to geometric imperfections.

j=l.m The sensitivity of a structure to imperfections can be
reduced by selecting a1 (J12) greater than unity. In

where p1 is the density, Ai is the design variable, and this case the optimum design will have only one critical

ai is a fixed quantity associated with the ith element. buckling mode associated with the design load.

For a bar structure Ai is the cross-sectional area, and IV. Design Algorithm

i is the length of the bar. For other types of ele-iA. Recurrence Relations
ments Ai and Xi have a different interpretation. In

Eq. 12, g represents a constraint, and p is the actual The recurrence relations required to modify the
1 idesign variables can be obtained from the optimality

value of the eigenvalue associated with the jth eigen- criterion (Eq. 16). In the design space the recurrence
mode. The product a iT is the desired value of the jth relations are used to modify the design variables so

eigenvalue. The parameter T is the lowest eigenvalue, that the initial design moves towards a design satis-
and aj represents the factor by which the eigenvalues fying the optimality criterion. Multiplying both sides

are to be separated. If the eigenvalues are arranged in of Eq. 16 by Ar and taking the rth root gives
ascending order, then 1 is equal to p1, and 1 is equal r

to unity. v+l ( X 29

as Using Eqs. 11 and 12, the Lagrangian can be written Ai Iioi/(19

n m
L(A,X)= A - E X .(U 1-n1  (13) where v+l and v are introduced to denote the iteration

i'1 :31 numbers, and r is the step size parameter. Eq. 19 is

the exponential recurrence relation. The quantity with-
where Aj are the Lagrange multiplie s. Differentiating in the parenthesis is equal to unity at the optimum.

r aThus once the optimality criterion is satisfied, the

this equation with respect to the design variable Ai and design variables will remain unchanged with any addi-
tional iterations.

setting the corresponding equations to zero gives

m ap A linear recurrence %elation can be obtained from

X A 0 A-O (14) Eq. 19 by writing this equation as
ol aAi i-l..n ./ r

or v (l j 'iij.B)) (20)

Ij-li :a (15)
i1l,..,n and expanding it using the binomial theorem. Retaining

only the lines- terms gives
Substituting Eq. 9 in Eq. 15 gives

1-4

iAI



i m B written as

Ail..AA2l-1))" (21)
iirii mL V+1/j a Bj Bi /n

I lk 3 r(a i-)+ T.) (7

This equation can also be written as k-i \i PLA) v (7

I 2 )

A -r(jV-pi)+i (28)

( mJl, Bij _))- 
(22)

A -2 Pi t ) In deriving this relation we have assumed that all the
S Pi £ design variables will satisfy the optimality criterion

and are modified by using the recurrence relation.
Those elements satisfying the optimality criterion are

Now, if the denominator is expanded by using the binom- called active elements. However, tf there are some ele-
ial theorem and only the linear terms are retained, one ments whose sizes are governed by some other design cri-
obtains terion, then those elements are called passive elements,

and Eq. 27 must be modified. The modified equation is
w+Il A

Ai I ,(Jm -1)) (23) m (n I lB B

2iiL V+ k- l ij i!i

or nl/1t B \

A /_AY - -i 2

i+ I r APi(i24

+ I i (A*i-Ai)  (29)

Eq. 21 can be obtained from Eq. 24 by expanding it using i + 1 V

the binomial theorem and retaining the linear terms.
The essential difference in using the three recurrence * is the
relations (Eqs. 19, 21 and 24) is the rate at which the where 1 is the number of active elements and A1 I
design variables are modified with each iteration for size of the ith passive element. The passive elements
the same step size parameter r. The rate of change in may be the minimum size elements or the elements whose
the design variables decreases as one uses Eq. 21 in- sizes are governed by maximum allowable stress. The
stead of Eq. 19 and Eq. 24 instead of Eq. 21. Eqs. 23 size of a passive element is increased or decreased to
and 24 are equivalent to the linear recurrence relation satisfy the specific requirements.
for a problem defined in terms of the reciprocal design
variables. C. Scaling of the Design

The recurrence relations contain two unknowns B j In most design problems the load applied to thestructure is specified, and it is required that the
and in addition to the step size parameter r. The structure have the capability to carry that load. The

coefficient Bij for the desired buckled mode can be buckling load of a structure is given by the product

determined by using Eq. 10. The relations required to 1P). Thus, in order to have the buckling load equal to

multipliers can be derived by the applied load, it is necessary to scale the design so
estimate the which should be satisfied when that for the scaled design 7 is equal to unity. The re-using various conditions which sol estsidwe

the design variables are modified. We have chosen the lation between the scaled (Ai) and the unscaled (Ai)
condition that the constraint relations should be satis- values of the design variables can be written as
fied when the design variables are modified from one
iteration to the next. i=AAi)

B. Equations to Determine Lagrange Multipliers where A is the scaling parameter. Substituting this

A change in the jth constraint due to a change in relation in Eq. 1, it can be shown that for

the design variable Ai can be written as
I-
1  

(31)

Agj gj (A+AA) -gj (A) (25)

the buckling load of a structure with areas equal to A1
a ag is equal to the applied load vector {P). (See Ref. 10).
-!~ a (AV'AV) (26)

j1 aAi i  i D. Relationship Between Lagrange Multipliers and

Optimum Weight

Now, if we impose the condition that the change Ai to A relationship can be derived between the Lagrange

should satisfy the constraint relation i.e. multipliers associated with the active constraints and
AI the weight of the structure. The weight of the struc-

g(A+AA)-O, then using Eqs. 9, 12 and 21, Eq. 26 can be ture expressed in terms of the Lagrange multipliers is
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called a dual weight. At the optimum the dual weight is exponential recurrence relation (Eq. 19) diverged after
equal to the optimum weight. In the iterative algorithm the first iteration. This behavior was due to the large

the dual weight is a lower bound, and the actual weight changes made in the design variables for the step size
of the structure is the upper bound. The difference be- parameter r-2. Increasing the value of r would have
tween the dual weight and the actual weight can be used reduced the step size and improved the convergence. The
to track the convergence of the algorithm, iteration history for the recurrence relations (Eqs. 21

and 24) is given in Tables 1 and 2 respectively. The
The weight of a structure can be written as tables contain the Lagrange multipliers associated with

the active buckling modes and the dual weight. Only two
n1  buckling modes were found to be active at the optimum.

W= 1i~i~i (32) The buckling modes are shown in Fig. 2. The first mode
i1l (Fig. 2(a)) was dominant at the beginning and end of the

iterations. The second mode (Fig. 2(b)) was dominant at
the middle of the iterations. Comparing the results in

n Tables 1 and 2, one sees that convergence with Eq. 24
where W*= Piii is the contribution of the was slightly slower than with Eq. 21. The final results

inl+l for both recurrence relations were identical. The dual

passive elements to the total weight of the structure, and actual weight were identical at the optimum, however
If it is assumed that the constraint relations are sat- the dual weight approached the optimum weight from the
isfied as equality constraints, then Eq. 12 can be bottom and the actual weight approached the optimum
written as weight from the top. The cross-sectional areas of the

members for the minimum weight design are given in
Table 8.

gjffifi I :a _a + l A1 La(33) As discussed above the simultaneous failure mode,
A i J i..n~-- 1 i (33) Ai.e. ai-l, has two critical modes, Mode I (Fig. 2(a))

and Mode 2 (Fig. 2(b)). The tower can be designed so

n that at the optimum the critical buckling mode is only
I B , one of these two modes, and the buckling loads associ-

ated with the two modes are separated by a specified
ratio. Two cases were considered. In Case I, the cri-
tical buckling mode was Mode I and a2 was set equal to

where P* is the contribution of the passive elements to 1.1, 1.2, 1.3, 1.4 and 1.5 respectively. In Case II,i the critical buckling mode was Mode 2 and the values of
the eigenvalue. Using the optimality criterion relation a2 were the same as for Case I. For both cases 01 would
(Eq. 16), we can write

be equal to unity, however in Case I i would be associ-

Ai j j X JAipil, (35) ated with Mode 1 and in Case II aI would be associated
" with Mode 2. The iteration history for both cases using

Eqs. 21 and 24 is given in Tables 3 through 6 for a2
Substituting Eq. 35 in Eq. 32 and using Eq. 34 we can equal to 1.1. The tables contain the Lagrange multi-
write pliers associated with the active buckling modes and the

m dual weight at each iteration. At the optimum the dual
W(d)- 1, )(n t- )+W* (36) weight and the minimum weight were equal. The Lagrange

jl~ multipliers and the optimum weights for all values of a2

for both cases are given in Table 7. It is seen that
where W(d) is the dual weight. If there are no passive the minimum weight for a 2l is lower than for all other
elements, then Eq. 36 reduces to values of a2* For the same value of a2 the weight of

m the optimum design for Case II is higher than for Case I.
W~d oj (37) The areas of the members for the optimum design for the

j~l two cases are given in Tables 8 and 9. For the two cases

the distribution of the areas for the different elements
In the problems solved in the next section the dual is found to be substantially different.
weight is used to track the convergence of the algorithm.

The success of designing a structure to have a spe-

V. Application and Conclusion cific critical buckling mode depends on the flexibility
of the structure to buckle in that mode. The flexibility

A computer program based on the relations derived depends on the stiffness of each element, the geometry of
in the previous section was written to design a minimum the structure and the boundary conditions. The algorithm
weight structure idealized with bar elements. The truss discussed in the paper modifies the stiffness of the ele-
tower shown in Fig. 1 was designed to satisfy different ments by changing the areas while keeping the geometry
stability constraint requirements. The structure was unchanged. For certain structures, changing the stiff-
subjecLed to two axial loads of magnitude 500 lbs. ness of each element may not be enough to achieve a spe-
applied in the vertical direction at nodes 1 and 2. cific buckling mode. In the truss tower this would occur

if horizontal members are added to connect nodes 3-4, 5-6
The tower was first designed to satisfy the condi- etc. For this modified structure it was found that the

tion a-1. This constraint condition requires that the critical buckling mode is Mode 1 (Fig. 2(a)). This

optimum design must have equal buckling loads associated structure cannot be designed to buckle in Mode 2. The

with all critical active buckling modes. This is a sim- algorithm reduces all horizontal members to the minimum

ultaneous mode design. The structure was designed by size requirement. The optimum weight for this structure
using the three recurrence relations (Eqs. 19, 21, 24). was found to be 465.28 lbs.

The step size parameter r for all the recurrence rela-
tions was 2. The solution obtained by using the

1-6



References p P

1. Khot, N. S., Venkayya, V. B. and Berke, L., P P

"Comparison of Optimality Criteria Algorithms for
Minimum Weight Design of Structures," ALA J. 17, 7i P 1000 lbs.
pp. 182-190, 1979. 41

2. Khot, N. S., "Algorithms Based on Optimality 
41

Criteria to Design Minimum Weight Structures,"
Engiueering Optimization, Vol. 5, pp. 73-90, 1981. 3

3. Keller, J. B., "The Shape of the Strongest Column," 1
Arch. Rati. Mech. Analysis, Vol. 5, pp. 275-285,
1960. 4

4. Tadjbakhsh, I. and Keller, J. B., "Strongest
Columns and Isoperimetric Inequalities for Eigen- X/

values," J. Appl. Mech., Vol. 29, pp. 159-164, j

1962. 100

5. Keller, J. B. and Niordson, F. I., "The Tallest
Column," J. Math. Mech., Vol. 16, pp. 433-446, E = 107 psi
1966.

Specific Weight = 0.1 lbs/In.
6. Taylor, J. E., "The Strongest Column: An Energy

Approach," J. App. Mech., Vol. 34, pp. 486-487,
1967. Stress Limit - 20,000 psi

7. Taylor, J. E. and Liu, C. Y., "Optimal Design of
Columns," AIAA J., Vol. 6, pp. 1497-1502, 1968.

8. Zarghamee, M. S., "Minimum Weight Design with
Stability Constraint," J. of the Structural
Division, ASCE, Vol. 96, pp. 1697-1710, 1970. FFig. 1. Truss Tower

9. Simitses, G. J., Kamat, M. P. and Smith Jr., C. V.,
"The Strongest Column by the Finite Element Dis-
placement Method," AIAA J., Vol. 11, pp. 1231-1232,
1973.

10. Khot, N. S., Venkayya, V. B. and Berke, L.,
"Optimization of Structures for Strength and I
Stability Requirements," AFFDL-TR-73-98, Air
Force Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio.

11. Khot, N. S., Venkayya, V. B. and Berke, L.,
"Optimum Structural Design with Stability
Constraints," Int. J. Num. Met. Engg., Vol. 10,
pp. 1097-1114, 1976.

12. Kiusalaas, J., "Optimal Design of Structures with : r.
Buckling Constraints," Int. J. Solids Struct.,
Vol. 9, pp. 863-878, 1973. ;.

13. Turner, H. K. and Plaut, R. H., "Optimal Design for
Stability Under Multiple Loads," J. of the Engg.
Mech. Division, ASCE, Vol. 12, pp. 1365-1382, 1980.

I.

(a) (b)

Fig. 2. Buckling Modes

1-7

I LU TT Y TU FI•U



TABLE 1. Iteration History of the Truss Tower (Eq. 21)
ai'1

ITERATION WEIGHT

NO. 1 P2 1 2 (DUAL)

1 1.0000(1)* 1.9776(2)* 329.36 0.0 329.36 989.82

2 1.0000(1) 1.2375(2) 363.13 106.94 470.07 689.17

3 1.0000(2) 1.0183(1) 208.12 348.42 556.54 606.26

4 1.0000(2) 1.0009(1) 219.98 355.29 575.27 591.23

5 1.0000(1) 1.0002(2) 363.99 221.00 585.00 585.65

6 1.0000(1) 1.0003(2) 364.40 220.92 585.32 585.52

7 1.0000(1) 1.0000(2) 364.41 221.04 585.45 585.45

TABLE 2. Iteration History of the Truss Tower (Eq. 24)
at'
Qi1

ITERATION WEIHT
NO. m1 I2 1 2 (DUAL)

1 1.0000(1)* 1.9776(2)* 329.36 0.0 329.36 989.82

2 1.0000(1) 1.4945(2) 369.67 27.76 397.44 775.22

3 1.0000(1) 1.1125(2) 362.77 145.56 508.33 652.16

4 1.0000(1) 1.0121(2) 361.25 201.24 562.49 605.46

5 1.0000(2) 1.0004(1) 216.81 360.79 577.61 591.93

6 1.0000(2) 1.0001(1) 220.44 362.04 582.48 587.50

7 1.0000(1) 1.0000(2) 363.50 220.96 584.47 585.94

8 1.0000(1) 1.0000(2) 364.30 221.00 585.30 585.51

9 1.0000(1) 1.0000(2) 364.41 221.04 585.45 585.45

TABLE 3. Iteration History of the Truss Tower for Case I (Eq. 21)
a1-1.0 a2 -1.1

ITRATION WIGHT WIGHT
NO. U1 U2 1 )2 DUAL)

1 1.0000(1)* 1.9776(2)* 329.36 0.0 329.36 989.82

2 1.0000(1) 1.2375(2) 349.67 152.64 517.56 689.18

3 1.0000(1) 1.0814(2) 347.53 232.47 603.24 616.14

4 1.0000(1) 1.0927(2) 348.24 236.86 608.78 608.56

5 1.0000(1) 1.1006(2) 350.14 234.01 607.55 608.54

6 1.0000(1) 1.1003(2) 350.48 234.17 608.07 608.31

7 1.0000(1) 1.1000(2) 350.49 234.30 606.23 608.23

*(1) Buckling Mode 1 - Fig. 2(a)
(2) Buckling Mode 2 - Fig. 2(b)
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TABLE 4. Iteration History of the Truss Tower for Case I (Eq. 24)

Cl1.0 t2=1.1

ITERATION WEIGHT WEIGHT

NO. U2 1 2 (DUAL)

1 1.0000(1)* 1.9776(2)* 329.36 0.0 329.36 989.82

2 1.0000(1) 1.4945(2) 353.28 71.17 431.16 775.22

3 1.0000(1) 1.1844(2) 349.61 176.01 543.22 664.36

4 1.0000(1) 1.1051(2) 347.43 220.67 590.17 625.00

5 1.0000(1) 1.0996(2) 347.17 231.53 601.86 613.89

6 1.0000(1) 1.0999(2) 348.19 234.02 605.62 610.12

7 1.0000(1) 1.1000(2) 349.60 234.23 607.25 608.72

8 1.0000(1) 1.1000(2) 350.38 234.26 608.07 608.29

9 1.0000(1) 1.1000(2) 350.49 234.30 608.23 608.23

TABLE 5. Iteration History of the Truss Tower for Case II (Eq. 21)
al ..0 a 2=1.1

ITERATION WEIGHT

NO. P2 1  2 (DUAL)

1 1.0000(1)* 1.9776(2)* 329.36 0.0 329.36 989.82

2 1.0000(1) 1.2374(2) 375.37 65.3 434.82 689.17

3 1.0000(2) 1.1277(1) 191.35 354.92 581.76 650.76

4 1.0000(2) 1.1114(1) 206.78 363.95 607.13 631.02

5 1.0000(2) 1.1007(1) 208.51 375.38 621.43 623.02

6 1.0000(2) 1.0997(2) 208.59 375.50 621.64 622.41

7 1.0000(1) 1.1000(1) 208.56 376.31 622.52 622.52

TABLE 6. Iteration History of the Truss Tower for Case II (Eq. 24)
Ol ..0 Q 2-1.1

ITERATION WEIGHT IGT
NO. Pi It2 1 2 (DUAL)

1 1.O000(1)* 1.1977(2)* 329.36 0.0 329.36 99.82

2 1.0000(1) 1.4945(2) 380.15 0.0 380.15 775.23

3 1.000(1) 1.0902(2) 374.02 112.15 475.97 645.22

4 1.0000(2) 1.0698(1) 190.18 393.92 623.49 631.62

5 1.0000(2) 1.UO1(1) 203.33 371.86 612.34 630.30

6 1.0000(2) 1.1001(1) 207.61 374.08 619.09 624.73

7 1.0000(2) 1.1000(1) 208.44 375.52 621.,6 622.99

8 1.0000(2) 1.0999(1) 208.54 376.25 622.41 622.55

9 1.0000(2) 1.0999(1) 208.58 376.32 622.52 622.51

.4 10 1.0000(2) 1.1000(1) 208.57 376.32 622.52 622.52
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TABLE 7. Minimum Weights and Lagrange Multipliers for Case I and II

I(a1) 2(a2) A2  WXIGH

1.000 1.0 364.41 221.04 585.45
1.000 1.1 350.49 234.30 608.23

CASE 1 1.000 1.2 335.60 247.25 632.31
1.000 1.3 319.69 259.98 657.67
1.000 1.4 302.73 272.55 684.30
1.000 1.5 284.74 284.95 712.18

1.000 1.1 208.56 376.33 622.52
1.000 1.2 197.74 385.75 660.64

CASE 11 1.000 1.3 188.17 393.41 699.61
1.000 1.4 179.56 399.79 739.28
1.000 1.5 171.71 405.22 779.54

TABLE 8. Minimum Weight Design for Case I

Values of a2 (al = 1.0)

Members 1.0 1.1 1.2 1.3 1.4 1.5

1, 2 0.8988 1.0068 1.1178 1.2328 1.3506 1.4713
3, 4 0.9161 1.0262 1.1394 1.2565 1.3768 1.4996
5, 6 0.9947 1.0669 1.1453 1.2301 1.3202 1.4153
7, 8 0.8157 0.9146 1.0167 1.1228 1.2320 1.3441
9, 10 1.1677 1.1916 1.2207 1.2559 1.2968 1.3434
11, 12 0.6294 0.7055 0.7847 0.8680 0.9545 1.0440
13, 14 1.3919 1.3774 1.3635 1.3507 1.3302 1.3293
15, 16 0.3733 0.4145 0.4585 0.5068 0.5580 0.6125
17, 18 1.6587 1.6274 1.5934 1.5564 1.5162 1.4725
19, 20 0.1484 0.1472 0.1460 0.1453 0.1454 0.1465
21, 22 1.9366 1.9077 1.8767 1.8429 1.8063 1.7667
23, 24 0.3215 0.3573 0.3943 0.4306 0.*671 0.5037
25, 26 2.1841 2.1669 2.1502 2.1334 2.1170 2.1011
27, 28 0.5850 0.6609 0.7393 0.8188 0.9001 0.9831
29, 30 2.3820 2.3778 2.3767 2.3785 2.3836 2.3925
31, 32 0.7927 0.8985 1.0080 1.1202 1.2356 1.3539
33, 34 2.5195 2.5257 2.5368 2.5528 2.5743 2.6018
35, 36 0.9355 1.0614 1.1919 1.3261 1.4644 1.6065
37, 38 2.5891 2.6008 2.6185 2.6420 2.6721 2.7092
39, 40 1.0062 1.1422 1.2833 1.4285 1.5784 1.7325
41 0.1795 0.2024 0.2258 0.2499 0.2744 0.2995

TABLE 9. Minimum Weight Design for Case 11

Values of a2 (t1 . 1.0)

Members 1.1 1.2 1.3 1.4 1.5

1, 2 0.8854 0.8758 0.8695 0.8658 0.8643
3, 4 0.9024 0.8927 0.8862 0.8824 0.8808
5, 6 1.0296 1.0710 1.1174 1.1679 1.2218
7, 8 0.8031 0.7944 0.7890 0.7863 0.7857
9, 10 1.2662 1.3688 1.4745 1.5823 1.6917
11, 12 0.6210 0.6166 0.6152 0.6164 0.6196
13, 14 1.5462 1.7008 1.8557 2.0107 2.1657
15, 16 0.3741 0.3784 0.3854 0.3947 0.4048
17, 18 1.6535 2.0465 2.2385 2.4295 2.6199
19, 20 0.1646 0.1809 0.1972 0.2136 0.2300
21, 22 2.1570 2.3761 2.5944 2.8121 3.0293
23, 24 0.3171 0.3128 0.3089 0.3056 0.3031
25, 26 2.4198 2.6557 2.8920 3.1286 3.3657
27, 28 0.5683 0.5523 0.5368 0.5220 0.5078
29, 30 2.6266 2.8732 3.1212 3.3707 3.6211
31, 32 0.7681 0.7453 0.7237 0.7031 0.6833
33, 34 2.7692 3.0220 3.2774 3.5347 3.7936
35, 36 0.9061 0.8791 0.8538 0.8299 0.8071
37, 38 2.8412 3.0971 3.3559 3.6171 3.8801
39, 40 0.9742 0.9450 0.9175 0.8923 0.8680
41 0.1753 0.1717 0.1686 0.1658 0.1633
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Summary illustrated in section 3.

A nonlinear behaviour modelling of prestressed 2. Loosening Cable Model and
cable structures is firstly recalled, as dealt with in Energy Analysis Formulation
a previous paper and peculiar features of such
structures are discussed. So, the important role played As it can be drawn from Ref.3, strands and ropes
by pretension state is emphasized. Accordingly, optimum exhibit a wide linear elastic behaviour in tension and
design problem is formulated assuming a cost function a sharp deviation from linearity occurring when axial
of pretension forces only. Optimality criterion is force vanishes and cable member loosenes. Therefore, if
found by means of Langrangian multiplier method, plastic deformations in tension can be neglected as

*\ usually it happens in design problems, a simple cable
1. Main Features of the Plane Cable Structure Behalviour model is represented by bilinear force-elongation

An abundant literature deals with mechanical aspects diagram of fig.la (heavy line).
and relevant solution methods of special structures made 41 [
of individual cable members and stiffened by means of
initial pre-tension state.
Such structures are susceptible to behave nonlinearily
for both large displacements and cable responses. . /1EA
Generally speaking these causes of nonlinearity are not 0
allowed f6r simultaneously (or do not occur). That
depends on the strucural layouts, prestress states and , "fi e
load conditions which are considered. Moreover the /
analysis and design point of view often leads to - _J .4
different assumptions and approximations 

in order to

yield methods fairly simple and efficient at the same ) b) C)
time. The mostly considered nonlinearity concerns the
geometric response. Large or moderately,4arge Fig.1 - Inelastic cable behaviour allowing for loose-
displacements (depending on prestress level) make non- ning.

linear the governing equations and hence apprupriate
techniques are needful. webster,NVin a recent work [I, When the i-th member is prestressed by a force K. the

comprehensively outlines available methods for static constitutive model is similar to the previous one except
analysis of geometrical nonlinear structures, for the horizontal branch which results translated
Particularly he focuses essential characteristics as (heavy line in the first quadrant plus dashed lines in
accuracy, stability, convergence and starting solution the third quadrant). This model, which is nonlinear and
requirements. Each method enjoys of same aforementioned reversible (holonomic) according to the real nature of
properties but all ones need a nonsingular initial loosening, is also represented by fig.s 1b, Ic where
sti' ness matrix except for energy methods and dynamic elongation qi has been split into a linear elastic ei
relaxation (this last one discouraging for involved and a nonlinear part fi, i.e. qi=ei+fi. Analytical
difficulties). Therefore just in the case of cable depiction of the above idealized cable behaviour
structures the energy methods attraction appears consists of the following relationships:
increased. In fact an appreciated peculiarity of such
structures, designed tc large size roofs, is their qi = Eij Qi - Xi (2.1)

lightness, so that they are considered weightless in fi 
= 

-Qi - Ki (2.2)
unloaded conditions. So usual structural layouts are Ai > 0 (2.3)
mechanisms in absence of pre-tension forces. Even if the -- 0
initial singularity can be overcome by adjusting in some Of < 0 (2.4)
way starting situation, it can appears again throughout
the loading history because of loosening of some cable i = 0 (2.5)

members. This sort of inelastic behaviour, typical of where Xi=-fi denotes loosening measure.
cables, seems play an important role in a deformability For a system of m cable members there will be a set of
investigation, as it will be shown in the following, previous relations, which are in matrix form
For the above reasons the energy approach formulated in {q} = [E]-1 {Q} - {W} (2.6)
Ref.2, allowing for cable inelasticity,deserves I
attention and it has given rise to fundamental ideas of {{} = -{Q} - {K} (2.7)
this paper. W > {0} (2.8)
Finally, we agree with the unquestionable opinion (

expressed by the author of Ref.1, that optimum design W 4 {0} (2.9)
problems,as those to' which we are going, can be effi- 0 (2.10)
ciently and elegantly solved by mathematical programing.
Therefore these techniques, which are natural tools for where {Q}, {q}, {A}, {0), {K} are the column vectors of
energy methods, are direct translation of optimum all Qi, qi, Xi, *i, Ks for i=1... m and [E]is the
design problems too. Concepts clarified an experiences' diagonal matrix of all Ei-(EA/l)i.
performed in the first field can be an useful base to Let a prestressed cable structure (pin-jointed assembly)
develop the second one. be considered in a known equilibrium configuration
In the following section 2. essential ideas stated in defined by nodal coordinates, nodal loads {ip and
Ref.2, relating to the cable loosenino model and to the internal forces { }. {}is a n-vector, being n the
energy approach will be concisely recalled. On he nodal degree of freedom number; {Q is the m-vector of
basis of such notions and principles, optimal design cable forces.
problems will be formulated in section 4, according to In the quoted paper [2] it has been stated a theorem
suggestions inspireted by numerical experimsntg according to which vectors {u}, {A} solving the problem:.
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I

inf w = j{g)T[E]{g)+ 1{A}T[EI{A} + {X)T[E]fg} simulating wind effects (vertical upward forces

1u} T _ 7 P=39.24 kN). For each condition two cases are considered:{}{} + ({QI-[E}{DIT{g} -({P}+{PI) {u}
T{) (2.11)X} corresponding to two assumptions on roofing location, LCI

+ {]K{A} - {D[E]{A2.11) LC2, LC3 differ from similar starred situations LCI*,

with total elongations LC2*, LC3* because in the first cases hogging cable
nodes are loaded (nodes 15 and 23 instead of nodes 2

{g} = {g(u)} = fq} + {D} (2.12) and 12). In table IA, for severalhorizontalpre-tensior

nonlinear functions of nodal displacements {u}, components,representative kinematic parameters are

determine a change leading the structure to a new depicted, i.e. maximum values of displacements u of

equilibrium configuration under added loads {PI and loosening Xand of shortening g- (obviously always
imposed member dislocations d. affecting the same cable member). In all tested cases

comon aspects can be underlined: (a) remarkable elonga
Thus, this forulation, by means of a nonlinear program- tionsgdue to loosening X which are of the same order,
ming algorithm, pDermits to find the structure response for low pre-tension; (b) vanishing of previous
with possible :able loosening and large geometychanges. phenomena at certain level of pre-tension force; (c) a
For further de ails on mechanical meaning and various rather linear response beyond the said level with a
specialization of the above statement it should be to fairly constant global stiffness; (d) displacements
refer to Ref.2, It is worth noting only that thebriefly moderately large in both elastic and inelastic range.
recalled method ,-an describe the nonlinear behaviour What preceded is moreover emphasized by plots of fig.s
of cabie systems even if they are affecte-d byasingular 3, 4 and 5 relating to load conditions LCI, LC2 and
stiffness matrix. The encountered main difficulty is LC3*. In these figures several quantities are drawn
numerical and it concerns algorithm efficiency and versus horizontal pre-tension force. The swift decrease
mostly variable number. This last handicap generally oF maximum shortening g and its subsequent stability
does not appear in the case of plane cable structures, a- ind low values, after inelastic range (i.e. as cable
which are dealt with in this paper. lc-iening disappears), confirm a remarkable structural

3. Significant Design Parameters sensitiveness to pre-tension level. Such a property
regards local deformability (here measured as change of

Some remarks can be made on optimumdesig procedures distance between two adjacent nodes) much more than
classified in Ref.4. Approximate methods (reanalysis) global stiffness. In fact diagrams of maximum displace
seem promise applications able to solve large size ments u are very smooth. AnalogouT behaviour is shown
problems and iterative methods are fairly efficient, by plots of Tximum lengthening g and of maximum
but often burdensome and meeting with some convergence stress . g is very small in g elastic and
difficulties. On the other hand, attraction of direct elastic phases throughout which it approaches g- values.
methods is faded by elaborate formulations, sometimes o stays under the elastic limit, according to the made
by too drastic ideelizations and by the small size of assumption. Plot of the objective function w evidences
solvable problems. Such desheartening peculiarities a transition fromnonlinear to nearly linear behaviour,
appear evident from Ref.s 5and 6. In Ref.5 elastic and corresponding to the above observed pre-tension level.
plastic structures are proposed to be optimized under Among tabled load casesnot casually WI, LC2 and LC3*
behavioural constraints and Lagrangian multipliers have been selected to be illustrated,because maximum
techniques are employed. In Ref.6 optimum design of shortenining relates cables supporting roof decks,
plastic structures under displacement constraints is which cannot undergo the deformations allowed by small
carried out, using constitutive relationships similar pre-tensions. Thus prestress state appears as an
to ones referenced in section 2. Linear expression of important design parameter not only because of what
strength (and possibly of ductility) parameters are said out also for the influence on cable foundations
assumed ap cost function and appropriate mathematical and on external supporting struts. On the contrary,
programming formulations are widely discussed. Reading within certain limits, the influence of cable cross
two cited papers definitively shows chances and limits section areas on local and global deformability seems
of direct methods which,in spite of their intrinsic to be negligible. This impression emerges from a com-
comolexitv. are worth developino. mostly when desion parison between third row of table 1A and results of
parameters oarticularlv sianificant with respect to table ID, obtained by choosing the same stiffness
structure to be optimized. can be identified. A EA=408MN for both cables. Finally, from analyzed exam-
noticeanle effort in this direction has been made bv pies a nonlinear behaviour much more physical than
&athors of Ref. 7. just with regard to plane cable geometric has been shown. Hence design methods taking
structures, the global minimum volume of which is shown into account cable loosening seem fully justified.
to be approached by fully stressed solutions, thus
repre.ientinq a qood startinq point to the structural 4. General Formulation of Design Problem
optimization under behavioural constraints. Starting from natural stressless state of a cable
In thi.' paper new optimum desion problems will be structure, a first stage will be considered, in which
formulated, assuming some design parameters suggested pre-tensions only are applied. Let r denote the number
by nonlinear behaviour of cable structures.So,referring of independent scalar parameters Ti (components of an
to concepts seen in previous section 2 will appear r-vector {T)),that define such initial tensions.
justified. Particularly, taking into account cable If the absence of cable members loosening is supposed in
loosening reveals worrying loss of local stiffness, this stage, the strain state of structure is completely
dangerous, for instance, to the roof deck integrity. In defined by the m-vector {t} of member elongations ( {t
order to obtain the aim previously declared, by means is new notation of {g} for initial stage only governed
of described loosening cable model and energy method, by {TJ). Each component of (t) can be seen as depending
the cable structure depicted in fig.2 has been analyzed, on nodal displacements, by means of compatibility rela-
Firstly, note that cross sections have been chosen so tionships.
that individual cable members preserve their linear Let the r-vector {w} represent the nodal displacements
elastic behaviour in tension, that are referred to the applied initial tensions. The
Only loads conditions thought interesting design other nodal displacements are represented by the n-vec
ends will be reported in the following. The structure tor{v}.
has been subjected to three load cases indicated in On the basis of minimum theorem recalled in the fore-
table ift: LC1, LC1*, syuetic loads (vertical downward going, the equilibrium condition for pre-tension stage
forces P-58.86 kN on each node); LC2, LC2*, non can be achieved by solving the following minimum pro-
symmetric loads (vertical downwari forces of the same blem
previous intensity), LC3, C3* symetric loads
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Fig. 2 - Layout of tested plane cable structure (Elastic stiffness EA: sagging cable 408 MN, hogging cable 275
WN, struts 245 M04).

TABLE I

A

LOAD CONDITIONS

(kN. LCI LC2 LC3 LI - Tc2* Lc3*

u(cm) 97.8 99.0 93.8 97.8 99.0 93.8
10 xkcm) 7.1 9.8 11.0 11.1 12.5 6.7

g(cm) 7.4 10.1 11.2 11.4 12.8 7.2

. . . 93.4 91.6 85.9 93.4 91.6 85.9

20 . . . 5.8 7.5 6.4 3.8 9.2 5.6

. . . 6.4 8.1 6.8 7.1 9.8 6.0

. . . 89.0 84., 77.9 89.0 84.0 77.9
30 . . . 4.4 5.2 5.5 6.4 5.1 4.3

. . . 5.3 6.1 6.1 6.9 6.C- 4.

. . . 84.4 76.3 69.9 84.4 76.3 69.9

40 . . . 3.0 1.5 4.1 4.0 1.5 2.9

. . . 4.2 2.7 4.9 5.2 2.7 3.7

79.9 70.2 61.7 79.9 70.2 61.7
50 . . . 1.6 0.0 1.8 1.7 0.0 1.5

3.1 1.3 2.7 3.1 1.3 2.5

77.5 67.8 57.7 77.5 67.8 57.7
55 . . . 0.5 0.0 0.6 0.5 0.0 0.6

. 2.1 1.3 1.7 2.1 1.3 1.7

76.0 65.6 S5.3 76.0 65.6 55.3
60 . . . 0.0 0.0 0.0 0.0 0.0 0.0

1.7 1.3 1.1 1.7 1., 1.1

6.9.8 53.0 49.9 69.8 53.0 49.9
1o0 . . . 0.0 0.0 0.0 0.0 0.0 0.0

1.7 1.4 1.1 1.7 1.4 1.1

B

87.6 83.8 S 57.3 87.6 83.8 J573
30 I (c c,,r 5.1 5.6 3.8 I 7.8 6 .1 2.6

Ig(cm) 5.7 6.2 4.4 8.4 6.7 I 3.2
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Fig. 3 - Load condition LCI. Plots of the objective function w and of the maximum value of g- (shortening),

g+ (lengthening), u (displacement vertical component), a (cable stress) versus horizontal pre-tension

component H. (member 1, 12 for g-, member 13,24 for g+ and a node 7 for u)

G0 6 *0 '

+
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Fig. 34 Load condition LC2. Plots of the objective function wh and of the maximum value of g- (shortening),
g' (lengthening), u (dioplacement vertical component), a (cable stress) versus horizontal pre-tension

component H. (member I,1 for , member 13, for and a , node 7 for u)

' 

no

ig. 4 - Load condition LC2. Plots of the objective function w nd of the maximum value of g- (shortenng),

g (lenthenng), u (displacemt vertical component), a (cable stress) versus horizontal pre-tension

comoent . (ueRber 1 for g-, uestr 13 for g+ and a , node 17 for u)
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25 50 75 10 Th
Fig. 5 - Load condition LC3*. Plots of the objective function w and of the maximum value of g (shortening),

g+(lengthening), u (displacement vertical component), a (cable stress) versus horizontal pre-tension
component H. (Members 13,24 for g-,members 1,12 for g+ and a , node 7 for u)

inf i{t)T[E]{t) - {T)T(w} (4.1) inf W (4.7)
twl,(v} {ul

Accordingly, equilibrium conditions can be given as

[tQ [E] [t 0 fT} 0} (4.2)

[t,][E]{t} = {10} (4.3) [p, EJE({p}+{XI+{t})-{P} =0) (4.8)

where the (r x m) matrix [t,] and the (n x m) matrix [E]({I}+{p}+{t}) > {0} (4.9)

It,Jare defined as follows [X] [E] ({X}+{p}+{t}) = {O} (4.10)

Fati atm 1 In Rel.4.8 the (n x m) matrix [p,uJis defined as
jaw aT.I1  (4.4)

Lwr aw•,(

Fat, atm 1Bun Bun
av 1  . . . 1 In Rel.4.10 the (m x n) diagonal matrix [X] is assumed

[tv] (4.5 in such a way that

J • • [X) - {diag [X]} (4.12)

The subsequent loading stage is now considered. Member Absence of cable loosening in service conditions is

elongations, nodal displacements and nodal loads will firstly considered as behavioural constraint of optimi-

be indicated by the m-vector(p}, the n-vector {u) and zation problem. So, from Rel.s 4.9 an 4.10 one has

the n-vector {P} , respectively. In particular, the fi [E]({p}+{t}) > {0) (4.13)
nal strain state of structure is defined by adding
parameters (p} and {u) to {t and {v1 respectively, and from Rel.4.8

Then, functional w defined in section 2 reads [pu ][E] ({p}+(t})-{P}-{0} (4.14)

W _ +pT[E]{D} + i{A}T[E{} + {A}T[EIp Stiffness of whole structure is characterized by abso-w (4.6)

+ {t}T[E]l{p + {t}T[Z]{Xl _ {pIT{u} lute values of nodal displacements and local stiffness
by mutual nodal displacements. By suitably assuming an

where each component of (p} depends )n displacement s-vector {Q} and an (a x n) matrix [C], behavioural
parameters ul. constraints that are set on nodal displacements can be
If the initial tensions are known, structural analysis symbolized in a general form
is carried out by solving the following minisum pro- [C]{ul < {01 (4.15)

*. blem

If an upper bound for cable stresses is prescribed, a
further behavioural constraint can be introduced
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By assuming a cost function z linearly depending on in such a way to represent turnbuckle operations. In
pre-tensions only, one has this case a term dependingon (Dis to be included in

c T cost function (4.17).
={c}
T 

{T (4.17) Form of relations of optimization problem is to be modi
The optimal design problem for cable structures is now fied, in consequence of vector {1}, that appears in
formulated as the search for the minimum of the cost Rel.s 4.2 and 4.3. In particular, optimality criterion
function z, subject to the constraints (4.2), (4.3), iscompleted by adding to Rel.s 4.22, 4.23 stationarity
(4.13), (4.14), (4.15) and (4.16). conditionswith respect to D}.
Applying the vectors {in} , (a) and {8} of Lagrangian 5. Optimization Problem with Global Constraint
multipliers to the equality constraints (4.14), (4.2) on Deformability
and (4.3) respectively, and the nonnegative vectors
{e}, {i} and {,j} to the inequality constraints (4.13), In order to investigate for more simplified approa-
(4.15) and (4.16) respectively, the following functio- ches, some types of cable-structures can be studied ne
nal can be obtained glecting loosening problems, because all the members

j rTi+ T ] [E are in tension under service loads. In several practi-
LU -(i iTj+{n) [P, ][E1 ({Pi+Iti)-{Pi) cal cases, also constraints on cable stresses can be

-{O}T[E] ({p}+{t})+{u}T([C]{u}-{,a}) desregarded. Such approximations do not involve a very

simplified form of general problem seen in sect.4. On
w the contrary, some advantages are obtained if a global

{ [t,v
]
[E]{t) (4.18) constraint on a suitably defined energetic functional

is considered as behavioural constraint on deformabili
The stationarity conditions of L, are necessary condi-

e

tions for the optimality of design [],[8],[9. ty instead of Rel.4.15. In fact, such a problem is di-in parclr o the taonityon d it, rectly related to analysis formulations, if physical
In particular, from the stationarity conditions with meaning of functional w defined in sect.2 is taken intorespect to Lagrangian multipliers, the constraints set account.
on design are obtained and the orthogonality Let the following functional be considered
constraints too: L2 = {cT{T} -

[e] [E] ({p }+ {t }) = {0 } (4 .19 ) + = T [ { } t [ E] + IX i T[ u} + {) 5.1 )

[W]([C]{u}-{O}) = {} (4.20) T
[v)]([E] ({p)+{t)-{Q}) = {0} (4.21)

From the stationarity conditions with respect to ini- A saddle point of L2 is looked for, i.e.

tial tensions {T}, the optimality criterion is found inf sup L2  (5.2)

(C}-{01}< {O} (4.22) {u} {Z}

[T]({c}-{al) = {O} (4.23) {x1>O 81

The diagonal matrices [], [p], [V] and [T] are The stationarity condition of L2 with respect to V re-
defined in such a way that the following relations are sults on an upper bound 0 on the absolute value of the
fulfilled functional W; so a global constraint on deformability

is set. From the stationarity conditions with respect
(e} = [diag [E] } (4.24) to the n-vector {u} and the nonnegative m-vector {X}

{11} = {diag [111} (4.25) Rel.s 4.8, 4.9 and 4.10 are found. The optimality cri-
terion in the form of Rel.s 4.22 and 4.23 is provided

{v) = {diag [v] (4.26) by the stationarity condition with respect to {T).

(T} = {diag[T]} (4.27) From the stationarity conditions with respect to-the r-vector {w} and the n-vector {v}, one
The stationarity conditions of L, with respect to vec

tors jul, {v1 and {w) provide respectively - obtaines equations analogous to Rel.s 3.29
and 3.30 respectively, which are here omitted

([p,J [E] [puT + TpuD [E] ({p}+{t}) ){n} for the sake of simplicity.

-[Pu
] 
[E]{8}+[CLT{14}+[p'u] [sE{v} = {0} (4.28) In order to investigate for numerical solutions, it is

T -  to be noticed that the optimization problem discussed
p'u]

T{
n in this section is strictly related to analysis problem4

+([t, J[E] [t,w] 
T

+ t,wvj [E]{t}){a) (4.29) even if the above mentioned stationarity conditions with+ l ttv Et}I = 01 respect to {w) and {vimay involve some considerable(IVPT t'wl difficulties. Nevertheless, by means of appropriate nu-
merical expedients, solving numerical tools may be con-

+ 'j[]EwT t [E{ w)a ceived, that are similar to the ones of the analysis
+([t, [E] [t,T+llt,J (4.30) problems.
([t,i [E [t,.T E t,) Note that a more simplified formulation of design pro-
D if t~respe~oLE] ~ at u E}J t) , = (01 blems is found if only one stage is considered, so that

Differentiatingwith respec o u the matrix ,u], defi both pre-tensions and loads are applied at the same ti-
nei lat rned in s a three-indexmatr amu ul] me. In this way results less well reflecting practical
This matrix is defined in such awaythat the form ILPu construction procedures are obtained. A similar approa-
({p}+{tl)representsa(nxn) matrix(see appendix) .The ma- che can seem to be useful in order to find less refi-
trices.lw.J v', vJ,[t.Z vw1Jare analogously assumed. ned numerical tools.
Analytical form of Euler-Lagrange equations is very
complex because of the non-linearity of compatibility 6. Approximated linear model
relationships between member elongations and nodal di If the relationships between elongations {p} (or {J)
splacements. So phisical meaning of Lagrangian multi- and nodal displacements {u} ({v) and {w}) can be modi-
pliers does not immediately appear and special features fied to obtains a linear homogeneous form (small displa
of the optimal design are very hard to be cements), the analytical formulations shown in the fo-
investigated. regoing ar very simplified
t appears worth emphasizing that it can be inter,- rn oinc ar mrcspe. a!ting,~~ ~ ~ ~ foaprciaponofvetcosdr Iprticular, matrices [P ,tjadIt,] are dupel_
stingsfrom a practical point of view, to consider ding only on undeformed structural geometry and they
al1o a system of dislocations (D} in the first stage, are not affected by further derivative operators (note
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that [p,J =[t,J). ted to prescribed service loads, it seems to exist a
The stationarity conditions of functional L1, defined pre-tension level beyond wich al, the cable members a-
in Rel.4.18, with respect to vectors {u} ,tv} and {w} re in tension and relevant elongations are very small.
are modified respectively as follows Displacements, although moderately large reinforce the
[p] [E [p]T{n}[p[E{+[cT{}+[pu[E]{ {0} positive opinion on satisfactory degree of achieved

(6.1) stiffness. On the other hand pre-tension values, too hi
t] [E] [p,] T {n} -[t, J [E I{0}+[t, J [E] IV) ger than previous indentified onespunnecessarly penalize

" u Tv-' [ T~ {}(6.2) cable stress state and mostly cable foundations and sup
+[t, [E]t porting struts.

[j 1rIr ]T rlrEj [{e r 1{V} Therefore pre-tension forces are considered in order to
u (6.3) define optimum design problem formulated in a general

+[t,l [E] [t,w T{ct}+[t,l [ , [tT{0}= {0} form, i.e. allowing for both loosening and geometric
nonlinearity under some behavioural constraints. More-

A physical meaning of the optimality criterion (4.25), over two stages, pre-tensioning and subsequent loading,
(4.26) is allowed tobe foundby the virtue of the simple of which construction procedure usually consists, are
form of Rel.s 6.1, 6.2 and 6.3, and a dual problem can taken into account. For such an optimization problem
be defined. the optimality criterion is found by means of Lagran-
Two subsequent stages can be conceived as contributing gian multiplier method. Finallygeneral form of design
to such dual problem, as consequence of two stages of problem firstly formulated is suitably specialized and/or
the primal one. simplified in order to yield more handle methods. It
Firstly, a distorsion vector {D*} may be thought is to be remarked that multiple loadconditions not ex-

{D*} = {8} - {V} (6.4) plicit)y examined in optimum design problem, would in-
volve immediate extensions. From the computational

Starting from the imposed distorsions {D*, the struc standpoint it is worth noting that, generally speaking,

ture is subjected to a load objective functions as ones deflned in preceding sec-

{P*} = -[C]T {W1 (6.5) tions, notwithstanding their formal complexity are

with zero-values prescribed to the r degrees of free- rather easy to be cast into computer codes. On the con
wdth cor-ues presdrbe to the onenes of e e trary, variable number of problems to be solved and aldom corresponding to the components of pre-tension vec grtmefcecmsl eas fmteaia o

cto intheprial robem.Dislacmens ad eong-_ gorithm efficiency, mostly because of mathematical conctor in the primal problem. Displacements and elonga- straints nonlinearity and non convexity, imply actual

tions are given by difficulties.

{u*} = IT)} (6.6) Acknowledgements
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ge is provided by Eq.6.1, that reads authors are also indebted to L.Omodeo Zorini for his

[pu [E] ({p*}-{D*})-{P*I= {0) (6.8) coworking in preparating numerical examples.
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{v*}= {8} (6.10) stic Cable-Structure Analysis. J. of the Eng.Mech.
Div. ASCE, 531-548, 1975.

{t.} = [tQ T{a1+[tQ 18 (6.11) (3) Gabriel, K., Ebene Seiltragwerke. Merkblatt Sthahl,

Equilibrium equations are given by Rel.s 6.2 and 6.3, 496, 1-31, 1980.
that read respectively (4) Kirsch, U., Approximate Structural Reanalysis Based

[t,J [E] ({p*}+{t*}-{D*}) = {0} (6.12) on Series Expansion.Comp.Meth.s Appl.Mech.Eng., 26,

[t,J [E] ({p*}+{t*}-{D*}) = (0} (6.13) 205-223, 1981.

Now, the optimality criterion of Rel.s 4.25 and 4.26 (5) Cinquini, C. and Sacchi, G., Problems of Optimal

can be clarified: for each non-zero component of vec- Design for Elastic a: d Plastic Structures. J.Mdc.

tor tTI, a known value, depending on the coefficients ApL., Vol.4, 1, 31-59, 1980.

of the cost function, is prescribed for the correspon- (6) Kaieko, I. and Maier, G., Optimum Design of Plastic
ding element of {Wsi, that represents nodal displace- Structures under Displacement Constraints. Comp.
ments (where {T} are applied)in the second stage of Meth.s Appl.Mech.Eng., 27, 707, 1-23, 1981.
dual problem. (7) Selleri, F. and Spadaccini, 0. Optimal Design of
The approximated model seen in this section permits di Preree Pane S ructurs. Op t ruc Decho

scussions about properties of optimal design problem. Prestressed Plane Cable Structures. J.Struct.Mech.,

- The actual behaviour of cable structures can suggest 5(2), 179-205, 1977.

fields of application and degree of approximation of (8) Sawczuk, A. and Mroz, Z., Ed.s, optimization in
such approaches. Nevertheless, in order to conceive nu Structural Design, Springer Verlag, New York, 1975
merical methods based on optimality criterion, an ap- (9) Haug, E.J and Cea J., Ed.s, Optimization of
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Conclusions Appendix: Matrix Differential Notations

Prestress state is checked to exert outstanding in-
fluence on the nonlinear response of cable structures. Let the following scalar form be considered
Particularly, loosening can reduce to such a point di- A = {p [E] (p) (A.1)
stance between nodes that this sort of local deforms- where each component of the m-vector {p} depends on an
bility could become incompatible with roofing, so su- n-vector (u}.
ceptible of damages.
In addition, for some usual structural layout, subjec Once differentiating with respect to {u} provides
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S [pn i[E] P) (A. 2)

where the (n x m) matrix [pjis defined as follows

1 (A.3)

[U n  Un

Now,a new scalar form B is considered, which appears
in functional L, of Rel.4.18

B = {n}T[p,u ] [E]{p} (A.4)

In order to calculate the derivative vector of B with
respect to u, a first part is immediately provided by

{d } = [pu] [E] [p,u]T~n} (A.5)

Note that {dl} represents actual derivative vector if
[p, u] does not depend on {u}.
A second part may be calculated by representing matrix

,u as an m-row vector of n column vectors. So
Rei.A.4 reads

+ "'" Mul "' u " (A 9Thn

Bp B [E=fpd (A.6)
"un D un

or by assuming

{a} = [] {p} (A.7)

B=tn} la$ + + a $n'~ (A.8)

ifec nxn a tri (il.m /ersnsted

Dun aun
Alternatively

=Iu, I .. + 22]

Then

3 aB = {dl}+ {d2) (A.10)

where

{d2 ) = ([blj a, + .. + [bm] a ){l (A.11)

if each (n x n) matrix bi (i=1 .. .m) represents the de

rivative of the i-th row vector

auI aun
In this way, the form of three-index matrix [p,l
introduced in sect.4 is pointed out. Analoyus orms
can be considered for three-index matrices t,wv
lIt, w ]], Tft,ww] and Tt,vw]
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(MNIMUM WEIGHT DESIGN WITHIN A BOUND ON EIGENVALUES

by

N. Kikuchi and J. E. Taylor
University of Michigan

Ann Arbor, Michigan 48109/

Introduction In the optimal remodel problem, remodeled de-
sign D(x) is expressed in terms of modification D +(x)

For the optimally designed Euler column With and (specified) initial design D (), i.e., D = D + D+

clamped-ends and where stiffness is proportional to The design problem is stated in isoperimetric
the square of cross-sectional area, the lowest eigen- form by specifying an upper bound, say V+, to the
value is a double -oot. The first-published solution to amount of material available for modification:
this problem is incorrect. Olhoff and Rasmussen (I)
uncovered the error, and in 1977 they provided a cor- I

rect interpretation for the problem. The clamped- f D+dx < V+
column case provides an example from among such de- 0

sign problems, where the prediction of optimal design For eigenvalues X i bounded from below by XL, the
requires consideration cf nonunique or multimodal design problem is stated:
measures of response. Issues that may arise in the
treatment of problems in this category have been ad-( i >0
dressed in several studies reported since 1977,(e. g., L

(2-6))..4. max X L within
D + V+ -f D+dx > 0

The problem statement giiri- in (1) for the

column problem corresponds to: maximize (relative to
design) a given eigenvalue, within the constraint that Necessary conditions for the solution to this

the difference between the values of a second eigen- problem may be identified with stationarity of the
value and the given one should be nonnegative. In the functional [min(-X L ) 

replaces max (X L
case of optimal design associated with bimodality, the D + XL
values are equal so the constraint is active. For the
formulation presented in this paper (also stated for the L L

column), the design objective is expressed in terms of = - XL - E(V+ - f D+dx) - f c D+dx

a lower bound, say X L' to eigenvalues X .. The prob- 0 0

lem statement has the form! maximize (X L ) 
within the

(X >X L ) . 
I Multi-modality of arbitrary ML [ivi2 )

degree may be accommodated via this somewhat gen- i= I o + L 0 i

eralized form.
The set of the first M solutions to the eigenvalue

Governing equations (necessary conditions) for problem is associated with a minimum on admissible
the optimal design problem are stated through applica- v. of the sum of potential energies (the problem is ex-
tions of formal results) and interpretations are given I

for niqu an mulimodl slutins.pressed very nearly this way in (8)). The third term
for unique and multimodal solutions, in the expression for J reflects the requirement

Design Problem Formulation D+ -_ 0.

Conditions for stationarity are:
The design problem is stated in the form of an

add-only' optimum remodeling (7) problem. This has M
the advantage that the results are broader than those (NI) - 1 + E b. = 0
obtained from the more usual (unconstrained) optimal i= 1
design problem statement. At the same time, the solu-
tion for the more usual problem is available as the M
solution of a limit-case' optimal remodel problem. (N2) E - c - L a v. = 0
Also, with the restriction that the initial design should i 1 +

nowhere have zero stiffness, the set of trial functions
for displacement are defined simply in terms of the L
uqual admissibility requirement, i.e., continuous (N3) f D+dx - V+ = 0
slope. 

o

(N4) (I v + iv' = 0 and assoc. Bdy Conds.
i i

For both problem statements the design is con-
strained for a specified amount of material.
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L 'single mode' case, i.e., problems where the design
(N5) a i f v. dx - b. 0, i= 1, 2, ... ,M is governed by the (unique) first mode.

0

If, on the other hand,

(N6) b(L -X L) = 0, b.> ( i " ) 0 b > 0; i= , .. N M

b. = 0; X i > XL i= N+l, ... ,M
i= I, 2.M... ,ML

at the solution point, the solution is N-modal. In this

a (IV"2i ! 2 ) d x  case dependence of the optimal design on response
(N) a.[f l - i ) = 0 a. 0 function vi is reflected in the optimality condition:

f{Ivi -v. )dx >0 -+ v E-c.
= I

(N8) c(x)D +(x) = 0 c(x) > 0 D (x) 1 0 The results evaluated for N=2 are equivalent to the
-- + Olhoff -Rasmussen (1) formulation for bimodal optimal

By equations N2 and N8, the optimality condition is design.
reduced to either: With the designation a. :I 1, the coefficients b.

> 0; E=a 81 ..2 " conveniently measure the fraction of total strain energy
c=0witha (in the N-modal buckled column) associated with the+ + v function u.(x). This is easily verified; from (NS), (N7)

or: ?xC (0, L) and = L

c > 0 withD+= 0; E - c = E a -+ v 2  X bi = I Iu."2dx.
+ "iO8D+ J Li

0

Thus the length of the column is covered by intervals Summing these equations provides (with (Nl)):
of modification where D+ > 0, or sections where the
design remains unchanged. For juncture points D+ = 0 M L
and c = 0. X L L b. = X = F (f I u."Zdx),

i=l 0
The multipliers a. are set equal to unity; this

amounts to the imposition of a (nonsingular) normaliza- whereby
tion on the v i, which is bi. f uI2dx/

f L 1 . f ZII I dx).Lu.

f v'.dx - b. 0 (i=1,2. M) i=l 0

0

from the fourth equation. According to the first condi-
tion, there must be at least one among the {bil with References
nonzero value. By the fourth of the necessary condi-
tions, the equation of (N7) is satisfied by (1) Olhoff, N. and S. H. Rasmussen, "On Single

f .IZ 2 and Bimodal Optimum Buckling Loads of
f(iv. - pvi )dxl = 0, Clamped Columns, " Intntl. J. Solids and

(kiu i) Structs., vol. 13, 1977, pp. 605-614.

where X . and u.(x) are introduced to represent the (2) Masur, E. F. and Z. Mroz, "On Non-station-1 1

eigensolutions. arity Optimality Conditions in Structural De-
sign, " Intnt' 1. J. Solids and Structs., vol. 15

If for the complete solution there is only one 1979, pp. 503-512.
nonzero bi , say b , then:

bI = I and from (N6), I = KL (3) Masur, E. F., "Singular Problems of Optimal
Design," Lect. No. 2.5, Proc. NATO-NSF ASIL

The optimality condition becomes Iowa City, 1980 (Sithiof-Noordhoff, Holland,
1981).

81 ,,2
D+ v 1  = E-c (4) Haug, E. J. and Kyung K. Choi, "Optimization

.2 of Structures with Repeated Eigenvalues,
and from (N5), f v 1 dx = 1, whereby Lecture No. 2. 7, ibid.

L (5) Kirmser, Ph. G. and K. K. Hu, "Remarks on

L lu'i d x  the Optimal Shape of the Fixed -Fixed Column,"
o paper B. 1, ibid.

This summarizes the optimal design problem for the
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(6) Haug, E. J. and B. Rousselet, "Design Sensitivi-

ty Analysis in Structural Mechanics LI: Eigen-
value Variations, " J. Struct. Mech. (to appear).

(7) Olhoff, N. and J. E. Taylor, "On Optimal Struc-

tural Remodeling, " J. Opt. Th. and Applies.,

vol. ~, 1979, pp. 571-582.

(8) Courant, R. and D. Hilbert, Methods of Mathe-
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TWO APPLICATIONS OF OPTIMUM STRUCTURAL DESIGN

IN THE FIELD OF NUCLEAR TECHNIQUE

J.F.Stelzer

Kernforschungsanlage

D-5170 JQlich
West Germany

The paper reports firstly the optimization of lar- In our case we had to deal with circular coils,

ge magnetic coils for a fusion machine of the Tokamak see fig.l. They consist of two parallel rolled up cop-

type. The optimization was executed with object to mi- per bands which are insulated against each other by epo-

nimum shear stresses within the insulating glass epoxy xy layers reinforced with glass. Dependent on the for-

layers which are located between the layers of the cop- mation of the glass fibres these layers tolerate only

per coil. The optimization at first followed the fully low shear stresses. If the tolerable limit is exceeded

stressed design but the results did not satisfy. An exa- then the epoxy crumbles away. The coil stiffness, of

mination of the influences of different mechanical de- course, decrea4ses. Accordingly, the deformations in-

tails, however, led to cognitions how the feared shear crease which may lead to an accelerating of coil destruc-

stresses considerably could be reduced. tion. Therefore, we tried to optimize the coil design
with respect to minimum shear stresses in the epoxy. On

The second topic introduces one problem occuring the other hand, the outer steel ring had to temain suf-
in the context with a neutron spallation source. One ficiently rigid.
part of the target station is a flat containment holding

pressurized water. For an improved stiffness the lid 2. Additional Information to Lhe Coil Design
and the bottom of this containment had to be connected
by rods. Sought for was the number, thickness and loca- The steel ring surrounding the copper, see again
tions of these traverses with object to minimum defor- fig.1, possesses a wedge-shaped protrusion on that side
mations and stresses in the containment walls. The pro- which faces the torus centre. The 16 coils of the fusi-

blem could be solved in a very agreeable way by the ap- on machine fit together with these wedges like keystones

plication of the fully stressed design. in a vault. Therefore we speak of the coil wedges brief-

ly as of the vault. The steel ring is fixed to the cop-
Optimization of a Magnetic Co per also by an epoxy layer.

1. Introduction to the coil problem 3. The Calculation Model

The coils of fusion machines of the Tokamak type
which produce the magnetic main field, the toroidal All influences on the coil were examined using a

field, are mechanically highly charged structures. The finite element model, see fig.2 and 3. The half coil

load mainly is generated by the magnetic field which is model consists of 144 elements of cylindrical shape.

because of its pulsed character quickly swelling and The 10 copper layers of the real design were comprised

vanishing. This load is superimposed by thermal stres- to two in the model. All epoxy layers we-

ses stemming from the Joule's heating of the coils. - - - re united to only one, situated between the
copper outside and the steel ring inside,

E Rwhich got a thickness like the sum of the
------- real single layers. In this position the

highest shear stresses were to be expected,be-
cause the magnetic and thermal loads are in-
duced and act within the copper. They try

to move the copper relatively to the stiff
steel which remains unchanged with its tem-
perature. It is important to regard in the
model the extremely non-isotropic character
of the epoxy. Concerning the orthotropy of

this stuff some pre-work (1) had been neces-
sary, basing on publications of Hsu (2),
Lekhnitskii (3), Hearmon (4), Nowinski (5)
and Barker (6). The orthotropic properties
we introduced are listed in fig.4. The vault
was modelled by rods of appropriate stiff-
nesses, fig.3. This may seem a little poor

* but has some advantages for the optimization
procedure. During the calculation it appea-

red that an additional supporting rod would
be of some value, see fig.3.

4. Loads and Stresses

When distributing the magnetically cau-

sed radial forces we get a display as shown

COPPER LAYERS' in fig.5. The inner copper layer suffers a
considerably higher load, whereas the outer

_ _ _ _ _ _ _ _ WITH EPOXY copper layer is somewhat pressed inwards in

INTERLAYERS the region of smaller angles (right hand ai-
de, the angle counts anticlockwise). If we
row the force vectors in a series we get re-

A m tlations as shown in fig.6. The resultant for-
Fig.1 Design of the large magnetic coil of TExTOB. On- ce has one centripetal component which pres-
ter diameter 1320 ma
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ses the coil into the vault, and a vertical one. Our
calculations also took regard of the axial forces occu-
ring in the context with a plasma collapse. They are
likewise rather small and may be neglected in this pA-
per. The thermal loads result from an uniform upheating
of the copper by 20 K.

Fig.5

Fig.2 Half coil model, 144 finite element,-SPIsGTH UHL I

EPOXY WITH GLASS

1250
CEMIPIAL CNIMIN 1?3.55

U A -C Fig.6 Vector diagram of the acting forces

Fig.3 Boundary conditions of the model The loads cause txingntiaZ stresses as exhibited
in fig.7, the maximum of which in the steel is about 90
N/nun2 . This mai possibly afflict the ring. It is valid
for a steel ring thickness of 50 mm. The stresses in
the copper and epoxy are not critical. In the stress pat-SR tern the influence of the vault is reflected, because

ERMICFOPR Ez the vault begins at an angle of 125 degree.

TANINEIAL 51US$ VS.AUU1

NEST IMI THE nC@,nPM 8

E z ER

-r 7.10A URE
vWAv* 0.3 &_vrvQprIO0deNo m

vr-n0.2 &W-qVwS 4

Piq.4 Orthotropic properties of the epoxy with glass go IS"lO

j Fig.7 Tangential stresses vs. angle, element middle
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The thick curve in fig.11 shows the shear stress distri- i) the steel ring, here the parameters thickness
bution in the epoxy the maximum value of which is -3.4 and shape
N/m 2

. Its location is at the vault begin, too. ii) applying of an additional supporting rod

5. Coil Deformations iii) variations of the height and stiffness of the
v~ault

Fig.8 shows the radial deformations of the steel The copper coil must remain unchanged. In the following
ring. The maximusm value with the hot copper occurs at the influences of the appropriate parameters are exami-
95deg. It does not coincide with the force resultant ned. At first we may turn towards the steel ring.
which is at 112 deg which depends on the vault influen-

"ce. In fig.9 the tangential deformations are displayed. Changes of the steel ring. If the steel ring is very ri-
The clockwise displacements are drawn circle-inwards. gid, it will oppose vigorously all deformation attempts

which come from the forces in the copper. The tangenti-
20 K huM con r al deformation differences between the copper coils and

the steel ring would be large. The same would occur
with the shear stresses in the epoxy. A very weak outer

0. 1 cm displacement ring would suit all copper deformations. The epoxy in-
terlayer would remain almost shear stress free. But the

"*OW&copper coils would then show intolera-
ble deformations and the force trans-
fer to the vault would be problematic.

Looking at the circumferential pat-
tern of the tangential stresses in the
steel ring, fig.7, an unevenness can be
observed. It suggests itself to try to
suit the steel ring to the local loads

cby an appropriate local thinning or thi-
old ckening. This can be managed by a Ful-

ly Stressed Design (FSD) on behalf of
the tangential stresses (7). Straight
forward we should have executed it: by

* . an iterative change of the cross section
*- A according to

k
SAk+1 I k (1)RADIAL DEFORMATIONS OF T6 INNER EDGE OF THE STEEL R ING, A =i- A

COLD CASE (INNER CONTOUR) AND UPHEATED CASE a the stress, o*d the ideal and through-

out wanted stress, i index of a certain
0. 1 cm displacement element, k the iteration counter. How-0. 1mever, we preferred to iterate on behalf

Id of a fictitious Young's modulus which
at the convergence of the iteration rou-
tine was converted into appropriate
cross sections according to the stiff-
nesses. This gave the advantage of wor-
king during the iterative procedure
with always the same geometrical mesh.
Fig.10 reports the results. The re-
lationships are valid for a 0. =20 N/
,,,2. As is to see in fig. 11, he FSD
succeeded in a rather large region, for
the shear stress in the epoxy is now
zero from zero degree to 110 degree.
But, unfortunately, in the area of the
vault the stress slopes suddenly down
to a value of -4 N/m 2 which is even
worse than with the non-optimized coil.
Because of the influence of the vault

.: Fig.9 TANGENTIAL DEFORMATIONS OF THE INNER EDGE OF TE STEEL RING the FSD becomes inefficient.

COLD AND UPHEAlED CASE FSD plus an additional supporting rod.
Observing the context between the lar-

The clockwise deformations are mainly due to the ther- gest radial deformation and the appropriate tangential
mel load, as can be learned by cc " ring the cold and displacements suggests the claim for a suppression of
the upheated state. The anti-clockwise deformations are the oval deformation, perhaps rather from the outside
caused by the magnetic load. Displacement differences by a support which counteracts the resultant of the mag-
between the layers are responsible for the dangerous r- netic forces. We repeated then the FSD prodedure the re-
*- (radial-tangential-) shear stresses in the epoxy, sults of which are shown in figs. 12 and 13. Bowever,

as fio. 13 reveals, the FSD is also here inadequate.
6. Measures Dealing with the Shear Stress Reduction With every iteration step the shear stress in the epoxy

is increased.
By a systematic variation of the influences we tried

to diminish the epoxy shear stresses. The following pa-
rameters could be changed:

1-25
. . .I1__ I I II 0_0.. 

. l ,



Variations of the stiffness of the supporting rod.

F8,2@M-2 Ex-a.inations on the influence of the rod stiffness

FSD 5~n resulted in the relationships as exhibited in fig.
14. A weak rod, curve no.1, causes a low shear

lb stress maximum but a considerable minimum.

-t-1 Fig.14

S41D_ IMEAR STRESSES INd TIE EPOKY LAYER VS. ANLE
_ 0111. - i WITH SUPPORTING NODS OF D01N SIIWESSS AT LgO
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......................................"W MAYK451MA
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153340340340 140110 55g11S013 4
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duction concerninj the absolute maximum value from 3.4 9000 lead filled, AlMg3-canned cylindrical rods of 24

N/mm
2 

to 1.9 N/mm . mm outer diametel and 100 mm length sitting in a flow

of water coolant.
distribution of fast neutrons

colatoutlet

4 1 Fig.18 Rotating target wheel for a high-neutron-flux
50 0 spallation source (Bauers principle)

2 , Because of the flow resistances the coolant must be un-

S Fig. 17 der pressure. rom this the sheet housing of the tar-
ANII uTAuGsTIALsIIIS1uLiIm get wheel is stressed and deformed. There are still ad-
PA 5AE IIMENVVALTSTBRSES ditional but smaller loads resulting from the weight of
COmKTINCIVANSE6UA SP. I2 the 1ead rods, the centrifugal forces of the water (neg-

I .'~'lectable, rotation speed 0.5 revolutions per second)
I
ml  

and stagnation pressure at the outside wall. The hnu-( sing material is AlI~g3. Most of the lead rods sit in
J I the housing as fig.19 displays.

colatpasge Fi.9 inl

7target rod. With

NG11~ I"SO 0onba

lidnof the housing the plugs at the
cm me 5ends it sits in the

wheel structure.
It can expand bede-

i Al-cladding pendently of the

A ... . dtoabusambient rods
m COPR N I N C R a S 0. 15 the a rm e ntu0 If f t

-lead

bottom of the housing

Optimization in the Context with a
Mechanical Problem Occuring in the
Target Station of a Spallaton Neu-

tron Source
7. Introduction to the Problem Because of the material and the geometry the housing is

not very rigid and its deformations become intolerable

The potential with respect to the neutron fluxes if all rods are fixed according to fig.19,
of the classical neutron -wource type, the fission reac-
tors, is practically exhauted. The neutron source with 8. Task

higher fluxes and other new and promising properties, e.
g A without the Plutonium problem will work with the nu- For an increase of the stiffness traverses between
clear spallation (8). This effect takes place when a the housing lid and bottom should be provided for. From
highly accelerated proton penetrates the atomic nucleus the aspect of manufacturing their number should be mall.

of a heavy element like lead or Bismuth. Then the char- As traverses or through bolts target rods should be used
gad energy is balanced by the emitance of nucleons. with differently shaped ends by which they are firmly

ence, a spllation device consists of a proton accele- connected with the lid and the bottom. The optimization
rator and a target station where the nucleons are set task was to determine the number and the locations of
free. In the planned spallation neutron source in Jue- the throughbolts with regard to a minimum deformation
lich, called DIANE, a proton energy of 1100 bel and an of the housing and a tolerable stress in the connecting

theno peak ofgi an pulss deomsin toom exectronlveaedvauebiard

averaged proton flux of 5 nA is anticipated. In the tar- rods. With respect to the poor tensile properties of
get station a maximum heat deposition of 120 k /ac

3 (in lead only the cros. section of the Al cladding is con-

torpeks, a ule is prctoal expe.e, ron sure witue 8.skd

eof 12 kW/cu. For keeping the target material on a to-

lerable temperature level, a rotating target was propo-
sd, according to the exnmple of rotating anodes, see t-ho

S fig. 18. The target material is lead. There ae cabout

go enryi1-2cdbyte7iac fnclos ihdfeenl hpded ywhc hyaefrl

Heca l ei c cosit of a. prto accle conncte wit the lid an th botom Th opimzaio



9. The Calculation Model

In fig.20 the calculation model is displayed. It
consists of 324 elements with 672 nodal points. Fig.21
gives some dimensions and the pressure distribution.

window

li~d

bFig.22 Deformation of the housing if no traverses are

present. Deformation enhancement factor 200.

Fig.20 Projected view of the calculation model

25.90

R28 125- 775 -

I 3 bar I

15.54f 1 I l I 'J

Pig.21 A model cross section

The model possesses less opposite pairs of nodal points
than rods exist. Therefore, a certain lot of rods is
thought to be comprised in these locations. In the real 5.18
structure the rods are located on 37 radii to which we
assign the names R1 to R37, counting in the proton di- . -,'
rection from the larger radii to the smaller ones. < <-

10. Some Calculation Results - ". ' I

Fig.22 exhibits the housing deformation calculated - , , ,
for the case that no traverses are present. The defor- ---------
mation was enhanced by a factor 200, likewise as with
all the following pictures. The distribution of the ap- pig.23 Distribution of the reference stresses in the
propriate reference stresses in the lid is shown in fig. lid of the rveresrese
23. Fixing throughbolts at the points of the largest lid of the housing if no traverses present
clearance of the deformation (fig.22), at the radii R16
and RI, delivers a deformation pattern as shown in the - o

fiq.24. This is already a design to live with. In this
case every second rod on the two radii was fastened- - - --- -- --- -
which leads to a number of 272 fixed rods. The due re-
ference stresses can be seen in fig.25.

it. The optimizaton Procedure F T I - I -

Spposedly a fully stressed design (PSD) with con-
cern to the rods would satisfy the given demand. we
started with connecting rods in all possible positions,
i.e. between all opposite node point pairs, giving all
these rods identical cross areas (accoiding to the AlMV3 Piq.24 Deformation of the housing with traverses at
cross sections). During the iteration procedure the two radii (R16 and R18). Deformation enhancement by
cross areas were changed according to eq. (1), etc. The a factor 200

1--



iteration converged after 7 iteration steps, with equal Table 2: Maximum reference stresses at different loca-
stresses in all rods. The in this way received cross tions of the housing in the cases of fig.22, fig.24 and
section areas were part of the simplyfied model and must fig.26
be transferred to the real design. This was done by di- Location case of fig.22 fig.24 fig.26(optim.)
viding the calculated cross section areas by the value
of one real rod cross section area. Thus the number of lid 25.9 7.72 4.3
necessary transverse rods in the region of a certain mo- bottom 12.7 3.39 2.5
del rod could be got. The results are given in table 1. window 15.5 8 6.34
The notified radii are the in the model regarded ones, The stress distribution in the upper and downside parts
counting in a row from the small radius to the largest of the housing is now almost equalized, as fig.27 dis-
one. plays. Consequently, the optimized design offers highest

Table 1: Amount of necessary connecting rods along the stability and longevity.

360 deg circumference

raaius name location in mm necessary rods

R33 596 none
R30 657 none
R28 700 3 43
R26 741 8 44
R23 797 13 so
R21 837 15 .72
R18 901 15 .66
R16 945 22 N

R13 998 23 %
Rll 1035 20Z
R8 1093 11
K7 1113 none
R3 1197 none

Now, an amount of 130 connecting rods is required (272 Fig.27 Reference stress distribution in the lid of the

in the case of fig.24 and fig.25). Fig.26 shows the de- housing for the optimized design. The scale is the sa-
formation of the optimized housing. me as in fgs.23 and 25.
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By the optimization procedure the wanted reducti-
ons of the stresses in the lid and the bottom of the
casing took place. Also the beam window which is for-
ed by the outer vertical wall is less charged. Tab-

le 2 gives a surview over the maximum stresses at dif-
ferent housing locations for the 3 treated cases.
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Abstract ing the procedures to obtain small improvements is
weighed against the value of the improvement.

Methods for pre-screening stress constraints into
either primary or side-constraint categories are re- Fundamental to obtaining an effective solution is
viewed; a projection method, which is developed from the identification of constraints either as belonging
prior cycle stress resultant history, is introduced as to a critical set that will be actively processed by
an additional screening parameter. Stress resultant the optimization algorithms or to a benign set treated
projections are also employed to modify the traditional by elementary mathematical operations. Members of this
stress-ratio, side-constraint boundary. A special ap- last set are considered to be passive during optimiza-
plication of structural modification reanalysis is ap- tion algorithm applications, which are presumed to sat-
plied to the critical stress constraints to provide isfy their requirements automatically. Solution effic-
feasible designs that are preferable to those obtained iency and stability are enhanced by keeping the active
by conventional scaling. Sample problem executions set small and the passive set large. Nevertheless,
show relatively short run times and fewer design cycle when the active set is too small, the passive set could
iterations to achieve low structural weights; those produce undesired violations of their constraint re-
attained are comparable to the minimum values developed quirements. When constraints are violated during te
elsewhere, current design iteration, conventional practice is to

identify an alternative feasible design that is ob-
Introduction tained by scaling the current (raw) structure weight

upwards in proportion to the maximum constraint viola-
Design optimization of linear structures through tion. On the other hand, .,hen the active set is overly

optimality criterion method approaches has been estab- large, and although the penalties for scaling the
lished during the past decade as superior to the more structure weight to feasibility could be small, the
formal approaches of nonlinear mathematical programm- advantages of reduction of the design space disappear;
ing. The advantage of optimality criteria methods is and mathematical programming approaches (5) become
In problem-size potential and computation effort (1, competitive for solution processing. Fortunately, re-
2, 3, 4) because of the capability to reduce the solo- cent discussions (6, 7) of substantive approaches for
tion space from a large design variable space to a partitioning the constraint set provide steps to over-
much smaller subspace of active constraints. The or- come this identification problem.
iginal design space is retrieved through the applica-
tion of optimality criteria that supply the desired This paper describes these and other steps to res-
design variables in terms of Lagrange multipliers as- trict the numbers of primary constraints and adjusted
sociated with the active constraints. The most chal- requirements for the passive constraints. Specific
lenging requirement then becomes the determination of items covered are screening of potentially active con-
the set of Lagrange multipliers. straints to reduce their number, a projection method

to modify the conventional stress-ratio side constraint
The usual objective of the design problem is to boundaries for the passive constraints, and the addi-

mimimize the total structure weight, which is adopted tion of supplementary structural modification reanply-
as a convenient, although possibly imperfect, measure sis procedures to reduce the feasible scaled weight of
of cost. The two most frequently-encountered types of designs with constraint violations. Results of example
constraints in the design of structures for static executions of standard sample test problems are pre-
loadings are compliance constraints, which are applied sented for assessment. Although occasionally penalized
to limit specific functions of the structure's dis- by accompanying structural weights that may exceed
placements; and stress constraints, which are applied known minimums by fractions of a percent, these exam-
to ensure structural integrity, ples often show desirable execution efficiency as

measured either by the numbers of design cycles re-
Satisfying the stress constraints is usually a more quired to achieve low feasible structure weights or by

difficult mathematical requirement than satisfying the the required computer time.
compliance constraints because stresses are a direct
function of strains while displacements are integral Mathematical Formulations
functions. Thus, for a non-optimum design with some
of the design variables (member sizes) undersized and The following discussions are simplified to consider
some oversized, the undersized members will be over- applications for 3-dimensional trusb-type structures
stressed and the design will be considered inadequate that consist of only one-dimensional rod finite ele-
to the extent of the overstress, no matter how great ments. The associated design variables are cross-
the understresses on other members. On the other sectional areas of rods and the stress resultants are
hand, the oversized members will contribute to reducing the axial forces. They can represent individual rod
constrained displacements so that, even if the design member areas or common areas for groups of members.
variables are non-optimum, the compliance constraints The formulation, nevertheless, can readily be modified
could be satisfied. (7, 8) to include additional membrane plate elements.

Although the structures most frequently considered Optimality Criteria Method
for design optimisation ore linear with respect to
analysis, the design process, unless trivial, is al- A brief overview of the optimality criteria method
ways nonlinear. Consequently, the design solutions formulation is supplied for convenient reference. Ad-
are obtained by an iterative sequence of analysis- ditional details and specific variations are described
redesign cycles. Bence, the computation efforts and in a number of other references (1, 2, 4, 9).
costs can be significantly larger then for conven-
tinsal structural analysis. Therefore, in practical A common density for all structural members is
applications, the extra effort in extending or adjust- assumed here so that the objective tr minimize the
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structure weight can be replaced by a volume objective plier method or the Kuhn-Tucker conditions, it can be
V given by: shown (as in most of the previously cited references as

N well as elsewhere) that the optimality criteria condi-

Minimize V - - Liai () tions for this problem are
K

i1 2 , E iJ)j j - 1,...,K (8)
in which the design variable ai is the cross-sectional 1
area, Li is the lengths of the members, and i is the
generic index within a set of N groups. in which the Xj are non-negative Lagrange multipliers

that are to be determined from the solution of an aux-
A virtual work formulation is used to express K pri- iliary mathematical programming problem given by

mary constraint equations as
=kjaj - 0 j - 1,...,K (9)

G - L,' _ 1 K (2) This implies obtaining the solution of the simultaneous
aj -< -- nonlinear equations

Gj =0 je•Q (10)

In Eq. (2), Fi is an internal stress resultant

virtual work coefficient so that the virtual work of in which the set of indices Q is identified with the
the ith design variable for the jth constraint is currently active constraints, and the remaining indices
FijLi/ai. For a group with only a single member, this are associated with a set of passive constraints for
is computed as the stress resultant for each external which the multipliers are taken as zero. An alterna-
loading times the stress resultant for an associated tive method of finding the multipliers is by choosing
virtual loading divided by Young's modulus. In the them to maximize a dual objective function (3), but
case of a group of more than one individual member, the this is a technical rather than a fundamental differ-
virtual work coefficient is replaced by the length- ence (4). Newton's method, with any of a number of
weighted average for the group of members. Cj* is a variations or modifications, is the usual method used
prespecified bound on the virtual work. When the dis- to solve for the multipliers although primitive earlier
placement at a single node in a particular direction research used recursive approximations.
is to be constrainted, Cj* is the value of the dis-
placement bound; and the virtual loading is a unit load The design procedure iteration cycles terminate when
applied at that node in the corresponding direction, either prespecified convergence criteria are met or
More general forms of compliance constraints (10) can maximum numbers of cycles are performed. Each cycle
be established from more complex virtual loading vec- typically consists of two steps:
tors. Stress constraints for individual members can
be converted to extensional constraints formulated by (1) Analysis of the current design. This includes

determination of stress violations and computa-

C.* . r
* 

Lr (3) tion of the Fij terms (virtual work coeffi-
J E cients) needed for optimization.

in which O4r* is the allowable stress, Lr is the length (2) Design optimization. This consists of computa-
of the rth member, and the virtual loading is a pair of tion of the multipliers and application of the
self-equilibrating virtual (11) unit loads at the ter- optimality criteria.
minal nodes of the member. The pairs are directed away
from each other for tension stress and toward each The virtual work coefficients are assumed to be in-
other for compression stress. variant during adjacent design-followed-by-analysis

cycles. This assumption is true only for a statically
In addition to, or possibly in place of, the primary determinate structure, and the associated errors depend

constraints there are side constraints (4) given by the on the extent of redundancy of the structure. Redun-
limits dancy, therefore, provides the requirement for itera-

tion to update these coefficients.aI S ai S Wi i - 1,....,N (4)

Selection of Candidate Primary Stress Constraints
in which a and I are lower and upper side constraint
bounds on the design variable ai. The set Q (Eq. 10) of constraints active during the

optimization step is a subset of candidate constraints
It is convenient to rewrite Eq. (2) as established prior to this step. Methods for estab-

lishing and updating the Q set have been considered
Gj - Cj - Cj* (5) elsewhere (3, 4) and, although worthy of additional

research, are not covered here. Nevertheless, this
where from Eq. (2), Cj is the realized value of the discussion will consider the selection of constraints
virtual work. That is that are candidates to be included in the Q set. The

objective is to compress the solution size for Step 2
N by retaining the significant constraints and eliminat-

C1 i FijLi/si (6) ing the unimportant constraints.

i 1 The selection is a screening process that eliminates
constraints that fail to meet all of several criteria

From this, the constraint ratio is given by assumed necessary to qualify for Q set. Stress con-
straints that do not qualify are treated as side con-

Dj - Cj/Cj* (7) atraints, and minimum design variable size requirements
are assigned to be maintained during the optimization

so that ratios greater then unity indicate constraint step. Usually this minimum size is determined by a
violations, stress-ratio requirement. This requires the design

variable to be at least as large as its current value
fBy applying either the conventional Lagrange multi- times the ratio of current stress to allowable stress.
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This is equivalent to, but simpler to compute, than the design variable. The viewpoint here is from a virtual

alternative work formulation and provides an equivalent alternative
to the preceding reference.

a4  Djai (,ll)

In the case of a statically determinate structure,
Three criteria will be considered here: a stress the matrix of all stress resultant vectors for a full

(constraint) ratio criterion, a stress resultant seta- set of self-equilibrating virtual loading vectors is
bility criterion, and a redundancy estimate criterion, the identity matrix (except for the signs). Therefore,
None Pre precise but all are proposed as being ration- in a redundant structure an "almost statically determ-
al, at least to this writer and to predecessors who inate" member can be identified by a coefficient with
have used either Identical formulations or formulations magnitude close to unity at the index corresponding to
similarly motivated by those to be given. The first the diagonal element of the self-equilibrating loading
two criteria require insignificant computations for stress resultant matrix. Consequently, if that magni-
application and are applied Initially. The third cri- tude is larger than an input parameter in the range of,
terion requires the stress resultant vectors for the for example, from 0.85 to close to unity, the primary
self-equilibrating virtual loads, which need to be constraint could reasonably be replaced by a stress
constructed only for the survivors, side constraint. The lower the parameter value, the

larger the number of side constraints. It can be ob-
In common with many other optional features avail- served that this and the preceding redundancy estimate

able to users of prevalent computer optimization pro- criterion are different formulations with an Identical
grams, numerical values that require subjective or in- motivation.
tuitive judgments must be supplied to the computer
program by the user. Unfortunately, the efficiency of Modified Side Constraints
the design optimization progress, or even the success
or failure, can depend upon amall variations In the The modifications depend upon the assumption that
choice of parameters. As with many of the other pars- design variables and stress resultants progress mono-
meter options that are user-defined, the related pare- tonically from initial to final values. Consistent
meters for these criteria can have initial values to with these assumptions, for example, if a stress resul-
be applied at the first iteration cycle, multiplier tant has increased in value from the prior cycle, it

factors to adjust the values for subsequent cycles, and can be expected to increase in the next cycle; similar-
cut-off values that can override unwanted values that ly, a decrease would be expected for a prior cycle de-
can be produced through repeated applications of the crease. Correspondingly, side-constraint, stress-ratio

factors. boundaries can be modified to incorporate a projection
based upon the difference in stress resultant from the

Stress-Ratio Criterion. This criterion is almost prior cycle. The projected stress resultant Pi* is
self-explanatory and is used in almost every type of
optimization procedure. The assumption is that, if the Pi* . Pi

+ 
+ t(Pj+ - Pi-) (13)

constraint ratio at the current design cycle is small,
it might not increase enough during the next cycle to where t depends upon input parameters and Pi+ and Pi-
become important. Therefore, it can be moved to the are defined as in conjunction with Eq. (12). An input
side constraint category at this design cycle. Typical parameter in the range (0., 1.0) and cyclic multiplier
rejection values are in the range from 0.50 to 0.95. in the same range establish the value of t. The maxi-
The former value ensures little risk of rejecting a mum absolute value projected for the stress resultant

constraint that should have been kept. The latter for any of the members of a design variable group for
value compresses the number of potential primary con- any of the external loadings from Eq. (13) is used to
straints with more risk of rejecting a significant one. determine the side constraint.

Stress Resultant Stability Criterion. This criter- An examination of about 850 occurrences for one par-

ion uses the relative change in stress resultants be- ticular design showed that for 85% of these occurrences
tween adjacent design cycles as a measure of current there was no change in sign of stress-resultant change,
stability. If the change is less than a stability which supports the underlying assumption. However,
parameter, it is assumed that a side constraint is ad- projection parameters at the top of the ranges should

equate for the next design step, and the primary stress be used with caution since there can be adverse effects
constraint is rejected. The relative change DPi for from too bold projections. Nevertheless, example prob-
the ith member is computed as lems run without projection and also with projection

values of about 0.7, both for starting values and mul-
DPi - (Pi+ - Pi-)/Pi+ (12) tiplier factors applied for decreasing stress result-

ants, and about half as much applied for increasing,

in which Pi+, PC are the current and prior values of confirm the value of projection in expediting the
the stress resultant. design process.

Typical values used initially for the stability The projection just described can be considered as
parameter are in the range (0.0, 0.10), with cyclic an overrelaxation function and is used here to estab-
multiplier factors in the range (0.65, 1.0). Tests lish the side constraints. Other forms of overrelaxa-
are made on the abbolute values of DPI (and on the tion (12, 13) or extrapolation (14) functions have been
largest of these in cases of several external loading proposed to establish values for the design variables
vectors). To guard against the anomaly of overstressed in place of any other type of optimization procedure.
members that have small relative changes, the relative
change can be increased before testing by the amount Modifications and Reanalysis
of over-stress relative to the allowable stress (1,0
minus the stress constraint ratio), Structural modification reanalysis has been used

within optimization procedures (15, 16, 17) to expedite
Iededspeg Istimte Criterion. The formulation is the repeated solutions of the load-deflection analysis

based upon the approach described i Ref. 7 to identify equations during redesign iterations. An alternative
members that could be regarded as almost statically de- application described here is to use modification re-
terminate. These are members with stress resultants analysis after the current stiffness matrix has been
that are relatively independent of their associated decomposed and the analysis for displacements and
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stresses has been completed. The purpose is to obtain But eF can be determined directly as the extension of
a feasible design when there are overstresses by re- the parallel members,
sizing only the members that are either overstressed
or nearly over-stressed. The design so obtained is [eFi [~JR] (18)
anticipated to be more effective than the customary t L Li
alternative obtained by uniform scaling according to Combining and rearranging, R can be obtained by solving
the moat critical constraint ratio. 1I'e1- [eS  IR] = [eI] (19)

The modifications are performed using the parallel [IN Li]

element (17) approach. In terms of rod elements the In solution of Eq. (19) for R, the order of the coeffi-
concept postulates an hypothetical member in parallel cient matrix is equal to the total number of property
with the member to be resized. The area of the paral- changes.
lel member Aa i is the change in area for the original
(parent) member. The concept provides a simple formu- The change in stress Aa and member force stress
lation and interpretation, which can also be extended resultantsAS can be obtained from
to other types of elements. Although there are alter-
native approaches (18) to reanalysis, the method here [A = [SI [R (20)
is compatible with the virtual work formulation and t Li LJ
requires for application essentially only information [sl-S SSl] [Ri (21)
already available or information that would be needed
independently. Furthermore, there are no mathematical in which O'S and SS are the stress and stress resul-
approximations in theory, although, as it will be seen, tant matrices associated with the self-equilibrating
there can be approximations in the proposed applica- loadings. Eq. (21) represents the change in stress
tions. resultant for the parent bar. The total change in

stress resultant for parent and parallel bar with re-
Mathematical Background. The following explanation spect to the original for the parent is obtained by

of the formulation is abstracted from Ref. 19, which adding the identity matrix to SS .
contains additional details. The premise is that dis-
placements of the modified structure UM are obtained Stress Resultant Derivatives. As a by-product, the
by superposition of displacements of initial structure reanalysis formulation can provide the partial deriva-
UI and the displacementsAU caused by the internal tives for stress, displacement, and stress resultants
forces of the parallel members acting as loads on the with respect to the area changes.
initial structure. That is,

S ri ]To obtain the derivatives for stress resultants, let
[UM I LUI + [AU] (14) the area of only one bar, bar v, be changed and the

change in stress resultant ASwe be determined for
LU can be expressed as the product of the displacements some other bar w where e is the index of the external
for unit values US of the parallel member forces loading column. That is av becomes av + Aav and
post-multiplied by the forces R of the parallel mew- no other ai changes. Then from Eqs. (16) and (19)
bers, or we have

[Au] - [US] [R] (15) (av/Aav - Svv) R - Sve (22)

In the above equation, US, to within the signs, can where Svv is the diagonal element of the stress te-
be extracted from the sets of displacement vectors that sultant matrix for unit self-equilibrating loads, Sve
result for the self-equilibrating loads that were dis- is the element at row v, column e of the external load-
cussed in conjunction with Eq. (3). Here, however, the ing stress resultant matrix, and R is the magnitude of
signs are based upon loading pairs directed toward each the self-equilibrating loading associated with the
other. change in bar v.

To enforce compatibility of the parent and parallel Eq. (21) then provides
member, let

ASwe - SwvR (23)
eF - final extensions of parent members

extensions of parallel members in which Swv is the row w, column v element of the
unit self-equilibrating loading stress resultant ma-

eI - initial extension of parent member for the trix.
external loads

Then from Eqs. (22) and (23)
es - extension of parent member for unit values

of the self-equilibrating loads ASwe - SwvSveav/(av - SwAav) (24)

eO - extension of parallel members for unit forces and taking limits as the area change approaches zero

For one-dimensional bar members, the extension of a aSwe/aav ' SwvSve/av  (25)
bar along its axis is given by

Equations similar to Eq. (25) apply for stress and
SiLI displacement. When Eq. (25) is used for bar v, it pro-

ei  AiE (16) vides the derivative for the portion of the bar asso-
I ciated with the original area. To obtain the total

where Sj, Li, Ai, and Ei are the member force, change, unity is added to Sw where it replaces Swv
length, area, and modulus of elasticity fot the ith on the right hand side of the equation.
member. Therefore, with superposition similar to Eq.
(14),The relationship of the partial derivative in

Eq. (25) to the derivative of the constraint equation
1 (Eq. 5) can be shown by recognizing that Cj of
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Eq. (6) is equal to the extens.2" of 'ar w for the An alternative to solving for R tram Eq. (30) is to
loading e In the case of a stress canstraint for this use the member extenFon form of Eq. (19). There would
bar and loading. That is be additional calculations to convert stress result-

ants, which normally would be at hand, to extensions.
Cj = SweLw/(Eaw) (26) There would be advantages, however, at being able to

use symmetrical decompositions to solve Eqs. (29) and
Therefore (30). For either alternative, the coefficient matrix

on the left hand side of Eq. (30) will be well condi-
aCj/aav = aSwe/aav - Lw/(Eaw) (27) tioned because of the stabilizing effect ot the dia-

gonal matrix.
However, in Eq. (25), Sv can be expressed in terms
of Svw by using symmetry of the eS matrix. There- The procedure just described is preliminary and

fore, Eq. (27) becomes represents the initial application method within a
research computer program. Experiences so far have

aCj/Oav - SvwSveLv/(Eav
2
) = +FvjLv/av

2  
(28) identified future problems to be resolved or opportun-

ities for improvement. Several are discussed briefly
Eq. (28) is the same as if the derivative were computed in the following:
directly from Eq. (6); thus it actually provides no new (1) A negative area change could be derived in Step
information. Nevertheless, the development of Eq. (25) 1 that could reduce the final area to a lower
is useful to show the inherent approximation, which is than acceptable value. The current remedy to
the result of the omitted term in the denominator of
Eq. (24). For example, when Eq. (25) is used to esti- roveber ith sch casfom th oe
mate the change in stress resultant, the result will processed in the second step occasionally pro-
usually be biased towards an overestimate of the magni- duces variations from the desired results.

tude of change. This follows because of the term (2) The envelope method employed in Step 1 to ob-
-Svv av in the denominator of Eq. (24); as employed tain the set of area changes for Step 2 could
here, Aa v can be expected to be positive and S w  be inefficient because of the need for sequen-
can be expected to be negative, tial, rather than combined, processing of the

vectors of external stress resultants.
Application. This is a two-step procedure. The

first step is applied independently for the external (3) The procedure currently has no provisions to
loadings to the members with stress ratios that exceed deal with groups of members for which the area
a threshold parameter of unity or slightly less. These changes within the group must be identical.
members are identified for redesign and a vector of Nevertheless, a tentative approach to provide
required changes in stress resultants is computed from this capability by using the partial derivative
the current area, stress resultant, and allowable approximations of Eq. (25) is being examined.
stress. From Eq. (21), for a particular loading (4) Reanalysis will disturb the stress constraint
column e, and a required change vector of stress re- ratios for the unmodified members and the com-
sultants&Se, we have pliance constraint ratios. The current remedy

to protect against severe stress ratio distur-
Ae- [N ej IRe (29) bances is to use threshold levels of less than

IJ unity to select members for modification. How-

in which SSe is a square matrix of stress resultants ever, seriously adverse effects on compliance
for self-equilibrating loads that conforms with the constraints could be difficult to overcome. As
indices of the change vector. Eq. (29) can be solved the result, the modification procedure could
for Re, preferably by a soluticn procedure that can become questionable for design problems in
deal with singularities (20), since linear dependencies which compliance constraints are more trouble-
could be present. some than stress constraints.

The Re vector contains the magnitudes of the load- Numerical Examples
ings on the parallel members so that each area change Two well-known demonstration test problems and var-
required can be computed as the corresponding component lations are considered here: 10-bar truss problems,
of Re divided by the allowable stress. Each external defined in Figure 1; and 63-bar truss problems, shown

4 loading column is processed the same way, and a record deic in Figure 2 an 6 uss probem shown
* of the area changes is maintained. Whenever the chang- schematically in Figure 2, is fully defined in Ref. I.

es for the same bar are made for more than one loading
r; column, the eventual selection is the envelope of max-

imum area changes. (D 05

In the second step, the equation derived from

Eq. (19) by converting extensions to stress resultants 6 3 UNI ORM INITIAL
is so ved to obtain a complete R matrix. This is, 7AAS-,0.

[Se] [R] - [SI SS] (30)2

In Eq. (30) the right-hand side columns include both
the external stress resultant matrix and SS, which o 50okt ,
is the matrix of stress resultants for unit self- O.:, - LOADING

equilibrating loads with columns for all the potential a
primary constraints that have survived the first two 6 * ,

criteria tests. Consequently, all stress resultant .
vectors needed for the third criteria test and for de- cONSrS

igin optimization can be updated using Eq. (21). ., 2
Stress resultant vectors so updated will be consistent 15 M525k TYIC kA
with the area changes of Eq. (30) and will be exact zoNePIcEMENT Zo.2

except for numerical error accumulation. Fig. 1. 10-Bar Truss
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and the third allows 50,000 psi for bar 9. Weights
of 1593.2 lb, 1545.2 lb, and 1497.7 lb reported In
Ref. 22 were obtained in about 16 cycles for each prob-

.-,.LOAONG lem and are the known minimums to within trivial dif-
suPPOT 20 PUNTS ferences. In the one problem tor Loading B, all stress

contrantsare 25,000 psi. Weights of 1664.6 lb have
been achieved (22, 23) in 11 cycles.

Tables 1 and 2 contain the design histories for
6these problems obtained by ACCESS 3 and by our program,

which included the reanalysis procedure. The tables
- /show that the known minimum weights were achieved and

always in fewer cycles than previously. The reanalysis
Fig. 2. 63-Bar Space Truss Schematic procedure seems to be particularly effective; it usual-

ly required fewer cycles to reach the lowest weight it
attained, and it provided lower weights during inter-

Comparisons of results obtained with our present re- mediate cycles. Nevertheless, there were initial dif-
search computer program are made with those obtained ficulties with both programs for the third problem with
with the ACCESS 3 (21) optimization program. Reports Loading A. The results shown in Table 1 were obtained
in the literature (3, 21) of tests on a number of stan- by setting input parameters for the redundancy estimate
dard problems, as well our own experiences, indicate criterion to effectively suppress that screening capa-
this to be among the current best-performing and most bility.
efficient structural design computer program.

63-Bar Truss Problems
Comparisons of program efficiency for 10-bar truss

design problems can be made only for the numbers of Problem with Displacement Constraints. The conven-
iteration cycles; numerical computation times are so tional displacement constraints for this problem simu-
small that they are overwhelmed by the user's printout late the torsional rotation for two independent load-
requests and cannot be identified. The 63-bar truss ings applied at the tip, Ref. 7 reported a weight of
problems entail a significant amount of numerical comp- 6117 lb attained in 17 cycles; Ref. 21 reported a
utations so that these times can be reasonably esti- weight of 6119 lb attained with ACCESS 3 in 13 cycles.
mated. The estimate used here of net computation time
is based upon specitying different printout levels for Table 3 shows design histories obtained by the
duplicate executions of the same problem. This makes UNIVAC lQ0/81 for ACCESS 3 and for our program. Comp-
it possible to determine the average number of printed utation times shown at the bottom of the table are the
pages that are typically produced by the program. Then net estimates of the 1100/81 computer central processor
the net computation time is estimated from subtractive unit (CPU) time. The ACCESS 3 run was obtained for a
adjustments dependent upon the page count. All timing "partially fully-stressed design" mode as described in
comparisons are for execution by a UNIVAC 1100/81 com- Ref. 21 with input parameters chosen according to re-
puter. commendations given there. The usual parameters could

provide weights lower than these by fractions of 11 but
The numbers of iteration cycles that will be shown with added computation time. In fact, but In the spir-

in design history tabulations are variable. They de- it of research, all of the problem executions tabulated
pend either upon termination parameters that are equal in the present paper allowed impractically large num-
to a fractional percentage of the change in raw weight bers of iterations. For example, any weight reduction
between adjacent cycles or upon the lowest feasible below 6130 lb in Table 3 represents an improvement of
weight attained in a few cases where the weight digres- at most 0.2%, which is surely only of academic inter-
sed to higher values after the lowest was attained. est.

10-Bar Truss Problems The table shows that effectively low weights can be
achieved comparatively rapidly with program features

Problems with Displacement Constraints. There are described here. Reanalysis increases the computation
two well-studied problems each with the single loading time for runs of the same cyclic duration but usually
condition of either Case A or of Case B. Minimum provides lower weights throughout the run history so
weights of 5060.9 lb and 4676.9 lb for the two load- that fewer design cycles could be specified. The last
ings have been reported in many references and have column of the table represents an expefriment in which
been achieved with as few as 11 and 7 design cycles, only the two displacement constraints were retained in
The ACCESS 3 program and the our program incorporating the design optimzation step. That is, after reanalysis
procedures described here (omitting reanalysis) have to adjust overstresses, all primary stress constraints
been shown (4) to arrive at the minimum weights within were replaced by side constraints. The weight attained
either the minimum or close to the minimum numbers of in 9 cycles is only about 0.7% heavier than the mini-
cycles. These problems are controlled by the displace- mum. A problem formulated the same way, but without
ment constraints; stresses, except for a few members reanalysis, reached a 20-lb heavier design than this
already at the minimum allowable size, are rarely in 11 cycles (4).
critical. When we used reanalysis, there was a trivial
weight increase for Loading A and a weight increase of Problem with Displacement Constraints Omitted. A
about 125 lb for Loading B because the reanalysis weight of 4978 ib reported in get. 22 was attained in
caused violations of previously satisfied displacement 14 cycles. Table 4 shows the design histories for
constraints. A pathological feature of these problems problem formulationa matching those of Table 3. Since
is the increase in displacements caused by increases the last column of the table represents a formulation
in the area of bar 6. with no primary stress constraints, there are no pri-

mary constraints at all, This design, except for using
Problems with Displacement Constraints Omitted. projection-smodified side constraints and reanalysis, is

Three problems for Loading A and one prnblem for Load- equivalent to classical stress-ratio, fully stressed
Ing B have been examined previously (1, 22). For Load- design. This formulation has achieved almost the low-

Ing A the first problem retains all stress constraints eat weight with the smallest computation time. After-at k5,000 psi, the second allows 30,000 psi for br 9, words, the some runstream ws reassembled to permit
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Table 1. 10-Bar Truss Design Histories, Loading A

Allowable Stress, psi

30,000 Bar 9 50,000 Bar 925,000 Others 25,000 Others

Feasible Weight, lb

Cycle Access 3 Present Access 3 Present Access 3 PresentProgram Program Program

1 3435.0

2 1917.5 1799.7 1836.7 1759.0 1733.4 1729.1

3 1949.4 1719.2 1878.8 1675.3 1645.7 1590.5

4 1791.8 1667.6 1685.6 1622.0 1640.9 1534.2

5 1687.9 1628.5 1646.9 1580.6 1534.6 1523.0

6 1609.0 1622.3 1587.5 1574.4 1527.1 1516.4

7 1595.4 1593.2 1556.7 1545.2 1521.5 1510.9

8 1593.5 1548.2 1516.6 1506.3

9 1593.2 1545.6 1512.4 1502.6

10 1545.2 1508.7 1499.7

11 1505.5 1499.0

12 1517.6 1497.6

13 1502.5

14 1497.6

Table 2. 10-Bar Truss Design Histories - stress ratio side constraints modified by projections
Loading B of the stress resultants. A third run allowed 25

cycles and provided no evidence of further substantial
weight reduction.

Feasible Weight, lb
Summary and Conclusions

Present Pre-screening of candidate primary stress con-Cycle Access 3 Program straints as described here has the objective of identi-

fying and replacing non-pivotal stress constraints by
side constraints that are much easier to process. A

1 3512.7 3512.8 stress resultant stability criterion that uses stress
resultant projections from prior design cycles was

2 2045.9 1945.3 proposed as another criterion to supplement previously
3 2048.8 1857.5 used stress ratio and redundancy estimate criteria.
4 1Stress resultant projection was also employed to anti-

1806.6 1784.8 cipate cyclic progression of stress resultants and to
5 1780.0 1717.0 derive modifications to improve the conventional
6 1680.9 1685.4 stress ratio side constraints.

7 1664.8 1664.5 A new application of structural modification re-
analysis with a virtual work formulation was described.8 1664.5 The result is a more effective way to establish feas-

ible designs from designs with stress ratio violations
than the traditional method of scaling. The reanaly-
sis procedure Is, nevertheless, preliminary and several

15 analysis cycles. This run provided a further reduc- presently questionable aspects, primarily adverse ef-
tion of the weight to 4973.9 lb accompanied by a pro- fecta possible for compliance constraints and the cur-
portionate increase in computation time. rent omission of the capability to deal with grouped

design variables, were identified for future attention.
Additional test runs were made to explore further

possibilities of using fully-stressed design methods to Example applications demonstrated the capability of
completely replace optimization. No reanalysis was these procedures to provide rapid cyclic descent of the
used in these runs. Fifteen design cycles produc, the feasible structure weight in relatively low computation
following: a weight of 5,082 lb using standard stress- times and to achieve structural weights as low (except
ratio side constraints, a weight of 5,064 lb with for occasional trivial differences), or in one case,
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Table 3. 63-Bar Truss Design Histories with Table 4. 63-Bar Truss Design Histories Without
Displacement Constraints Displacement Constraints

Feasible Weight, lb Feasible Weight, lb

Access 3 Present Program Access 3 Present Program

No With No With
Reanalysis Reanalysis Reanalysis Reanalysis

No Primary No Primary
Cycle Stress Cycle Stress

Constraints Constraints

1 30214.3 - 1 30214.3 -

2 7625.6 8036.3 6854.2 6854.2 2 6816.5 6360.2 5633.0 5663.0

3 7037.3 6694.7 6492.1 6491.0 3 5877.0 6212.7 5226.4 5312.4

4 6879.8 6951.7 6297.9 6293.6 4 5633.2 5531.8 5119.0 5179.1

5 6510.5 6260.2 6212.0 6203.8 5 5389.8 5274.7 5061.7 5050.3

6 6388.3 6245.2 6169.2 6169.2 6 5180.2 5108.8 5015.4 5019.7

7 6286.1 6247.1 6163.8 6198.4 7 5243.2 5095.4 5001.8 5067.1

8 6216.5 6269.8 6142.3 6161.3 8 5084.5 5105.7 4994.3 4989.1

9 6174.8 6239.2 6135.4 6158.4 9 5031.5 5029.3 4998.4 4983.2

10 6149.4 6200.1 6130.9 10 4996.2 5019.9 4984.2 4977.9

11 6136.7 6126.1 6126.7 11 4983.6 5029.2 4982.1 4976.9

12 6129.9 6123.7 6122.4 12 4979.7 5002.2 4979.3 4976.1

13 6125.8 6122.4 6121.2 13 4977.8 5005.5 4978.0

14 6124.0 6121.8 6119.5 14 4995.6 4976.2

15 6119.0 15 4991.1 4975.9

Net CPU Net CPU
Time, a 49 15 20 9 Time, s 109 29 42 26
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-n this study ,..- ieb ltwo methods of the optimum On the other hand, the designs of structures subjected
structural designs In dynamic response are newly presented to nonperiodic loading are generally done by checking
and the validity and effectiveness of the methods are out the results from dynamic response analysis with the
revealed by several numerical examples. The proposed design criteria. Quite a few existing investigations
two methodSrespectivel7 consist of the following combined from such a standpoint of view have appeared because of
algorithms after diftetizing the objective structural the difficulties in practical computations (15) 'k(20).
system by a certainmethod of discretization, for example, In this paper, the dynamic response of strucutres
the finite element method : subjected to certain prescribed loadings and ground motion
(1) Method I (step-by-step integration procedure and is of interest and general two methods of optmium designs

optimization technique using gradient i will be newly presented. The validity and the
(2) Method 11 (modal analysis and optimization tech- effectiveness of the proposed methods will be also examined

nique using gradients). in detail by several numerical examples.
Emphasis is put on the derivation of convenient

computationprocedure of gradient of response quantities 2. Optimum Structural Designs in Dynamic Response
(displacement, velocity, acceleration, stress, strain)
with respect to design variables. Two basic types of Consider the objective structural systems have been
problems are considered in beams and framed structures already discretized by a'certain method, for instance,
which are subjected to the prescribed impulsive forces a finite element method. The equation of motion for
and ground motions One is the problem to find optimum such discretized systems can be, in general, written as
shapes of st rutur which minimize the r.m.s. values follows
of the prescrfxbd isplacments in a certain fixed
duration under the condition of constant total structural M q + C 4 + K q - O ()
mass. The other the problem to find optimum shapes
of structures which inimizethe totalenergyof the system where M , C , Karethemass, damping, stiffness matrices
at the end of Impuls under the condition of constant total respectively, the order of those matrices corresponding
masq.- ... to the number of degrees of freedom, m , used in q

'-Several kinds of numerical solutions for such problems describing the displacements of the system. A vector
are obtained by utilizing the proposed two methods where Q is an applied load vector and dots represent differen-
the gradient projection method is adopted for one of tiation with respect to time.
optimization techniques Now let's consider the case in which M, C, K, q

can be expressed as functions of a vector X whose
1. Introduction components are n design variables , X1 ,z2 ... ,Xn

which specify the main design of the structure.Recent advances in the field of computer technology, The design variables usually are postulates to be constrained
matrixmethod of structural analysis and linear and non- to maintain the safty requirements and utilitiesof the
linear optimization techniques have provided all the structure and form the feasible region to determine the
necessary tools for the optimum structural designs. design variables which minimize or maximize the objective
Many papers concerned with structural optimization have quantity. This objective quantity can also be described
appeared in recent year (1),(2). Much of those has been by the function of design variables (objective function)
concerned with static behaviors of structures. However, and is the most important single property of the design,
prctical structural systems are often subjected to various such as the cost, weight, maximum values of velocity or
types of dynamic loadings such as a periodic loadings by acceleration or r.m. a. value of displacement, especially,
rotating machines, loadings by an earthquake, a blastcolli- for the optimum design of structures in dynamic response.
sion. The number of studies are comparatively few which
concerns with optimum designs of structures subjected to 3. Optimum Design Methods in Dynamic Response
such dynamic loadings.

Two basically different approaches are avilable to To solve the optimum design problems of structures
"I evaluate structural response to such dynamic loadings: in dynamic response always involves great difficulties

deterministic(prescribed) and nondeterministic(random) since displacements, velocities, accelerations are often
In the former case, it is more convenient to devide the related to objective function and conditions of constraints
loadings into two categories from an analytical standpoint: and they are in general implicit nonlinear functions of

periodic loading and nonperiodic loading design variables. Matrix structural methods and non-
An approach to avoid resonance phenomena is often effective linear optimization techniques which have been developed
for the designs of structures subjected to periodic loadingq recently enable us to obtain numerical solutions although
That is based on natural frequency analysis. Some studies they are not in closed forms. Step-by-step integrationon optimum structural designs from such points of view technique and modal analysis are generally known to behave been done by Niordson (3), Turner (4)and et a1 (51.(9) very effective methods for dynamic response analysis.
Their main interests are to obtain optimum shapes of column, Among many optimization techniques, the technique using
beam, simple frame by taking note of the natural frequency. gradients of some quantities with respect to the design
S Auther has also presented general effective methods of variables give a powerful device to solve the complicated
such opttim designs which were able to apply to complex optimum design problems , for example, problems with a
structural systems nd has shown sorts of numerical examples large number of design variables or some nonlinear
(10)u (14). constraints of the objective function. The gradient

projection method is one of the typical methods.
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Consequently two new methods of optimum designs of at the time t+At are expressed as
structures in dynamic response will be introduced in the
following which utilize aforementioned useful methods. 33(t+4t). t) (3tf'tL+AQ_()
The proposed methods respectively are composed of the ax, axi 2 aj a,
following combined algorithms(t + (At) 2 

*(t) ( t
(1) Method I 3.Q±+)0 2cit4 . At A t + -L2!W + (At)("

(a) dynamic resonse analysis ... step-by-step ax ax, 2 9
integration procedure 2 I

(b) optimization technique ... any optimization - (I ; lI
techniques using gradients

(2) Method 1r The gradients of the displacements,velocities,accelera-
(a) dynamic response analysis ... modal analysis tion at the time t+At, all of them, thus are able to
(b) optimization technique ... any optimization be evaluated by Eq.(6) to Eq.(8). It should be noted

techniques using gradients that the initial values of these gradientscanbe easily
Primary emphasis will be placed on deriving the convenient determined by letting the gradients at the time before
computation procedure of gradient of response quantities the change of the design equal to zeros.
for example, displacement, velocity , acceleration, stress, There exists no investigation on optimum structural
strain with respect to design variables. designs using such step-by-step integration procedure.

In the context that follows the presented methods
will be detailed. The step-by-step integration techniques 3.1.2. Wilson's 0 method
and modal analysis ,as themselves, arewell known methods.
However, some brief explanations will be given to present Several different unconditionally stable methods
the methods. have been used for the dynamic analysis. Wilson's 6

method is one of the simplest and the best of these and

3.1. Method I (Step-by-step Integration Procedure and is a modification of the linear acceleration method.
Optimization Techniques using Gradients) This modification is that the acceleration varies

linearly over an extended interval OAt where 6 > 1.37.
The step-by-step integration pocedure is the method The displacements end velocities at the time t+6At are

to obtain the solution of Eq. (1) by numerical integration assumed as follows :
and is suitable for not only use with linear systems but eo^) 2  

2^At
also use with nonlinear systems. The response is q(t+eAt)- q(t)+eAtq(t)+ L q(t)+ -0- - 4(t+EAt)
evaluated for a series of short time increments A t (9)
generally taken of equal length for computation convenience eat) + 4(t+At)
Among sorts of step-by-step integration techniques, e(t+OAt)- ((t)+eAt 2
Newmark's 0 method and Wilson's e method are widely 2
used typical methods. Thus let's introduce the new (10)
methods reffering mainly to those two procedures.
A similar argument, of course , 11 be applied to the Substitution of these into Eq.(2) gives
case using other step-by-step integration techniques. 3 6 6

q__________-{K____6a__C_ t -(6A ) cM24((t)3.1.1. Newmark's 0 method q(t+ttt)={K+ -)C+- MP-EMf2@t)+---+ q(t))}C{ ()At §(t)+24(t)+ 3- q(t))
Letting M, C, K, Q, q 1,- the tine t be known, (tAt). Ot

the equation of motion at che time t is written by : +Q(t+BAt)] (11)

M(t)4(t) + C(t)j(t) + K(t)q(t) = Q(t) (2)

Thus accelerations.velocities,displacemnts at theIn the method, displacements and velocities at the tme time t+At are found to bet+At, a short time increment At later than at the time
t, are assumed as follows 4(t+At)=(l- -)4(t)+ -- 4(t6At) (17)

(At),A e
q(t t)-q(t)-at4(t)+-2q(t)+l(At)2{q(t+At)-q(t)} (3) l(t+At)-=(t)+ 2 {q (t)4 (t+eAt)} (13)

)t 2. (At) 2{( A)- (t)+ t{() (t+A t) } (4) q (t+tt)-q (t)+Atq (t+-- 2q(t)+q (t+eAt) } (14)

where 0 is a parameter which takes the value of 06Bl/6.
Setting B'1/6, then the procedure becomes identical to The gradients of these quantities with respect to the
the linear acceleration method. Substituting Eqs.(3),(4) design variables at the time t+ t are able to be obtained
into Zq.(2) and solving for the unknow 4(t+At), by differentiating both sides of Eq.(ll) with respect

to X
ii(t+At)-{M+ 4 LC+0(At)2K}'[ Q(t+6t)- CA(t)+-q(t)} aq(t+oAt 3 6 -t. B1q(t)

21~---K+- + E tBs4)
-K{q(t)+at4(t)+(-I -B) (At) 2

q(t)I 3 (5) a e- 84 eq(t+Ot) }

By substitution of the obtained 4(t+At) Into Eqs.(3),(4) ; (j-l,2. n) (15)
q(t+At), 4(t4+) are also given.

By the way, the gradients of accelerations can be Table 1
calculated in the following manner. Diffetentiating = K -
lq.(5) with respect to x; and rearranging it leads to Al As C+(At)K

_~t+ t rA 1C. (A t) K ) -' (A tq c ).A 24(t) + A 4(t) Ac +j4 AjkaLA L )( t3 A q 2 + As +Asa+ Aq(t&T))(6) A2 5x a. As

; A , ,.n) A, 2) (at) 2 K _ A7 ___________

*ere A A, are the umatriee as shown in Table 1. 2 a. ,
Similarly the gradients of velocities and diplacements Ak K
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where B1 ' B7 are the matrices shown in Table 2 and
then also by differentiating Eq.(12) to Eq.(14) with U

T 
K u r 

respect to X; t 4 X " -u U r
The initial values of these gradients can be ? M r

determined in the same manner as mentioned in the section (23) (24)
3.1.1. Ur4

ur M r (25)3.2. Method n (Modal Analysis and Optimization Ur r

Technique using Gradients) The eigenvector Ur may be nolmarlized as follows

The modal analysis is one of the best and the most
effective methods in dynamic response analysis though U

T  
= 1 (26)

it can be applied only to linear systems. The methods
to be proposed is basically similar to the method by
Fox and Kapoor (15). However, details are different in 3.2.1 Caluculatlons of Displacements, Velocities,
the practical calculation, for instance, the calculation Accelerations
of gradients of eigenvectors with respect to design
variables. By Duhamel integral, the solution of Eq.(22) is of

For undamped free vibration, the equation (1) can the form :
be reduced to eigenvalue equation. T

KUr - X N Ur = 0 (16) r = ii r(t) exp(- r wr (t-v)) sin Wr (t-T)dT
; (r-l,2.... ,m) r0

where m is aforementioned the degrees of freedom (cor w /iW7) (27)
of the system and ur is an eigenvector corresponding r

to r-th eigenvalue. Modal coordinate expressions From Eqs. (17), (27) the displacement vector q can be

calculated.
q - U o (17) Let S be a matrix consists of partial differential

operators in the spatial coordinates, the strain vector c
in which U is the mode-shape matrix and 0 is the is then expressed as
general coordinate vector will be intoduced.
Premultiplying Eq.(1) by the transpose of r-th mode- C a S q a E S Ur~r a E Er (28)
shapevector- Ur leads to

The stress vector a may be related to the strain
SN U9+ 4r C U@+ u K U r U Q (18) vector c by use of elasticity modulus matrix E

;(r,1,2, .... a)

It was noted above that the orthogonality conditions a - E c (29)

, M us  . 0 (19) 3.2.2. Calculations of Gradients of Displacements,
r Velocities, Accelerations, Stress

r K Us  = 0 (r~s) (20) (a) Gradients of Displacements

cause all components except r-th mode term in the mass
and stiffness expressions of Eq.(18) to vanish. By diffrentiation of Eq.(17) with respect to X,
A similar reduction will apply to the damping expression a -

if it Is assumed that the cooresponding orthogonality - ( EUE r) - 0 + Ua ) (30)
conditions also apply to the damping matrix, that is, ax; ° U
asme that (r-1,2,.... 1)

where ir" Cr Wr . Using Eq.(23) to Eq.(25) and the
Ur C us  0 (ros (21) relation 2 2 2
r r % 1jr

Thus Eq. (18) then may be reduced to uncoupled simple aa 1
equations of motion: -" 

(  
2pb' 2 (r 12) (31)

, + 2r (22) = uz )(r- +I u(1)

(-..2 .... ) - 3 ; 2 r (32)

in which 1 is the number of adopted modes (1 ; a) and ; (r-l,2,...,l) ,(Jl,2,...,n)

.Pr are given in the following relation Consequently, it will be noted that the calculation

of gradients of eigenvalues and eigenvectors with respect
to the design variables is indispensable for the evalua-

Table 2 tion of these gradients. The way of calculation will

- -be discussed next.+ 3 'C- BS 6- -+2 C__ 6
(OA U- e at a .. (i) Gradlets of Einenvalues

Bt 6 + 2 Be 2 C Differentiating the both sides of the eigenvalue

*s 2 i L * . - i- - , ' -" t * , eq ation (16) by X; gives

W 3.2- C (K Xr+A- Mu-iLNUr' 0
(sat) eat; (J,,2.....n) (Q3)
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Premultiplying Eq. (33) by Ur and making use of the be able to be calculated asstming the commutation of
properties of symetry leads to the calculation of the the partial differentiation operators of time and design
gradients of eigenvalues variables.

On the other hand, the gradients of stresses Can
a-- A ( D be given from Eq.(29) by3-X rM Uxr r

; (J-, Xr.....n) (34) - E S e.... (43)

in which Eq.(l) was also used.
4. Numerical Examples

(Ii) Gradients of Eigenvectors
4.1. 0pttmum Design Problems

Putting T - K - Ar N and assuming all eigenvalues

are different, that is, the rank of T is M-1 leads Several types of optimum design problems of structures
to the partition of the matrix T - are of interest from practical engineering standpoints

of view and many discussion should be given.

However, the detail discussions have been eliminated
T r because of the restriction of this paper.

T-7 . 0 (35) Two types of optimum design problems treated in
T1  T22  lUri this study are simmarized in Table 3.

Beams and framed structures are taken as a simple
and handy structures in the following numerical examples.

On the diffrentiation of Eq. (35) with respect to Xi Those structures are idealized as connected systems of
r 3 T 1[ fi I I n uniform finite beam elements by the finite element

TI-.- T2I2- ~A~ u'I TT 21 1  | method. In each element, the flezural diplacement is
-- 0 assumed by the cubic hermitien polynominal in the

' T I Ur i 11I2 axj elongitudinal coordinate. The dynamic anlysis here is

IT_ 3 | 3 I r 121 T2 2 on the basis of usual finite element method.
(36) The length, density, Young's modulus, common in

all element, are designated by 1. p, 9 respectively.

Eq.(36) leads to But the cross sectional areas and the second moments of
inertia, different in each element, are expressed by A;,

Ur = a + A1 Ur  (37) I (Jl1,2,...,n).
Ur In every case of the following designs, the mass

aX; 3 i ratios x. - pAI /M (element mass/structural mass)
where ; (J-1,2,... ,n) are taken as the design variables for

computational convenience.

aT 2 " T1  
Table 3

model beam and framed structures

A; . ...- impulsive loading

+1 p -l aTiT -la1 2 - -1 a TZ 2 loading ground acceleration

3 ; T2 2 T 2 II T- T r2y,T 2 22 12 __________T_________;__
J-th element massdesign Xi

(39) variable total structural mass(J-1,2 .....n)

When Eq.(26) is differentiated with repect to X total structural mass
the relation : codtios of constant

r -f a Ur costralnte x* > 0 Z J -l2 r M U- + ur - - Ur -0
2, objective r..s.value of displacement , (A)

(40) function total energy H . (B)

is valid . By the substitution of Eq.(37) into Eq.

(40) and rearrangement of it, the gradients of eigen- denio
vectors are finally able to be calculated as follows ptoblam H I , H

- 24 AJ~ + 4Mr Ur
UrM 4.2. Numerical Examples by Method I

4.2.1. Optlmim Oestans of Beums

au1 a x;, in Eq.(41) can be given from 
Iq.(36) as

Consider first the optlnm design problems In the
u -, la1" T1 aUr type-A Among several step-by-step integration methods,

a X ai Wilson's 8 method, ucouditionally stable procedure, is
adopted for the dynamic response nlyis because the

(42) design variables may be changed at each design step of

the optimization. The gradient projection method
(b) GradlaMts of vlocities. Acceratlone and is used as one of powerful methods In optimization.

stespes Fig.1 and ?ig.2 illustrate the relation between
a design variable x, and a displacement at the free end

The gradients of velocities and accelerations ca of the cantilever or tbr.a.svalue of the displac:ment
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during a prescribed time interval. The cantilever with
a similar cross section is there modeled by two uniform a. 0hfs
beam elements and subjected to a half-sine impulsive l .. 0
loading at its free end. The variation of the response o t - Ae em-nts - .-- 0

displacements cooresponding to the change of design e \ - 5- 
variables is considerablly complicated. However the /
curves of the variation of the r.m.s. values of these ------ U
displacements show simple convex and the r.m.s. value 4020
is found to be very suitable for the objective fuction : . 1169
of optimum design. In those figures, the optimum point 4.

obtained by the proposed method is also shown by refference. _0 O 00 o" W
The profiles of the objective functions in the same Q I \0

case are also shown in Fig.3. O -1.0 time t 9,
The shapes and response displacements of the obtain-

ed optimum beams are shown in Fig.4 to Fig.8 -20
It is shown that almost all response displacement levels -30/
can be reduced in the prescribed time intervals. -30-
The Rayleigh type damping is considered in the example Fig.4 optimum beam
shown in Fig.7 . The proposed method proved to apply
to such a damped system.

unfrm -

0L.300

..-

.10 .. "

.) iA10-

000. time ""80
Vig.l 4eiplace mt of ber at free end Fig 5 optimum beam(2-element s-model)

-I- 1 - f 462 2-

* ~20

Suniform s.e0 O owc O .20sc O LOs c 0.Oss c 0.06 OOSsc 0.07sc

at~S*trer''q Xlltean (-e~emnt- oe-°fdisla:e~ntP) Fig 6 deynamc response of optimum
I M

005 2-"

1& 4. ip 0

................. .. 4.,.3

ti', 17 -- 71 M ,7 .7 o., 77 "7, 77

003 00 0s0 06 07 Bsc 00.0

a If g N .r ,k

2leofobj.1- e ofduact io- X Fig 0 tiee t tc

2- ;. 4 -0 Fig.7 optimubeam (mayleihdmping)
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uniform
cc L

time i II 1  
Ltime NIH.S 0 0021 000 h'. ...

tie0 . .4 time a TMo. 1 * 61
- r.m.s. energy

I _ __ - frequency am frequency

-hilL,.. / /
.30,

.001 0 4

delim 
falb e x 0 ' . .

a fnA a.0 b 1ro a.f A e fo0eIv

a A. ha' 42' *aG242:

Fig. 8 optimum beam (simply supported) 0 0*2COI NG CMC &Wo'es
design variable x, o Q ~W 0 auCOBioo.

Fig.9 profile of objective desigzn varitble xa

4.2.2. OPti
mum 

Designs of Framed Structures function

In this section, two types of optitm design problems,
A and B, will be considered and comparisons in both types
will be made.

The objective functions and fundamental natural X,
frequencies are shown in Fig.9 and Fig.lO which were .01711obtained for the simple frame modeled by two elements, 7 xX X2 X TL .2000 ,

The frame is subjected to a half-sine impulsive loading Vto . Z xi i, .. =20 , n

to its corner. The calculated optimum design points o 0 0.1 0.2 -•Th9.s2?1O kg
provides good agreement with the minimum point 

of the time t sc uniformk

objective function. - (0.2W74 a. .=96 Hz)
Fig.ll compares the optimum response displacements 6.0 . optimu

for various numbers of elements. The maximum E &M-1.926 mm , w ,130 Hzi
displacement and the amplitude of free vibration, both E i . /" - . Xs-al,.O. Xpxs0.040 I

/4.0. 
X JS xi.xs800

of them, are found to be decreased as the numbers of 3 X70 . X90.223O
lements increase. - 2.0 " 10

The optimum shapes and response displacements in 9:14

frZmed structures In plane are shown in Fig.12 to Fig.15 4J 0 0
It appeares from these results that the type-A problems -0 0.1 t0 0V.
can reduce the value of maxima, displacement , - n the U-2.0t
other hand, the type-B problems can decreas- the amplitude ' o
of the free vibration. C 4.0

Fig.ll optimum framed structure

e - optimum
----------------------------------- uniform

tin T- ie II.~ J r0.2 set
SO4111 ,.U'o "I 1 Xx=.115g

poolXi.Xvo=0.0'.O
3 ---- -re . .. ' -- - , X 3.X .0 .039IS st oo XA ... 0...,.53

I " . & 0 . * 1.9265 m M

9 1 a 13.0 Hz
timeala lV

o Fig.12 optim shape of framed
" -* structure

?Is 13 optisa framed structure Fi.14 optImom faamed structure

___



X1 CQ half-sine

T"1= V. 0 o4
AI 0ASS, t ot 0.05 - number of Pa- 20

. -time t sNt

OU-. t1 " time t ' i4
- uniform 3.0 -- increment 4b0

(O. S 
' 

, .
Et)APOA E

.U0:393.l, -,. E 2.0
..... r.m.s.-- ... -, ., oft)

I 1.0

0 105 0.06,2. 0 00

S0 0C t-i c .5 00 0.10
4 0.01 0.02 0.03 0.04.05 1

44' time oft t .1.0 time t st 0.08 0.09
a V W

-1 !J'Fig.17 optimum beam

o Fig15 optimu frased structure
(grounu mot on)

half-sine
4.3. Numerical Examples by Method 1 [WO.

To examine the validity and the effectiveness of the 0 time t sac 0.05 N
Method II, the same examples in the optimum design problems 32
of cantilevers as in the section 4.2.1 will be taken E
again and comparisons will be made between the Method I'nmbro
and the Method II. The optimum design results are shown o number of
in Fig.16 to Fig.18. adopted modes

Fig.16 shows the relation between the displacements .
and the number of elements. The comp.-itation was Y
carried under the condition that the number of the adopted OU
mode No- 4 and the number of time increments Nt=l00.
With the increase of the number of elements, the optimum 0.0 0.02 0 0.04 %
shape and the response displacement converge gradually. % 0.01 0.02 0.03 0.04 "% ,
The results obtained Presicely agree with the results by time t WC \ U,
the Method I (c.f. Fig.4). 0.05 0.06 0.07 0.06 0.06 O.10

Fig.17 shows the response displacement at the free -1.0
end corresponding to the number of time increment under Fig.18 optimum beam
the condition that the number of elements N=5 and the
number of the adopted modes No=4. As the number of time
increment increses, the response displacement converges
asymptotically. 5. Conclusions

The relationship between the displacement at the
free end and the number of the adoptedmodes is shown in
Fig.18 in w.ich the conditions N=5 , Nt=i00 are The two methods of optimum designs of structures in
i anosed, dynamic response were newly presented. The proposed

Tekins an exalmle in 10-elments-lodel to compare methods consist of the combined two algorithms, an opti-
the computation time in both proposed methods leads to mization technique by use of gradients in nonlinear
the conclusion that the computation time in the Method 1 programing and a step-by-step integration procedure or
can be reduced by one ninetieth. Thus in linear systems a modal analysis in dynamic analysis.
subjected to comparativelysimple type impulsive loadings The convenient and effective computation procedure
the computation time by the Method U is considerably of gradients of response quantities with respect to design
efficient, variables was shown which is able to be applied to any

optimization techniuea using gradients.
half-sine uniform Ltmm The computed several numerical examples of optimum

0.1 r-- - 23D - designs of beams and framed structures led to the following
optium lp conclusions0 _O - (2-

te OLOS -0 (' Method Itime t e -- 5
/-.0\ - (10- ) (1) This method is able to be applied to structural

3.0 .systems subjected to arbitary types of prescribed
Impulsive loadings expressed in time history.

(2) The maximum displacement is decreased by the
i ./ 0 selection of the r.m.s. value of displacement0 for the objective function. On the other hand,

/I. the amplitude of displacement in free vibration
can be reduced by the adoption of the'total energy
for the objective function.

.01 ak * 00 0 p L0W (3) When the rm.s, value is taken for the objective
tI-. t SK 006u 4R 00 function, the calculation of gradients at every

time increment leads to considerable increase if

iiS.16 o m beem computation tim. An appropriate consideration
should be given to those countermeasures.
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(4) When the totalenergy is adonted for the objective (16) R.M. Brach, " Optimum design of beams for sudden

function, the comoutation time can be reduced loading ", Proc. of ASCE , EM6, (1968-12),1395.

greatlv . for example , by one fourth in the (17) T.T. Feng, J.S. Arora and E.J. Haug, " Optimal
cantilever case. structural design under dynamic loads ", Int.

J. Numerical Methods Engnrs, 11, (1977),39.

Method H (18) F.Y. Cheng and M.F. Botkin. " Nonlinear optimum
design of dynamic damped frames " Proc. of ASCE,

(1) This method Provides to reduce the computation ST3, (1976-3), 609.

time of gradients exceedingly in comparison with (19) V.B. Venkayya and N.S. Khot, " Design of optimum

the Method I though the application is restricted structures to imvulse type loading ", AIAA J.,

only to linear systems. 13-8, (1975-8), 989.

(2) The computation time of gradients can be further (20) R.M. Brach, " Minimum dynamic response for a

reduced by proper selections of the number of class of simply supported beam shapes ", Int.

adopted modes and the number of time increments. J. Solids & Struct, 10, (1968), 430.
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of its obvious engineering significance. However, the
... algorithm itself can be easily extended to other types

In this paper, a bi-factor-s4 algorithm based on of frequency constraints -- either equality constraints
Kuhn-Tucker criteria about the minimal weight design of or nonequality ones, even those with several frequency
structure under statical and dynamial constraints is prohibited bands.
presented. Among the constraints, frequency prohib-
ited band" is a new formulation which demands any a-0 Algorithm
characteristic frequency of the structure not to fall
into a given frequency region. The design variables In this paper, only the topological arrangement of
may cover sizes of the elements and/or coordinates of the structure to be optimized has to be specified in
the nodes. The upper and lower bounds of each variable advance. Design variables are permitted to be the
are specified. And the stress constraints based on sizes of elements, the coordinates of nodes, or both.
full-stress criteria may also be taken into account. On the one hand, each variable can control the change
Satisfactory results have been obtained over various of a number of sizes or coordinates which is known as
examples wherein the stiffness and/or mass matrices of linking of the design variables. On the other hand,
the structure may be highly nonlinear about the design each element can be controlled by several design vari-
variables ables which is one of the features of this algorithm.

2 -\If for a structure the number of its elements is M,
Introduction and that of its design variables is BM, then M may be

greater than, less than, or equal to BM. The unper
The dynamical optimization of structures as a bound A("I) and lower bound A(1) of each variable arenewly developed field is still in its teens. But it specified in advance. The upper and lower bounds of

has attracted many scholars' attention because of its the "frequency prohibited band" are denoted by u and
remarkable importance to engineering. In 1965, 0. Any variable A has to be within the region
Niordson (5) contributed in this field the first paper. - ) (u) n
Since then, a lot of contributions were made by, e.g., (A A wle any natural frequency of the
Turner (6), Zarghamee (7), Rubin (8), McCart (9), structure be outside the region (, w). To minimize
Venkayya (10), Khot (11), Pierson (12), Kiusalaas (1), the weight of the structure under all those constraints
and so on. Due to the highly nonlinear property in the refers to a problem of conditional extreme value as
dynamical optimality design of structure, the main follows:

r efforts have been focused on the optimality criteria
algorithm with structure subjected to some kind of min W(A) (1)
natural frequency constraints. So far, however, the
speed and stability of convergence are still not quite 4ubject to
satisfactory, and the solvable structures and select-

t able variables are still very limited too. The optimiz- WI < W (2)
ation on geometrical configuration has been quite
seldom mentioned although it may be of special impor- Wj > ' (3)
tance in practical engineering designs. A > A(X) (4)

n- nIn 1978, Kiusalaas and Shaw (1) presented a finite
element method for minimum weight design of structures An < A(u) (5)n-n

with lower-bound constraints on the natural frequen- 2
cies, and upper and lower bounds on the design vari- K u M u (6)
ables. The authors of the paper allowed the stiffness
matrix of the structure to be optimized to contain up n = 1,2,...,BM

, to cubic items of the variables, while the mass matrix
was allowed to contain only linear ones. J - i+l

In this paper, two "damping factors" a.B with where A = {AVA ' ,T AERBM
clear mechanical meanings are suggested. With these . 12~'AB-
two factors, Kuhn-Tucker criteria is developed into an K structural stiffness matrix
effective iteration algorithm such that the speed and
stability of convergence are remarkably improved. The M structural mass matrix
%,above-mentioned nonlinear difficulties are all over- u natural mode
come. Many examples including those with coordinates
of nodes as variables manifest that the algorithm w natural angular frequency
suggested by this paper is quite flexible and effective. W W the i and j eigenvalues ofi equation (6)

The dynamical constraints in this 
paper are

appointed to be a "frequen~y-prohibited band" because w the lower and upper bounds of the
. __--_frequency-prohibited band

A the nth design variable
*Lecturer, Engineering'Mechanics Institute, Dalian n

Institute of Technology. Visiting Fellow, Civil Engi- A(M) A(u) the lower and upper bounds of A
neering Dept., Princeton Univ. n 'An n

BM the number of independent design.
**Graduate students, Engineering Mechanics Insti- variables.

tute, Dalian Institute of Technology.
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The specification of the frequency-prohibited band 2 he 2 (21
(F.P.B.) is according to the demand of avoiding reson- 2 2 (12.1)

ance. Once w and w has been determined, an experienced >o when 2 2 (12.2)
engineer is usually able to judge the orders i and j Wi -
reasonably. If this is somewhat difficult, a sugges- 2 -2
tion in Ref. [2] for justifying i and J may be of help. 0 when W> (12.3)

The Legrangian of the extreme value problem > 0 when w2 = W2 (12.4)
described as equations (1) - (6), is j

After multiplying both sides of equation (11) by
2 - 2 2 2) (1-a)An and simplifying, the following expression is

- W(A) + -1 (wi !q- -( obtained:

BM E (An -fnAn when AM < A < A(u)
- n(A An)n n n n n

I A > fnA when A - A0) (13)

BM n- n n n n
+ nn(A -A(u)) (7) A
n-i n n A < fA when A - nA(U)

n nn n n
where in which

= q' .....BM nw 1-a 2 2

EV""EBM If = + 1-l - I+ (4
{l n ~B(A n (n4

n
To apply the Kuhn-Tucker criterion, equation (7) should Te recursive design formulas can be derived from
be differentiated with respect to A . This gives equations (13), as follows

2 2 (it) * (u)aW(A) aw A' f A when A <fA < Aal -in + n 0 (9) n n n n no n
3An n n n A' = A00 when fA < 

( )
(15)

and the following constraints should also be satisfied: 
n n -n

2 2 A' - A(u) when fA > A(u)

i W) 0 (10.1) n n n n - n

n-1,2,...,BM

U 2 2) = 0 (10.2) A and A' are the design variables before and after then n
(W - 2 < 0 (10.3) recurrence; fn is a modification factor which depends

not only upon the Lagrangian multipliers U and 12j but
( W - < 0 (10.4) also upon a; a is a user-specified parameter (O<c<l).

The revised extend of A depends greatly on L. When L
(A - A )  0 (10.5) increases up to 1, the revision is completely "damped

n out", i.e., A' exactly equals to A . Therefore, a cann n
A () be regarded as a "geometrical damping factor". Sizingn ( uA ) = 0 (10.6) constraints will never be violated because of the en-

forcement of equation (15). Hence, any intermediate
- (An - A )  < 0 (10.7) design will be a feasible one if the frequency con-

n etraints (2) and (3) are also not violated. Design

(A -A ) < 0 (10.8) variables revised according to the first expression of
U n (15) are referred to as active design variables, and

those to the other two expressions of (15) referred to

III > 0 (10.9) as passive ones.

In the equation (14), Pi and 2 are determinedU2  0 according to the frequency cAnatrainta. Let us first
assume that wi and Wj are all within the F.P.B. In

En order to "draw" them to the bounds of the band, the
revised frequencies increments are respectively:

nn > 0 (10.12) , ( 2 -m) (16)
n1l,2..,M

W2 . -;2 2)(7
Equations (9) and (10.1) -(10.12) can be re- (2 - w ) (17)written in more compact forme in These amounts are contributed by the changes of all

aW(A) a I variables. If the first approximation of a Taylor ex-
+ pension is taken, the following expressions result:

1An W.- ii 2 p o 2

A()<A <(u) 2A' A 8-2

<A n1 n fl (18

> 0 AU A(M) (n)
n 

-(u)
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2al1
+

a22 =51

nW 2 (A'- A) (19) (25)
n-i a 2101  + a22p2  " b 2

For most practical problems, the first approxima- A .w 2
tion is not accurate enough. Over-revision of the con- a . __n 1i2 (26)
cerned frequencies will often occur, which leads to an ( W(A) A
unstable oscillation of the concerned frequeAcies about 

nact. A n

the frequency-constraint surfaces, especially for highly n
nonlinear problems such as the examples given in this
paper. -2

In order to overcome the above difficulty, a re- 22 W(A) A)
duction on the revised amounts of concerned frequencies n n
by a factor B is suggested; i.e., the revised amounts act. An
are taken as 2 2

& i - -Wi2 (16') a -a A- n8  (aw ) wA

2 Wj) (17') 0

2 2 a12 221 2

instead of equations (16) and (17), where 0.4 < 0 < 0.6 b1  = - L - (- _ t )  
1 (_ tpass.

may be a good choice for most structures with highly n 9A n 1 a
nonlinear properties. After this reduction, the con- act.
cerned frequencies will approach the constraint surfaces 2- 2 2
steadily and almost monotonically with reduced paces. A j pa s
Therefore, B may be termed a "frequency damping factor". b2  n A a

n 1-a
From equations (16'), (17'), (18) and (19), one nact.

obtains a02

The partial derivatives P can be calculated by
BM 22 2 BA n b acltdbi (A'- ) - B( -W (20)

n-An virtue of the well-known formula

aw2 aK am
BM 2 _ () - - uT I- U W2 u T u (27)

( A ' - A (_ (21) DA - A - p- ~ A
n An  n n n n n n

where the A' (n-,2,...,BM) may be active design var- in which w2 and u are the pth order of eigenvalue andn P -

ables if they obey the first expression of equation corresponding normalized eigenvector.
(15), or passive ones if they obey one of the other BW(A) BK aM
two expressions of equation (15). Thus, equations (20) The expressions A , A , A should be specially
and (21) can be expressed as n n n

a' 2 derived according to the types of structures and varn-

Z (f 1 )A + (Aw2 alsna t. 2 ables.
nat -. n - ) pass. so -n act. ni n(22) il or p2 in (25) will vanish if wi or wj is out-

2 - 2 side F.P.B. In this case, only a part of expressions
in (25), (26) are used.

.a (f -l)A + (AW2 Frequency Modification Operation (F.M.O.)
n ac n n

pass. (23) Repeated applications of the a-0 algorithm will
2 2 usually result in an optimal design. When frequency

ON2 -j) constraints are severely violated, however, the adoption
of the "frequency modification operation" (F.M.O.) may

where the incremental frequency shifts due to passive be advantageous wherein the design point is first "drawn"
variables are near the bound of the feasible band before the a-B

aw 2 algorithm is applied. By doing so, more intermediate
2 Z P A ) (24) designs will be within or near the feasible band, and in
(ppass. a n A ( n n addition, there may be an acceleration in convergence.

npass To illustrate this, let us consider in n-dimensional
vector space two supersurfaces defined by expressions

(p-i,j) (2) and (3) which are assumed to intersect. In the

vicinity of the intersection A', the space is divided
Substituting (14), (24) into (22), (23), yields into four parts, as shown in Fig. 1. They are:

the following equations for c1 and U2:
W2 < 2, 2 -2

(1) Feasible band, where 2 -- 2
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(2) Unfeasible band (FPB), where w 2 > W2 It applies only when A is an active design variable.

2 -2 If A is a passive one, the modification incrementd, <W n
would be

(3) Unfeasible band, wherew <2 < W2 A - -A(
n n -n (31)

(4) Unfeasible band, where w
2 
> 2, 2> -2

A W AA - A(U) A 32)

Now, assume current design point A to lie outside 
n

the feasible band as shown in Figure 2. The gradient Analogous to the derivation of equation (15), the

vectors of w and 2 at point A are, respectively, general formulas for modifications of design variables
2 ) will be

(28) (A + AA when AM <A + AA < AMu
DA L3A n n n n n n

Generally speaking, if neither constraints (2) or (3) A' AC
)  

when A + AA < A()n n n n -n

are currently satisfied, it is naturally hoped that n(33)
both of them will be satisfied after F.M.O. This can AM when A +Mn AM

be attained by moving point A to A'. Let us further n n a

denote the modification vector by Al, which .an be Factors A and A in equation (30) are determined by the
expressed as a linear combination of Ni and as following

1
equations:

follows: o

A- 1i 2+ ) 24 (29) g11 1 + g12A2  = h1

of which the component form is 921X1 + 922A2  -
_2 2

AA X 1 - + X (30) in which
n~ I9 2 aA 2n n . . 2

g1.1 (-)n
n
act.

® unfeasible band T a

wi -- wa

t

2 2 >- -2 92 'M n

~n
band.. inact.

Z >2 2-

2 -227a2

'IJ j (A~u) - An)
F9gure 1 n

pass.

-2 _)"~ I (A()hi Y( - W L, ) A (An - A

n

2v_ <pass.

- (+) - A)

-
= pass.
w2jher y _ _s ante freqenc dapn Atr(

Its function is quite si~lar to that of A.

i* / A If only one of constraints (2) and (3) is violated

A2 N1  severely, such as at design point A" in Figure 2, it

nay bp better to moify only the corresponding unsatis-
____________________________fied frequency by 1.14.0. In that case, A1 and A'2 in

equation (29) should accordingly be de cermined in adifferent smaner. A ore detailed discusson on .1.O.
Figure 2 is presented in dpf. f].

A 2-14 se e y s
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Stress Constraints calculated. Because of length limitations to the
paper, only four of them are given here.

Stress constraints can be taken into account
according to the full-stress criterion. Here, take a Example 1
truss as example. First, the structure with current
design variables is analyzed statically to work out the A stepped steel arbor has a length of 10 which is
maximum internal forces of its elements under various divided into 10 segments with equal lengths. The diam-
loading cases. If the maximum internal force of the eter of each segment is taken as an independent design
nth type of bar is N n' then the minimal acceptable variable of which the original value is 1a, the lower

sectional area for that type will be and upper bounds are respectively 0.5
m 

and 2 . A non-
*tructural mess with 10% the magnitude of the original
A n  n (36) structural mass is attached at the midpoint of the

arbor. A consistent mas matrix is adopted, and 
it

th contains items with the second power of the variables.
where [o is the allowable stress of the n -type of The stiffness matrix, however, contains items with the

n* (); fourth power of these variables. The first angular
bar. Then, compare A nwith A n frequency of the structure must not be greater than

taken as the lower bound of the next iteration. - 1
w - 200 sec , while the second one must not be less

1 7
Example Problems than w = 600 sec

- . The Young's Modulus is E - 2.10
2 3

The algorithm presented in this paper is indeed tin . The specific gravity is p - 7.84 t/m . The pro-

applicable to all types of structures and design vari- cas and and result are shown in Figure 3 and Table 1.

ables. A number of examples have been successfully

TABLE 1

OPTIMIZATION PROCESS OF A STEPPED STEEL ARBOR

Iter. No. Weight* WI  W 2  0 Remarks

Initial 6.28 250 771 .. .. No F.M.T. is used

1 3.94 209 659 0.75 0.40

2 2.72 178 596 0.75 0.40

3 2.42 153 581 0.80 0.40

4 2.50 160 595 0.80 0.40

5 2.52 161 598 0.85 0.40

6 2.52 162 600 0.85 0.40

7 2.52 162 600 0.90 0.40

*Multiplying the above-listed weights by g - 9.8 (ra/sec
2

yields actual weights.

non-structural ois w t it

(a) original shape wt S.0

400 fraqmncy-prehlbited band

200 
t 

f~ ; 
-~ 

r Zbt

0 1 2 3 4 5 6 7 8 Iteratino.

(b) aptisal shape (c) Iterstion process

Ft&M 3

Stoppe Steel After
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Example 2 Example 3

A plane frame has 5 elements as shown in Fig- A plane truss (bridge panel) has 40 bars as shown
ure 4(a). The 12 coordinates of all 6 nodes are linked in Figure 5(a). The vertical coordinates of all 8 up-
into 7 types of variables: (X1 ,X3), (X2,X4), X5 ,X6 , side nodes are taken as independent design variables.
(Y' Y2) , (YY Y4) . (Y5' Y6). The section areas of the Their upper and lower bounds are all 5 m and 1 m. The

2  3, 4  5 ' 6  section areas of the 40 bars are linked into 19 types
elements are linked into 3 types of variables: of variables, so that there are 27 independent design
(A1 ,A5 ), (A2 ,A4), A3  There are 10 independent design variables in all. The original values of the section

variables in all. The original values of the coordin- areas are all 0.005 m
2
, and they can vary only between

ates are shown in Figure 4(a), and the range of vari- 0.0025 m
2 

and 0.05 *2 The four support bars have
ability of each coordinate is + 1 m. The original 2

s2 fixed section areas 0.05 m
2 

and fixed lengths 0.5 m.
othe upper At each node on the lower side is exerted a downward

and lower bounds are S - 1 m, S = 0.25 m
2
. A consis- force of 10 t as shown in Figure 5(a). A lumped mess

tent mass matrix is adopted. The first angular fre- matrix is adopted. The first angular frequency must

quency must not be greater than w = 50 sec
- 1

, the not be greater than w - 100 sec
- 1

, and the second one
-1 -1 7 2

second one not less than w 200 sec
1
. The aspect not less than w = 200 sec . E = 2.10 t/m

ratio of each section remains = 2.5. E = 2.4.106 p 7.8 t/m 
3
. Of the bars, working stress is limited

tm2, - 2.45 t/m
3  

A nonstructural mass -= 2.7 t to [ -] - 16000 t/m
2

is added to node 6. The process and result are shown
in Figure 4(b) and Table 2.

TABLE 2

OPTIMIZATION PROCESS OF 5-ELEMENT FRAME

Itera. No. Weight Ui 1 2802 Remarks

Initial 27.1 60 189 .. .. F.M.O. with

1 22.2 43 211 0.80 0.40 y - 0.40

2 14.5 50 220 0.85 0.40 is used when

3 12.0 48 208 0.85 0.40 the upper bound

4 11.4 52 194 0.90 0.40 frequency
5 11.6 49 202 0.90 0.40 constraint is

6 11.5 50 200 0.90 0.40 violated.

7 11.6 50 201 0.90 0.40

8 11.6 50 201 0.90 0.40

9 11.6 50 201 0.90 0.40

Weight Wt

Y(-) -structural mass W2

3

]s 3D3 4 I t frequency-prohibitd band

I 10

I I

I - r

7 4 2 3 4 5 6 1 B 9 iteraton no.

(a) Original shape (broken 11 n) and optiml shae (solid tine) (b) Iteration process

FIU.m 4

S-Elment Plane Frame
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TABLE 3

OPTIMIZATION PROCESS OF BRIDGE PANEL

Itera. No. Weight 1 W Remarks

Initial 5.62 129.2 '55.5 .. ..

1 7.09 88.4 225.1 .. .. F.M.O. with = 1

2 5.58 67.9 201.0 0.85 1.0

3 4.65 55.3 196.0 0.85 1.0

4 3.98 49.2 196.7 0.85 1.0

5 3.49 48.9 199.2 0.85 1.0

6 3.12 51.2 199.5 0.85 1.0

7 2.88 54.0 199.5 0.85 1.0

8 2.70 57.2 199.4 0.85 1.0

9 2.70 60.8 199.6 0.85 1.0

10 2.57 63.8 199.7 0.85 1.0

11 2.56 65.7 199.9 0.85 1.0

12 2.55 65.6 200.0 0.90 1.0

13 2.55 65.5 200.0 0.90 1.0

weight Wt

|- 10.0

LV t 250

200 A17---
(a) original shape

150 frequency-prohibited bad 5.0

100 , /' _

wi
. . . ... ...... 50 '- -

x  0 1 2 1' 4 5 6 7 8 9 10 11 12 13 iteration no.

(b) optiml shape (c) iteration process

FIGURE 5

Plane Truss (Bridge Panel)

-1

For the final design, the first and seventh types than wo - 100 sec , and the second one must not be less
of bars have reached the fully-stressed state. The than 1 = 180 sif 1 . A lumped meis mtrix is adopted.
process and result are shown in Figure 5 and Table 3, 7 2 3

above. E - 2107 t/Im
2
, 7.8 t/u

3
. Working stress of the

Examle 4 bars is (O - 16000 t/m
3
. Only about 4 passes are

needed in this example to obtain the optimum design.

A hemispherical space truss (roof) has 52 bae as The process and result are shown in Figure 6(b) and

shown in Figure 6(a). A non-structural mess of 0.05 t Table 4.

is attached to each moveable node. The section area of

each bar is originally 0.0002 u2, nd Is permitted to

vary between 0.0001 m2 and 0.001 a2. The 52 bars are
linked into 8 types. In addition, the three coordinates
of each mveble node are all taken as independent vari-
ables. The moveable range of each coordinate is + 6 a.
Therefore, there are 47 independent design variables in
all. The first mgular frequency must not be greater

2-17
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TABLE 4

OPTIMIZATION PROCESS OF HEMISPHERICAL SPACE TRUSS

Itera. No. Weight I 12 a B Remarks

Initial 0.339 135.9 150.6 .. ..

1 0.477 104.2 174.6 .. .. F.N.O. with = 1

2 0.371 96.6 176.1 0.90 1.0

3 0.320 100.2 179.1 0.95 1.0

4 0.298 99.9 178.9 0.95 1.0

5 0.298 100.0 179.4 0.95 1.0

6 0.298 100.0 179.7 0.95 1.0

z weight wt

20 0.4

01 frequency prohibited band
/

0 1 2 3 4 b teratin no.

(a) Original shape (broken line) & optimal Shape (solid line) (b) iteration proxess

Fl GUt 6

Space Trwss.(roof)
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OPTIMUM DISTRIBUTION OF ADOITIVE DAMPING FOR VIBRATING BEAM STRUCTURES

Roger Lund6n and Bengt Akesson
Division of Solid Mechanics and Strength of Materials

Chalmers University of Technology

S-412 96 Gothenburg, Sweden

Summary E33A !la b3
_- tost and weight effectiveness of concentrated 3 'h 3
and distributed additive damping has been studied for

4.linear systems (discrete and continuous) under pre- 2
.scribed harmonic loads and/or displacements. Increases
in stiffness and mass due to the additive damping are
included. Redistribution of an initially uniformly
applied additi've damping (viscoelastic layer) has been
numerically and experimentally investigated for beam
structures. An optimal redistribution has typically
been found to reduce amplitudes of resonant responses

* by about 50 percent (level reduction by 6 dB) with X
the cost or weight of the damping treatment kept y

* constant. One application has been to vibration EI.11,A 1
isolation of a damped skeletal light-weight machine

* FoundationL

Introducti n

Resonant Yibratons in a structure can be sup-
pressed by applying additive damping to itoiembers. Figure 1. Uniform beam member with spaced free damp-
For ship structures different damping measures were ing layer working in bending vibration about y-axis.
discussed in Reference (,1). Additive damping being Base structure 1. Spacer 2 is rigid in shear and has
distributed over the structure is often preferable negligible bending stiffness. Damping layer 3 dissi-
to concentrated such damping. A required damping pates energy in tension and compression. Elastic
treatment can be realized using layers of viscoelastic moduli E1 and E, area moments of inertia I, and I3,
materials in different physical arrangements, see cross-sectional areas A and A and loss factor
Reference (2). lay 1  3,

In many cases it may be practical to apply a =y  .

distributed additive damping unifoly over the
strucure. In other cases it may be profitable to
optimize the spatial distribution of an additive damp-
ing in order to reduce its cost or weight, see Refer- For a harmonically vibrating damped space frame
ence (3) b

A numerical method for automatic optimizatioh of a general single-figure response quantity f(b ,W) (the
damping distributions has been developed by Lunddn amplitude of a local displacement, velocity, acceler-
(4). The method will briefly be presented in this ation, stress, support reaction etc, or a weighted
paper. In Reference (4) the method was applied to a sum of such amplitudes) can be calculated. The matrix
beam on spring supports (results summarized here), b
and in Reference (5) to a plane frme for which also column vector contains the hysteretic damping loss

b

confirming experiments were performed. In Reference factors n1, il,2,...,n, in bending of the n beam
(6) the general results of these two studies were elements of the frame. The angular frequency of the
used in an optimization by trial and error of the elemen fte fre angulr fre en of th
daping distribution over a light-weight skeletal exciting prescribed forces and/or displacements is .
mchir% foundation (results summarized here). It is noted that the frame vibration will usually be-nonsynchronous,

Theory of Vibration Keeping the amplitudes of the exciting harmonic
T o tforces and/or displacements constant, the maximum

A damped uniform beam member for computerized response F in a given frequency interval [u, (u]

'FEM (Finite Element Method) calculations of harmonic- can, for a given damping distribution Ib, be written
ally vibrating general space frame structures has been as
developed by Lundin and Akeason (7). This beam member

.vibrates in simultaneous tension, torsion, bending F(nb) max f(r Z, ,w) (1)
and shear. Among several other options (ambient medium, P. ( , Wu]
ecii-ord&r theory, external damping etc), the member

includes uniformly distributed viscous and hysteretic The response F will here b, !led a resonant response
doinge along its length dissipating energy in if the corresponding value .. the angular frequency w
banding of the bem in its two principal planes. A is such that ',N/ aO (this definition thus excludes
frame composed Of several such beam elements can be end point maxims). The function F in Equation (1)
analyzed by the displacement method being implemented will serve as objective function in the optimization
in'a computer program. The results obtained will then to follow. Note that the components of the exciting
be exact (except for roand-off errors) within the harmonic load on the structures discussed may very
differential equation theory applied. ell be out of phase with each other.
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Figure 2. Beam on spring supports subject to a a fictitious uniform damping i=n b iu ,2...,n,

stationary harmonic central load P1 exp iwt. Beam dis- over the structure, as defined by

placement w(x)exp iwt. Central displacement amplitud n
w(O) is denoted by p Spring supports have stiffness E G.(inbu) c

k and loss factor n . Undamped beam (base structure) 1
has uniform bending stiffness (El 0 ) and uniform mass Additive damping will be accompanied by stiffness

per unit length m.. For analysis, half beam is divided and mass increases in the structures. These effects
have been included in the vibration analysis and they

into 8 uniform members (symmetry is used) of equal will affect the objective function F in Equation (2a),
length as shown on right half of beam. This implies see Reference (4) for further information.
piecewise constant properties of structure. Composite
beam member i has bending stiffness (EI)i, mass per Optimization Method

unit length m., and loss factor rIb. Reference elastic
stiffness is kr I) 2L. fregency parameter The constrained optimization problem as defined

(El) 0  2 in Equations (2a,b,c) can be turned into a sequence
referring to base structure ia B-w/ 2[(EI) /moL 41. of unconstrained ones by application of a Sequential

0 0 Unconstrained Minimization Technique, SUMT, see

Reference (8). In Reference (4) a sequence of un-
constrained objective functions F with so called ex-terior penalty terms was defined u as

Objective function with Constraints n

Fub 1 n b)]2
The objective is to choose the set of beam loss u + 

{
k) Fra O k i:7

factors n b contained in the vector b so as to mini- n2

mize resofant vibration levels in te loaded frame + [ E G. ) - C damp]} , k1,2,...,kmax  (5)
structure while keeping the amount (cost or weight) i i m
of additive damping constant. Mathematically, this
can be formulated as The auxiliary parameter rk was chosen as

Minimize F(2b
)  

(2a) rk = rk-l/d , d > 1 (6)

subject to the constraints Suitable values of r and d were selected by numeric-

b >0, i=1,2,...,n (2b) al experiments. A typical result was r 1 =0.20 and
d=10.O. For each value of k, the vector 

b 
minimizing

n b F was calculated with a standard optimization
SGi(li) = d computer algorithm, see Reference (9). The result

i=1 afound in Step k of the sequence is used as the start-

Here C denotes the prescribed total cost or weight ing point in Step k+, and a new optimum is found.M dan tWhen the change of Fu and of the elements

to be used for additive damping treatment. The b in bub i in between two consecutive steps k and k+l wasb toth
function G1 relates the local loss factor ni  within preset limits, the optimization procedure waslocal cost or weight. terminated (typically, kmax:

4
). Different starting

rwo types of functions Gihave been used to model approximations of lb should be tried to avoid results

the cost or weight penalty for a free dmping layer representing only local minima of the objective
as shown in Figure 1. The linear type is function F(ub) in Equation (1) under the constraints

b  
b lay in Equations (2b) and (2c).

i(n 1  c Ln/r (3a) Example A: Beam on Spring Supports

The nonlinear type is
b b lay b The centrally loaded beam in Figure 2 will be

Gi(n 1 ) 2 CiLin/(l y - n (3b) studied. The damping distribution along the beam shall
be optimized in order to reduce the response amplitude

Mere Li Is the length and ci a constant (depending IpJ maximally while keeping the cost or weight of the

on material and geometry paramters) of the beam dmpinq treatment constant. A parametric study will
member I. The lose factor of the daping material it- be performed considering different values of the

self is denoted by nlay spring sitffneas ks 
and loss factor n . In Case 1 the

It has bean found practical to express the total coat model in Equation (3a) is applied, and changes
cost of weight Cdemp of additive damping in terms of in stiffness and mess are neglected. In Case 2 the

2-22 A



I % I ' I

",, ((b)

.5.- . bnq 06  .0 "" . _ -.

0.7- 0.6-

0.6I 4 . I , I

1 2 5 10 20 50 100 I 2 5 10 20 501 00

kS/k ref ks/kret

Figure 3. Reduction factor y for response IpI  in

Figure 2. - , Case 1; -, Case 2.

(a) rbu=0 .1; (b) nbu=0 .5.

cost model in Equation (3b) is applied, and the in- The diagrams in Figure 3 show that the optimiz-
crease of bending stiffness and mass per unit length ation will in Case 1 reduce the amplitudes jp1l by
of the 16 beam elements is observed in the vibration up to 46.. Case 2 (which is deemed to be the more
analysis. realistic one) gives a reduction by up to 37. From

Figures 3 and 4 account for results of the the distribution charts in Figure 4 it can be con-
optimization considering a frequency interval cluded that the damping should (as expected) mainly be

[w, W uI enclosing only the first symmetric resonant located where the bending curvature of the beam is
mode of vibration. Different dalues of the stiffness the largest.

me ef a ues oThe second and third symmetric resonant modes of
ratio kS/k

re f 
and of the loss factor nbu of an i- the beam in Figure 2 were also studied. The reductions

came out with similar values as for the first mode.
itially uniformly distributed damping are investigated, Also other response quantities than Ipll were in-
see Equation (4). The optimization leads to a re-
duction of the central deflection amplitude from 1p, I to vestigated. As long as small values (about 0.1) of

yj1P i" The reference value rIbm is defined as that n
bu 

were considered, the reductions were about the
b same as above.

loss factor nb which would make the damping treat-
ment double the weight of the original beam (Case 2
only).

4'jAro..O bUS1 ~ ()[ks/krsf u)00 bu

-LI2 iO L12 -LI2 aO L12 Z

Figure 4. (a) Optimum damping distributions for Case

r 1 with rlSo.o. Parameters kS/kref a n b are varied.
(b) Optimum ding distributions for Case 2 with

1.0-O.O and 0.m=5.4 . Psrmters kS/k"e  d nbu are
varied.
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Figure 5. (a) Machinery set-up contaning a machine
body (dashed) connected to a grillage frame AA'-DD'

moented on four springs. Springs are supported by
rigid ground. Global coordinate system is Axyz.
Grillage dimensions are L 1=L3=-0.*700 m, L2 =0.400 m,

and L 4 =.600 m. Machine is modelled as a rigid body

with mass centre C at point E located centrally in

frame. Machine has mass m=200 kg. Grillage consists
of ten beam members AA', AB, BB', etc of equal cross

sections. Grillage is supported by four equal mssless

springs each of stiffness ks a056.0 kN/m and loss factor

s (to be varied) giving total machinery set-up s Different means of reducing the vibration trans-
lowest eigenfrequency of about 5 Hz. 'Blocking m'sses' mission were tried. Daming at the spring supports
will be introduced at joints A, A', D and s c' (not was found to be effective for frequencies up toindicated). Each 'blocking mass' has mass M =5.00 kg. about 75 Hz. 'Blocking msses' of 5 kg above each of

Structure is submitted to a combined harmonic external the four support joints of the grillage were shown

loading Pm=.OO N, P M =0.200 Nm and P M =0.300 Nm (with to suppress response levels above about 100 Hz. Now-
y rzr ever, sharp resonance peaks are still present when

common time factor e 2f) 'blocking masses' have been introduced.

(b) Cross-section of grillage beam. Base structure I Additive damping of the beams of the grillage

(RHS beam) has dimensions H =60.0 mam, B1=40.0 mm, and structure was found to give reduced transmission for

the whole frequency range studied (0-1000 Hz).
t1=2.90 mm. Structural steel means m=4.29 kg/m, E=210 Applying the general experience from References (4)

GPa, and G=80.8 GPa. Natural structural damping is and (5), a partial damping treatment was tried for
bend tor 0 0 0 5  the grillage. From plots of bending moment distri-

estimated at z . butions in the grillage beams for different eigen-
modes it was found that high bending moments dominate
in the two long beams.

( Figure 6a shows the effect of appiying damping
=0.200) to the spring supports and uniform damping

bend-0.010) to the grillage beams. In Figure 6b the
Example B: Damped Light-weight Machine Foundation (TIzO .

damping treatment of the grillage is located only
A grillage beam structure resting on spring along portions of some beams thus spending only 37%

supports and carrying a vibrating machine is shown in of the damping material used for the situation in
Figure 5. Reference (6) reports good agreement be- Figure 6a. For lower frequencies it was found that
tween numerically and experimentally obtained response levels are changed very little from Figure
admittances for the freely suspended grillage (with- 6a to Figure 6b although several of these levels are
out the machine). In Reference (6) also a numerical strongly dependent on the damping of the grillage.
parametric study was performed for the full set-up in For the higher frequencies the effectiveness of the
Figure 5. The vibration transmission from the machine partial treatment differs between the modes. Such a
through the grillage to the supports was then of treatment may thus be applicable only when the machine
special interest, vibrates in some limited frequency interval.
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Figure 6. Calculated vertical translational velocity
levels Lv (in dB, v.=l m/s) at joint A of machinery

set-up in Figure 5 under combined loading described
versus circular frequency f.
(a) , with additive damping at springs aid at full
length along all beams (nS=a.200, n z =o.100) and

with 'blocking masses'; ---- , without additive damping
bend=0 005 ol)adwt

(natural damping n
5 
O.010 and nzn:u. only) and with

'blocking masses'. Z
(b) - , with additive damping at springs (n =0.200)

and along portions of some beams (n bnd=0.100 along 1.1
zm for each of beams AD and A'D', centrally placed);

-------, without additive damping (same curve as in
figure a).
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Concluding Remarks

Optimum spatial distributions of additive damping
for harmonically vibrating structures have been de-
monstrated in the examples of this paper. It is con-

cluded that an optimal redistribution from an in-

itially uniform additive damping can reduce rnsponse

levels by about 50%O. This general result has also
been experimentally confirmed in a separate study of
a one-bay two-storey frame reported in Reference (5).

Several numerical studies have shown that the
optima obtained are rather flat. This means that a
'good guess' of an optimum damping distribution often
gives satisfactory results. This approach was success-
fully applied in Example B.

In conclusion it is suggested that general
results as obtained from extensive (and expensive)
idealized optimization studies be used to estimate
optimum damping distributions in practical design
work instead of performing a full mathematical opti-
mization procedure for each special problem at hand.
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AN ITERATIVE EIGENVECTOR TECHNIQUE
FOR OPTIMIZATION ANALYSIS

Paul S. Jensen
Lockheed Palo Alto Research Laboratory 5233/255

3251 Hanover St.
Palo Alto, CA 94304

ABSTRACT The cubic convergence of Rayleigh
quotient iteration has tantalized analysts
ever since its discovery and exposition in

Certain structural optimization analyses the late fifties by Ostrowski (1]. However,the fact that it requires repeated solutionrequire the repeated generation of sparse, of shte lnasyeso qainsf
symmetric linear systems of equations for of shifted linear systems of equations of
which a few eigenpairs (eigenvalues and the form
corresponding eigenvectors) are to be
determined. Typically, these linear systems
have similar spectra. Consequently,
eigenpairs for one system tend to be where K and N are the coefficient matrices
reasonably close approximations to those of of the eigenvector problem, r is a scalar
another knextft linear system. An iterative Rayleigh quotient and x and y are vectors,
eigenvector analysis technique that utilizes has thwarted many vigorous efforts to
the available approximate eigenpairs in utilize the iteration. Matrix factorization
order to reduce computation costs is is too expensive and iterative solution
described. It is based on Rayleigh quotient algorithms tend to require successivly more
iteration with a Lanczos type iterative time (iterations) to converge as the
equation solveL. A rational transformation solution to the eigenvector problem is
of the initial forms of the linear systems approached. In fact, if the eigenvector
is used in order to overcome the adverse solution is achieved, r becomes the
matrix conditions that typically ruin the corresponding eigenvalue and the linear
converqence of the iterative equation equation becomes singular. This singularity
solver (or a near singularity) typically devastatesve the functionality of iterative solvers.

INTRODUCTION One valuable characteristic of iterative
solvers that are based on the ,rinciples of

Structural optimization analyses conjugate gradient or conjug&te direction

involving certain types of constraint methods is that the number of iterations
conditions, such as buckling and vibration, required is relatively small if the
require repeated generation of sparse, coefficient matrix has many eigenvalues of
symmetric linear systems of equations for equal modulus. Of course, equation (1) does
which a few eigenpairs (eigenvalues and not generally have this characteristic. In
corresponding eigenvectors) are to be fact, if K and X are generated from a finite
determined. An important characteristic of element analysis of a structure, the
the eigenvector ptoblems in this context is spectrum of (K - rM) tends to be extremely

the availabilit of reasonably good large with only minor duplication. This
approximate eigenpairs at the outset of each property, however, implies that the
evaluation cycle. This characteristic is a preconditioned matrix
result of the iterative nature of common
optimization processes that requires the 1- P'(K P,
analysis of a sequence of perturbations of
an taitial design. where P is a factor of (kK - mM) for certain

T, s paper describes an iterative scalars k and m with P' the transpose of P,
has the desirable property. The further an

_':'ctor algorithm for large, sparse, eigenvalue of the original problem is from
eneralized, symmetric eigenproble55 r, the closer the corresponding eigenvalue
:i&Acnly arising in structural analysis of S is to k. So all of the distant
(tinite element analysis) that exploits the
.vailability of good initial approximate (roblem coalesce to thvalu e k in the
eigenvectors. The algorithm is based on the ransformed problem.

* well known Rayleigh quotient iteration Ill,
and uses an iterative equation solver based Although it is not reasonable to
on the Lanczos algorithm [2 and 31 and a repeatedly factor (kK - mM), it is generally
preconditioning to enhance convergence, acceptable to factor such a matrix once.

2-27



I -

-1

Also, the factorization does not need to be S - P'(K - rM) P. (4)
accurate and so it is often possible to use
a given factorization for several If we denote the matrix of eigenvectors of
intermediate eigenvector problems in an (2) by X and the diagonal matrix of
optimization analysis. Thus, even though K eigenvalues by A, then it can easily be
and M may change slightly from one verified that
optimization step to the next, the same
factor P may be retained. Considerations SW - DWe, (5)
germane to the rational transformation S are
discussed in the next section. where PW - DX -l

This is followed by a brief discussion and e - (kA - ml) (A - rI) - diag( )
of the Rayleigh quotient iteration algorithm 1
for the transformed problem. No discussion with e - (kX - m)/(x - r)
of the theory of Rayleigh quotient iteration i
is included here. For completeness, the - k + (kr - m)/( - r), i-l,...,n.
algorithms used for the linear systems are 1
briefly discussed in the fourth section. Thus, for any eigenvalue A of (2) such that
The reader should study the references for the magnitude of X - r is large, the
details in this area. corresponding eigenvalue e of (5) is

The rational transformation approximately equal to k. Conversely,The•alonl ranfomaton greatly eenvalues of (2) that are near r
enhances the behavior of a good iterative eigenvalues of ( 5) tha hlins• quaionsole• n te e~lystaes correspond to eigenvalues of (5) that have
linear equation solver in the early stages very large magnitude. In passing, we note
of the Rayleigh quotient iteration, but it that if kr is approximately equal to m, then
does not address the problem of approaching S is approximately equal to kD, which is a
singularity as the Rayleigh quotient very simple matrix to solve but which
approaches an eigenvalue. As this happens, reveals very little about the spectrum of
however, the angle between the initial (2). This observation suggests that care
vector available to the iterative solver and should be exercised in determining the
the solution vector decreases. It turns out eigenvectors of (2) from those of (5). For
that the component of the solution that lies convenience, values k-0, m-1 or k-1, m-0 are
in the direction of the initial vector can frequently chosen when eigenvalues of (2)
be analytically removed so that the near the low or high ends of the spectrum
iterative solver only needs to determine the are required.
component normal to the initial vector. The
linear equation system tends to be well
posed in terms of this component. This RAYLEIGH Q
topic is discussed further in the fifth
section. Each step of Rayleigh quotient iteration

Another approach to the final stages of updates an eigenpair (e,w) approximation toAylte quroati iteaina i s to the transformed problem (5) and the Rayleighthe Rayleigh quotient iteration s to simply quotient r of the oiginal system (2). It
apply the Lanczos algorithm for the desired involves the followinq fou s computations:
eigenvector. This is most appropriate when
the desired eigenvalues are near the y : SDw
extremes of the spectrum of S. Some of the 8 :- (y,Dy)/(y,Dw)
advantages and disadvantages of this r :- (re - m)/(e - k)
approach are discussed in the sixth section. w :- y/I1YII
Some numerical results are given in the last
rection. where the symbol := is read Nis replaced by"

and Ilyll is the Euclidean norm of y.
RATIONAL T Because S involves the inverse of

(K - rN), see (4), it is not explicity
In this section we consider a determined. Instead, the effect of a

transformation of the coefficient matrices matrix-vector product y - Sv is achieved by
for the generalized, symmetric linear solving an equation system Ay = v, where A
eigenvalue problem is the inverse of S.

Kx - XMx (2) Matrix A is not determined explicitly
either because of the resulting

that improves the convergence properties of computational cost. It is retained in
the iterative solution procedure. Consider product form, which means that a
a factorization of the form matrix-vector product v - Ay is determined

formally as follows:
kK -mN - PDP' (3)

solve P'v - y
where P is lower triangular with transpose y :- (K - r)v

P', D - diag(d ) with d - ±1 and scalars k solve Pv - y.i i
and m are such that (3) is nonsingular. For The cost of the actual computation of v is
any scalar r that is not an eigenvalue of reduced somewhat by noting that
(2), we consider the matrix -1 -1

A [D + (m - rk)P NP' ]/k
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which leads to the following algorithm: For either method, it is prudent to
simplify the problem as much as is practical

solve P'v y in order to reduce the cost of the solution.

u : v In particular, the quality of the initial

solve Pv - u approximation to the solution must be fully

v - (/k)Dy + ( - r)v exploited. A general technique, which
happens to be particularly effective for the

The solution of the matrix equation eigenproblem at hand, for using a goodThesoltin o te mtr~ euaton initial approximation is described in the
Ay - v is achieved by an iterative process ni ti oxs
described in the next section. This process next section.
requires repeated matrix-vector products of
the form Ay. CONDITIONING W TH INITIAL APPROXINAT

The considerations of this section apply
ITERATIVE SOLUTION 2E LINFJS RYATERS, to the iterative solution of linear systems

of equations in general. Basically, we areForms of generalized conjugate gradients to determine the solution of
based on the approachs described in 12 and
3) are currently being used for the inner Ay - v (9)
loop solution. In order to solve an n by n
symmetric system

Ay - v, (6) given an initial approximation y such that

a series of n by ], jlI,2, ., matrices Ay - v is a reasonably good approximation to"a" sa scalar multiple cv of the given right hand
side. For numerical efficacy, we choose toQ =[q I q 2 "'' q solve

j 1 2

with orthonormal columns q are developed Az - cv - v (10)
i

such that instead of (9), followed by setting

AQ Q T + E y(7) (z+y)/c. In order for the right hand

i i side of (10) to be orthogonal to v, we must

where T is j by j tri-diagonal and n by 2 choose

matrix E is nonzero only in the last c - (v,v)/(v,v)
2

column. The projection u of the solution where (.,.) represents an appropriate vector
to C ) onto Q is obtained by solving inner product, e.g., Euclidean dot product.

If v is approximately an eigenvector of A,
Q'AQ U - Q'V then the solution y will be approximately

which, from (7), is formally equivalent to parallel to it. Consequently, the solution
z of (10) will be nearly orthogonal to that
eigenvector since the right side of (10) is

solving orthogonal to it.
T u - Q'v (8)

j LAflCZO IGENIVEQ AWLMM
since, as it turns out, Q is orthogonal to For the determination of eigenvalue

near the ends of the spectrum of S (with

fixed r, see (4)), Lanczos iteration can be

The iterative development of the q's and used to determine the eigenpairs directly.

elements of T follows the familiar Lanczos This approach also applies to the
process (see e.g., 121). For stability, (8) determination of interior eigenpairsas awell
is solved using the LQ factorization. One if good initial approximate eigenvectors are
of the most perplexing difficulties with available. This approach was apparently
this algorithm arises from the fact that the applied successfully in (51. !

columns of Q do not remain orthonormal.
The algorithm RINRES, described ir (2) and In order to use this approach, it is

used here, ignores this jifficulty and necessary for (kK - mM) to be positive
lumbers on using brute force to obtain the definite so that diagonal matrix D of (3) is

solution. The algorithm :ANSOL, described the identity. Also, it is necessary to

in 31 and also used here, handles the factor (K - rM) for some astutely chosen r
difficulty by selective orthoonalization so that matrix-vector products of the form
as descfibed in (4. Sv can be determined directly.

LAUSOL generally requires fever The Lanczos algorithm is then used to

iterations to converge but incurs a determine extreme eigenpairs of 8, see (5),

nontrivial overhead cost for the selective and the results are apped to the

orthogonalization. At this point, neither corresponding eigenpairs of (2). Suitable
sigorithm appears to be universally superior implementations of the Lanczos algorithm for

large, sparse matrices may be found in (6-91
for the problem at hand. and a variety of other places.
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The obvious disadvantages of this Lanczos iteration for extreme eigenvalues of
approach have already been noted, i.e., S. Because of the choice of starting
extra factorizations and restrictions on the vector, it was satisfactory to use the
choice of k and m. The advantage of the harmonic operator in place of its inverse as
approach is its superior convergence rate. prescribed in the definition of S, see (4).

The reason it has a superior convergence The test results are given in Table 1.
rate follows from a reasonably simple The stopping criteria in each case was a
argument. Whether Lanczos iteration is used residual norm less than 0.0005 using single
in the inner loop of Rayleigh quotient precision on a DEC VAXll/70 computer having
iteration to solve a system of equations or floating point accuracy 0.0000000596. The
it is used to determine eigenpairs, it must timer is affected by system load and so
generate a set of vectors that represent a several runs were made for each case and the
basis for a corresponding Krylov space. The average is given.
result produced is then the projection onto
this space of either the solution to the Table 1. Results for interior eigenvector
equation system or the desired eigenpair, refinement
depending upon the application. Since the
fundamental objective here is to determine MINRES - Minimum residual method [2]
eigonpairs, the latter result is the more LANSOL - Lanczos equation solver [3]
direct utilization of the set of "Lanczos" LANEIG - Lanczos eigenvalue iteration
vectors for the basic problem.

N MINRES LANSOL LANEIG
One aspect of the Lanczos eigenvalue Iter Time Iter Time Iter Time

algorithm that is under active study is the 50 41 1.15 24 4.57 64 4.48
monitoring of the linear independence of the 100 46 2.40 41 9.18 103 17.51
basis vectors. Current methods solve 200 46 3.98 29 6.85 151 52.03
increasingly larger tri-diagonal eigenvalue
problems for this purpose. If only a few The rapid growth in time as n increases for
basis vectors are needed, the monitoring LANEIG illustrates the cost in monitoring
cost is minor; however, in our studies, the linear independence of the basis vectors.
numbers of basis vectors needed led to This cost was mitigated by stopping the
rather large monitoring costs, iteration when mildly poor independence was

detected and restarting with the resulting
approximate eigenvector. This resulted in a

TEST RESULTS M 9m=14uwis larger total number of iterations in some
instances, but a smaller total elapsed time.

The three approaches discussed in

previous sections have been implemented and This same overhead cost is reflected to
tested on problems generated by a a lessor degree in the times for LANSOL.
pseudo-random number generator and the one However, since the double loop Rayleigh
dimensional harmonic operator. Links to quotient iteration permitted solution in
matrices from actual structural analyses relatively few iterations, the overhead is
have not been completed as of this writing, hardly noticed. As noted earlier, MINRES
The results presented in this section ignores linear dependence and, therefore,
pertain to the harmonic operator. normally requires more iterations than

LANSOL. In this problem, each iteration is
The initial vector used in these tests extremely inexpensive and so MINRES looks

was a purturbation of the true eigenvector relatively appealing.
in the middle of the spectrum given by

As promised above, we also present
y - (U + db )x , i - 1,...,n results in Table 2 for LANEIG seeking an

ii 1extreme eivenvalue of S. Results ate not
where x is the true eigenvector, d is the included for the double loop Rayleigh

purturbation factor (d - 1/8 in this case), quotient iteration methods because, of
and for each i, b is a random number in the course, they automatically adjust all

i problems (via the Rayleigh quotient) so that
range 1-1,1]. The actual expression for the they are seeking extreme eigenvalues.
components of the true vector in this caseis Table 2. Results for refinement of

extreme eigenvectors

x - sin(ic)
i teLAMEIG

where c - (n/21 /(n+l) with 1.1 interpreted Iter Time
as the largest integer not exceeding the 50 15 .54
bracketed quantity. Thus, the initial 100 17 .86
vector is accurate to about one decimal 200 18 .93
place. This is clearly the case for which Lanczos

The scale factors k-0, m-1 were used for iteration shines. For typical application
convenience, see (3). For the straight to structural optimisation, however, it
Lancsos iteration, r-O was selected in order appears that the cost of forming the product
to illustrate the difficulty in obtaining form of S, see (4), together with the
eigenvalues from the Interior of the resulting losses in sparsity and accuracy
spectrum of B. A subsequent test seeks the due to the factorization of (K - rN) will
eigenvalue nearest rn- in order to overpower the benefits of straight Lancuos

illustrate the rapid convergence of the iteration.
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Summary version of mathematical programings,simply due to the.. reason that the method is one of the most frequently

Optimization algorithm is presented on a structure used and can handle complex constraints.
w~ich sustains a time dependent force from an indefinite With marked developments of high strength materi-
d~rection. Stresses and displacements are given by als and remarkable progresses on structural analyses
parametric forms of both time and direction of force, and designs, there is a trend toward constructing large
The direction is treated as uncetainty and is called flexible structures. To design thse structures, one
enviromental parameter here. needs not only static analysis but also dynamic analy-

To compute stresses and displacements, equations sis to assure the safety, serviceability and possibly
of motion are formulated based on finite element method human comforts. Hence from the point of rational
with consistent mass matrix and solved by modal designing of the structures, optimum design in dynamic
analysis. Since the stresses and displacements depend domain is essential. In the past numerous papers have
an time and enviromental paramerters, their maximum been published in the area of dynamic optimization
values have to be found in the domain of the both where design is made to satisfy a specific frequency

jparameters. Then the weight of structure will be 12,13). Much less work has been conducted on dynamic
,minimized meeting all requirements. Hence the response constraints where constraints on stresses and
optimization procedure in this paper consists of two displacements are given in time parametric form (14-16).
alternating processes of maximization and minimization. In this regard some publications (17-20) have been made
The maximization Is carried out analytically and the on optimum earthquake resistant design. Frequently time
mininization process by a gradient projection method, dependency of the dynamic quantity is removed by using
- )As example problems three truss structures are response spectrum technique. Further structural control
considered: one is plane truss and the other two are (21-25) has drawing the attention of structural engi-
space trusses. A time dependent force is given by sine neers. The idea behind it is to install a control
function, hence all members of the structures undergo device composed of spring and damping such that it will
frnm tpnsilm state to comoressLv" state.,The design prevent a structure from undergoing excessive displace-
critera are taken to be ) in tensile--tate, stress in ments and accelerations.
a member should be less than an allowable stress, 2) On most structural optimization problems,
in compressive state, stress must not exceeds the direction and location of loading(both static and
smaller of an allowable stress and Euler buckling dynamic) are given in advance. However in real world
stress, 3) displacement is within allowable limit, and problems they are not necessarily known (26,27). Wind
4) design variable is between its upper and lower load, tidal wave and earthquake can hit structures from
limits. Time dependent force is allowed to change its any direction. Under such circumstances a design will
direction within the range of 180 degrees. Although be made based on an engineer's experience or his
this paper treats the case that the force is applied intuition. Rational design method is not available yet.
at a single node, loadings on multiple nodes can be The purpose of this paper is to present an optimal
handled similarly as long as their directions are same. design of structures under uncertainty of loading as

- Numerical results are presented to demonstrate the mentioned above. Hence the problem treated here
validity of the algorithm and the dynamic character- contains two sets of parameters;one is called environ-
istics of the problems mental parameter which implies a direction of force and

r m the other time parameter. The optimization problem is
Idevided into two processes. First process is maximiza-

tion which finds the worst states of stresses and
Fufdisplacements due to the direction of force and the~~~For many years numerous amount of research work seodpo sst iizton rcssnthwigto

has been conducted on the optimization of structuralminimization process on the weight ofhasten ost commn problems are weight minimization structure. Considering characteristics of structuralsystems. Manalysis, maximization is carried out analytically but
of various structures subject to static loadings, minimization process is solved Iteratively by a gradi-
Extensive effort has been made mainly on the develop-
ment of efficient algorithms (1-7) and partially their ent projection method. Numerical results are presentedto demonstrate and the validity of the algorithm and
applications to other area of engineering problems;
inverse problems (8), contact problems (g), stephan characteristics of example problems.
problems(lO) and so on. There are two main streams on
the approach to structural optimization techniques; Formulation of Problem
that is, one is a mathematical programing method (1-7)
and the other is optimality criteria method (5-7). Optimum design problem consdered herein is minimum
Many variations of both methods are also available, weight design of structural system subject to dynamic
The discussion on the two approaches is found in ref. forces whose magnitude are constant but whose direction
(11) and is beyond the scope of this paper. Among the can vary within certain range. The problem of this type
optimization techniques available, the method adopted will be expressed in a mathematical form as:
herein is a gradient projection method (3),whch is a
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wherem inim ze : (b) (1) A t ~ ~ C Q O - , , - r 7
A -10](l 00 0, -1, 2,..., rJ (7)

subject to the equations of motion The maximization process will be conducted with a fixed
value of b - b(O) to find R, and f(t)which naximize '1.

+ C(bY + K W -Q (0(. .t) (2) for each j,( j = 1,2,. ---.,q). ?ven after &, which
maximize )I- , ( j = 1,2,--- ,q,) is found, 1q.(5) is
still paraletric in the sense that they require

K(O) - K. (3) satisfaction over a range of time parameter. The
parametric constraints may be transformed to functional

±(O - i.(4 form,

and constraints ' , zfAi(b,(t))t (9)

MOLX 'Z(b,Z,O() O, ( '-1,2,', (,) w where

ceA, t -(O,T) A, t i( (10)

WLi(b) K 0, (i +,1, (6) 0i is consdered fixed.
Then outer problem is defined as follows:

where

A *-1,2..-.rJ minimize 
0. (b) (11)

subject to

The notations used above are M(b)i +C(b)i + K(b)Z'-Q(Rt) (12)

design variable 2(o) - go (14)

Z-[Kc:),YZ,- .. Z.(;:)]T : state variable e/"f'4(b 'z)d* o ' (,= 1,2,--', ,) (15)

0-_ [, .0(,... a T : environmental O -% W _< 0, (i - 1, + 1,., 2 ) (16)
parameter As can be seen, the environmental parameter (is

K(b) : stiffness matrix removed in the problem. Alternative approach is to set

mass matrix =mA (b,Z, , (x ., ,--, ,) (17)
) A, t6(O,T)

C() : damping matrix then eo.(t) will be replaced by

T : upper limit of time parameter O 10 , (" i-, 2, ---, S,) (18)

J and 1 imply first and second order derivatives of z Although it may be mathematically more regorous to
with respect to time parameter t. The constraints on treat the parametric constraint eq.(5) as es.(r7),
stresses, bucklings and displacements are expressed by (18), eq.(?) is adopted for the sake of simplicity on
eq.(5), where a set A defined by eq.(7) is a range that computational algorithm. The solution procedure for
o( is allowed to take. Eq.(6) is a sizing constraint, the original problem consists of alternating

i.e. lower and upper bound of design variable b. maximization and minimization processes.
In order to solve the optimization problems stated

by eqs.(l) - (7), it will be divided into two levels:
one is maximization process wich will find the worst Optimization Procedure
state of stresses and displacements due to the change
of environmental parameter a(, and the other is The most commn approach to the structural
maximization process which, meeting all the constraint optimization is an adaptation of nonlinear programing
requirements, will reduce the value of objective method. The inner and outer problems stated in the
function as much as possible. The former process is, previous section can be solved by employing the method.
hereafter, called an inner problem and the other an However, considering a computational efficency, it is
outer problem. more reasonable to make a full use of the knowledge onInner problem can be defined as: structural analysis without getting into optimization

scheme. If dynamic force is loaded at one node, it is
possible to find a maximum value of eq.(5) without

maximize 7-(b, z, 0 , 2., - - ) (8) maximization algoritthm.

a(L At d(0, T) Dynamic Analysis
subject to The optimization problem in a dynamic domain

MO) + C(b)k + K(b)Z (4(,t) (2) reqires to solve the equations of motion,

C(0) - K (3) M i + Ci + KI - (z) (19)

i(o)- , (4)
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(0) Zo (20) 1 ,= -

(21) The general solution of eqs.(29) -(31) is

where M, C and K are mass, damping and stiffnessatrices, z is state variable and Q(t) is an external t( = , t ~ ) + poc l;(

force. If one considers N dominant modes of 
L k2t

M Z KZ0 (22) + (32)
where M and k are n x n symetric matrices. Then z is

approximated by

N where

However if C is not orthogonalized with respect to
numerical integration method such as Newmark's -

) 0 method should be adopted to find z(t).
(23) Inner Problem

p,/)J In the inner problem, design variahle is held
constant ( initially assumed to be b = b('0 ). andS,

where N :9 n. and Il(,)are determined, which, satisfying the
Substituting eq.(23) into eq.(19) and premultiply- requirements of eqs.(g) and (10), maximize eq.(8).

ing by , then one will obtain This could be done by using any optimization technique,
but it is more efficient and exact to use the proper-

T T T ties of structure. To explain the latter approach, itM + JCJPC + YTK{p-j oa) (24) is assumed that time dependent force is applied at a
single node and is restrained to change its direction

on a given plane( for example x-y plane ). Let the
Since i ,( i = 1,2, - ,N ) are orthogonal to each force is expressed by Psinu)t which intersect with x-
other with respect to M and K, axis at an angle of of. Then its components in x and y

directions are Psin&ut cosCK and psintot sino(.
T f m 4 (5 If 2c." and F0c rresponds to the solutions of eqs.(q)

(25) (21) with the right hand side equall to sinuit in x
and y directions respectively, the solution of eqs.(2

0 4 -(4 ) is given by
and

Tp 0 A o (33)

T (26) The quantities X' and 2('O)are obtained from eqs.(23)

0 and (32) by substituting#
hold. If C is proportional to either M or K matrix,
the second term of the left-hand side of eq.(24) is Al. FO(  (34)

also orthogonalized,i.e. {(5
(27) where and E+ l.ndicate th and (6+ S)th degree

of freedom, and j and ) are Xth andl('+gl)th
components of ith eigenvector respectively. If damping
matrix is zero and initial conditions z., z are zero,

Putting rland Zr'become
Y4T~Q~t (28) 1 fw4~.

and taking into account the orthogonality conditions of m F.( 1_L&_/
eqs.(25) - (27), eqs.(19) - (21) will be rewritten as W4 (36)

A (o)P0 (30) js 4- -~1 (37)1-I- ( V1 (37)

AVO) - (31)
The substitution of eqs.(36) and (37) into eq.(8)

where yields

hi a -2p,1, 0Cdo( + A~ w -i (38)
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If 7j is a stress constraint, t) andV/jck) are
stresses due to force Psinwt in x and y directions 5 . AtM (52)
divided by an allowable stress. Eq.(38) can be written 4
as : where with the initial conditions of eqs. (46) and (47)

where (. oe

0(t _) (40) I- ,) -

Then f1() X4-4. -(t - 1), , - -2,---,V) (54)
1fl4Z ?"A -{msz /j lj{7twz From eqs.(52) - (54), eq.(48) becomes

oCLEA,te(o,T) t6(o,T) o(E-A (41) i [ f.A 4'b 6b + -giC.60)J~j& (55)
If the range of o( is whole plane, ec.(41) becomes

To initiate the iterative process, an estimate is made
x 'of the design variable b0. Then the inner problem isrIMA )4 MAX /r_ W + I(t (42) solved to find maxAf(bzo() and the corespondingf,(,

The inequality constraints eqs.(19),(20) are* cked and the indices of tight and violated constraits
Let eq.(41) be maximum when o( =( , z = Yi(t) at t = t, index sets B1 and B2
then 56

max ( o,,)- (b , 7,) (43)

c(C-A and

Eq.(43) Is still a function of time parameter t. 32-Ii(b)20, (57)

Outer Problem Let the amount of vioration for eqs.(19) and (20) be

The solution procedure of optimization problem is .L 1  2  then j can be taken

iterative process. In outer problem, amount of design B B )) (58)
variable improvementSb will be found in such that the
constraints eqs.(16)- (20) are met and the objective
function reduces as much as possible. For this purpose Furthermore introducing the following notations:
a modified gradient projection method is employed. T
To derive an iterative scheme, the first order variation 1. '1,b (59)
of eqs.(15) - (20) are needed. They are T .Tf &A, C(t) dt (60)

o oa ~ ~~~~(44) o +,. >a (o

+ K52 s( KT),b~b =0 (45) -j ( 1 62
5%(0)-=0 (46) 

(2

the outer problem will reduce to;
b (0) m 0 (47) 5f _(7 minimize 340o = (63)

8'~ ~&) subject to

(48) 1'-b-A9: (64)
4 5b (49) 5brW.Sb 2,_q'b (65)

In the above expressions eqs.(44) - (49), the following where l2 is a small positive number and W a positive
definite weighting matrix. A new constraint eq.(65)ismatrix differentiation convention is used added due to the reason that the changes of all the

(50) equations in the outer problem can be approximated by
S(50) the first order variations. The Kuhn-Tucker conditions,b J applied to the reduced problem yield:

whereP is a column vector of functions of vector +L m T- rT I + 2VbrW -0 (66)
variable b. Eq.(5) results in a matrix with row index i
and column index J. So the derivative of a scalar (i(--7* b-Afi)m O, ('jE UB.)) (67)
function becomes .row vector.

By rewritting eq.(45), one obtains a)/bbK,6-  - "0 (68)

P1h4 Ci+ Kal ZK)h~ 41 where

Upon consideration of the solution of eqs.(lg) (21) L
the solution of eq.(51) will be given by

and t is a vector multiplier in which'j Z 0 for all J
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in B1 U 82 , a schalar multplier )/ X0. Example Problems
Solving eq.(66) for 5b ,

Aforementioned optimization procedure is applied
8b (Io+ ti) (70) to three truss structures illustrated in Figs.l,7,12.

Dynamic model of each structure is formulated by usinga finite element method and no damping is assumed. Time

Assuming it4 0 and substituting eq.(70) into eq.(67), dependent force of 20 sin 24 t ton force(tf) is
one will obtain applied at a node of each structure as shown in thefigures. The range of time considered is from 0.0 to

TW -- -%. (71) 0.2 secondwhich complete two cycles of oscilation.
In all example problems,allowable stress is taken to be

By rewriting r 1400 kgf/cm , density of material is 0.00785 kgf/cm3,
and minimum crossectinal area is chosen to be 0.01 cmi" I (' + 2 1 r (72) Design variable linking is done consdering a symmetry
of structure,hence variables are 6,6, and 7 respectively.

where r. and (r, are the solutions of Ten Memb~er Truss

rW-'1, - w-'1, (73)

(74)79

eq.(70) can be given as E Y

where . 3 Q ( )

sb. - U. + r.) (76)
- ,- 1( 7 6 mn 6 m R90. 2 .,.

(77) 20 - -24)rt tf
Fig. 1. 10 member Truss

The parameter . still remains undetermined,which
can be computed from eq.(69) on the assumption V t0 or Table 1. Optimum ten member truss

more effective technique is explained in ref.(3).

Computational Algorithm (Cm ) .'r (/gA
391 1310 1241 81.8

The optimization procedure stated before can be .3 13 5 1402 ,4.3
summarized as follows: 2 314 649 -0.0

Step 1. Make best possible estimate of b(i)where i 2 4 1215 1236 40.7
implies the iteration. 3 74 5 430 442 -2aN

4 12.6 A W 724 "7".9
Step 2. Compute eigenvector yi, (j=I,2,--.,N) to obtain 5 31. 7 823 82 .a

zW' z 0and z(t) in eq.(33). a . 8 852 818 -90.0
X' y 9? 757 8/S -M.7

Step 3. Yl' 07 which maximize eq.(8). 6 28.3 /0 623 664 7.6

Step 4. Compute constraint eqs. (19) and (20), and
if violated, form index sets B1 and 82 and
compute amount of corrections

Step 5. Compute C (t), (i1,2,---,N) from eq.(54) and (k8 Cm
2)

,z from 4a.(52). 1400

Step 6. Calculate A.in eq.(55) and A in eq.(60).

Step 7. Compute tvand , from eos.(73) and (74).
Then assuming the value of JV , obtain r

Step 8. If any component of ) is negative, delete the
corresponding index in B1 and B2 and return to
Step 4. sec

Step 9. Calculate 5b°and bo of eqs.(76) and (77) to c I I y",.L
*obtain 5blin eq. (75). Put '.)5f 3

b(I"l) - b(') b '
Step 10. If constraints are satisfied,isfJand!6b.I are

sufficiently small, terminate an iteration.
Otherwise return to Step I. -J0 I de Sign stress

The above algorithm is applied to three truss
structures and the results are presented in the follow- Fig. 2. Stress response of 10 member truss
ing section. (member no. 3,5 and 8)
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Tables 1 3 show optimum cross sectional area of (13) Rubin, C. P., Miniu Weight Design of Complex
structures and the direction of force which control the Structures Subject to a Frequency Constraint,
designs of truss members. As can be seen, the worst AIAA Journal, Vol.8, No.%, May 1970, pp.923 -
loading directions is different depending on members. 927
Figs. 2,3,8 and 12 show stress response of members under (14) Fox, R. L. and Kapoor, M. P.,Structural Optimiza-
their most unfavorable loadings. For 10 member truss, tion in the Dynamic Response regime. A Computa-
at least one member of every design group is tight, but tional Approach, AIAA Journal, Vol.8, No.10,
in the cases of the space truses, this is not necessary- October 1970, pp.1798 - 1804
ly true. Figs. 4,5,9 and 13 present variations of maxi- (15) Cassls, J. H. and Schmodt, L. A., Optimum
mum(tension) and minimum(compresion) stresses of members Structoiral Design with Dynamic Constraints, J. of
,when the direction of time dependent force changes. In the Structural Division, ASCE, Vol.102, No.STIO,
Figs. 6 and 10, plotted are stress responses of member October 1976, pp.2053 - 2071.
3 in 10 member truss and member I in 24 member truss at (16) Feng, T. T., Arora, J. A. and Haug, E. J.,
their worst directions and at a few other directions. Optimal Structural Design under Dynamic Loads,

International J. for Numerical Methods in Engi-
neering, Vol.ll,No.l, 1977, pp.35 - 53.

Conclusions (17) Gurpinar, A and Yao, J. T. P., Design of Columns
for Seismic Loads, Journal of Structural Division

The numerical results show the most unfavorable ASCE, Vol.99, No.ST9, pp.1875 - 1889.
loading direction is different depending on members. (18) Vitiello, E. and Pister, K. S., Optimal Earth-
Most structures on the earth are frequently exposed to quake Resistant Design, ASCE National Structural
disturbances from indefinite direction. Hence design Engineering Meeting, April 22 - 26, 1974 (reprint)
has to be made with great care. Optimization algorithm (19) Rosenblueth E., Optimum Desigh to Resist Earth-
presented appear to be very useful when designing quakes, J. of Engineering Mechanics Division,
structures under such loading conditions. The results in ASCE, Vol.105, No.EMI, February 1979, pp.159 -
preceeding section could differ greatly if the frequency 176
of external force changes. (20) Ajorinde, E. 0. and Warburton, G. B., Minimizing

Structural Vibrations with Absobers,
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LIFETIME COST EARTHQUAKE RESISTANT
DESIGN: AN ALGORITHM FOR AUTOMATION

Norman D. Walker, Jr.
Kaiser Aluminum & Chemical Corp.

Center for Technology
Pleasanton, Calif. 94566

Summary The design objective is cost minimization over the

Kentire life of the structure, wherein only costs strong-
An automated design methodology is proposed which ly related to the design vector are considered. The LC

exploits the principal features of a lifetime cost associated with multistory framed buildings separates
approach to earthquake resistant design developed in a into two categories: (1) cost of construction and
previous paper. Several examples are presented which (2) cost of damage associated with structural overload,
explore the lifetime cost formulation and the proposed here assumed to result from earthquake exposure.
design algorithm.,

Design vector dependent construction costs include
Introduction the structural members, beam-column connections includ-

ing welding, structural metal transportation, field
The usual approach to multistory building frame painting, project overhead and profit.

optimization utilizes least weight (minimum construc-
tion cost) as the design objective, with numerous Damage costs resulting from earthquake-induced
constraints typically imposed following local building structural overload can be divided into three catego-
codes. For structures located in seismically active ries: structural and nonstructural damage and down-
regions, least weight remains the design objective time costs. For steel framed buildings structural
with additional constraints employed to suitably re- damage is usually negligible and is assumed so here.
strict structural response to earthquake loading. Items susceptible to nonstructural damage and accommo-
Unfortunately, for buildings located in seismic re- dated here are interior drywalls, glazing and masonry.
gions, structural related expenses are not confined to Down-time costs are taken as a percentage of damage
construction. Earthquake damage incurred throughout costs.
the life of the building is directly related to struc-
tural adequacy. With this in mind, a lifetime cost To compute lifetime cost an expected earthquake
(LC) approach to the design of earthquake resistant profile for the particular site and planned service
multistory steel building frames has been proposed and life of the building must be developed. The damage
explored in some detail in previous work [1, 2]. In cost for each earthquake in the profile is then com-
the LC approach, the design objective is the minimiza- puted and the resultant costs summed over all expected
tion of lifetime costs including construction related earthquakes.
expenses and maintenance and repair costs associated
with earthquake damage. A methodology for the computa- The LC formulation outlined above, and elucidated
tion of lifetime cost estimates has been developed in more detail in (1, 21, was explored in a recent
along with associated design constraints for the class paper using the example of a one-story frame 12].
of structure being considered. This formulation is Through this mechanism prominent features of the prob-
,briefly reviewed here before turning to the central lem were identified. Taking advantage of this problem
thrust of this paper, namely, the construction of a structure a three-phase design methodology is proposed.
computer-based automated/optimal design algorithm. In the first phase initial designs are formulated based

on the unconstrained optimal, i.e., the optimal design
Background is found disregarding the design constraints. The

second phase develops usable designs from unusable
The problem addressed here is the selection of designs. That is, all unsatisfied constraints for a

member sizes for single-bay, multistory, unbraced particular design are resolved. The third phase pro-
steel building frames with fully rigid connections. vides for design improvement, producing better designs,
Member selection is restricted to the set of A-36 in terms of the design objective, from usable designs.

rolled steel wide flange economy sections. Moment of
Inertia of the member cross-section is used as the These three phases are integrated into a complete
design variable. The collection of design variables design algorithm which calls upon each as necessary in
for the complete frame is referred to as the design a march toward the optimal. In addition, each phase is
vector. accessible individually to aid in the design process on

a more limited basis.
Performance constraints under operating loads Pre

introduced through typical building code requirements. In the sequel each phase is discussed alone and as
Considered here, under uniformly distributed beam part of the complete algorithm. A computer code based

/ loads, are stress limitations on the beams and columns, on this approach is then applied to some examples to
beam deflection allowables and sidesway stability, further explore the LC approach to earthquake resistant

design.
Earthquake loading is introduced through the

imposition of horizontal ground motion with structural Initial Design
response computed using mode superposition techniques.
Design limitations are based on a dual criterion in- The essential characteristics of an initial design
volving both moderate and strong earthquake responses. are that it be relatively inexpensive to obtain and
Under moderate earthquake loading elastic structural that it represent a good estimate of the optimal (i.e.,
response is required; during strong earthquake motions final) design. Based on previous work it is known that
collapse must be avoided. Strong and moderate design the unconstrained LC optimal lies in close proximity to
earthquakes are selected on the basis of their proba- the constrained LC optimal. In addition, the LC objec-
bility of occurrence. tive function is close to being uncoupled in form, that
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is, the principal directions in the cost surface are This algorithm completes two tasks. It begins by
nearly parallel to the coordinate axes formed by the establishing an initial set of bounding intervals about
components of the design vector. Hence, locating the the optimal. It then proceeds via the method of bi-
unconstrained optimal should be relatively straight- section to reduce these bounding interval lengths to a
forward. The unconstrained optimal thus represents a sufficiently small size such that the midpoints of all
good choice as an initial design. the final intervals represent a satisfactory estimate

of the unconstrained optimal.
When dealing with uncoupled objective functions,

coordinate descent algorithms have been found to be The vector Ax computed in step 1 is a search vec-
very effective in determining the optimal [3, 4]. A tor used in establishing the initial bounding intervals.
variant of such procedures is adopted here. Its components are taken to be proportional to the

corresponding components of the gradient of the objec-
Let f represent the cost function, then the tive function at the starting vector x

°
. The constants

essence of the coordinate descent approach is contained of proportionality are contained in the vector S.
in the expression Through this mechanism the magnitudes of the components

of the search vector are set according to how far away
min f(x) for all i Cfrom the optimal value each component is estimated to

x.1 
be.

where x is the design vector with components x.. As In step 3 the coordinates of the present design
the expression indicates, the unconstrained optimal is vector are determined to represent either upper or
sought by searching in turn in each coordinate direc-
tion x.. For n components in the design vector, n lineiupper bound point is contained in the vector u and the
searches are required to find the optimal. If each of lower bound point in the vector .
these line searches is conducted independently, then
at the very least, one new analysis for each line A new design vector for the next iteration is
search is required, for a total of n+l analyses to find determined in step 4. This determination is made at
the optimal. For large structural systems this repre- the component level accoring to whether or not a bound-
sents an enormous number of expensive analyses and is ing interval has been established or not. If one has,
clearly unacceptable. the present interval is bisected; if not the search

In order to improve upon this situation, a simul- continues.

taneous coordinate search procedure is adopted. In The procedure terminates when all the bounding
this approach, searches in all coordinate directions intervals are smaller than some required length. The
remain independent of one another. However, every new set of stop lengths is contained in the vector E.
point in each coordinate search is analyzed simulta-
neously with each new point in all the other coordinate This constitutes phase 1 of the design procedure.
searches. Thus, instead of a new structure being This phase can be called upon to supply an initial de-
(xI, x2 ..... x- + Ax., ..., x ) as would result from
a pure coordinate search it isn instead (x1 + Ax1 , x2 + sign vector in lieu of a user supplied initial design.

Ax2, ..., x + Ax ). To conduct each of the individual
coordinate searches the method of bisection is employed.
The signs of the directional derivatives of f are used The next portion of the algorithm, phase 2, deals
to motivate each coordinate search, with the generation of usable designs from unusable

k
Let x represent the present design vector with ones. A design is unusable when one or more of the

components xk . The gradient of the cost function at system constraints is violated. The task of phase 2 is
the present Assign is represented as Vf(xk) with com- to adjust the initial design so as to satisfy the vio-
ponents Vf.. A simple algorithm for completing the lated constraints.

simultaneous coordinate search is as follows:
If the initial design is the unconstrained optimal

Step 0. Set vectors 8 and c generated by phave 1, then the constrained optimal will
lie on the surfaces of the violated constraints. Mini-

Step 1. Compute Ax where Ax. = -0 Vf (x*); mal satisfaction of the violated constraints is thus
1 i i desirable and serves as the mode of operation for

set k = 0 and go to step 3. phase 2. Phase 2 thus amounts to a search for the sur-
faces of violated constraints.

Step 2. Compute Vf~x k).
In the case of user supplied initial designs the

Step 3. For all xk in xk: if Vf.(x
k) 

>0 then above apparatus works equally well.

1 I

U k = xk if Vf (xc) <0 then I As noted in previous work [1, 2] the constraint
i  i i xi functions dealt with here display little design vari-

otherwise, u.I xk able coupling, that is, each is essentially dependent on
i j only one component of the design vector. Therefore,

Step 4. For all x. in x : if ui and Ii have been coordinate search procedures are again appropriate.
k k+1 Because the constraint functions tend to be very smoothestablished forkx then xI - Cu + £i)/ and uniform, curve fitting along fixed lines should be

2; otherwise, x = X + Ax extremely efficient. This, coupled with the expectation
i, that only a few constraints will be violated, dictates

Step 5. If u - I < £ stop, x k +  
is the initial that standard coordinate search procedures be used

d g vrather than the simultaneous search method used in
design vector, else go to step 6. phase 1.

Step 6. Set k - k+l and go to step 2. Let g represent the vector of constraint functions

with components gi then the constraint surfaces are
where the inequality in step 5 implies component by given by q (x) - 0 for each i. Phase 2 thus involves
component comparison, finding the roots of nonlinear equations. Initially,
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in the search for these roots information is available In the case where the initial design is given by
at only one point, the initial design. Assuming only the unconstrained optimal, further refinement is called
function value and gradient data are supplied at this for. Intuitively, it would seem that the constrained

point, Newton's method must be employed in the line optimal should lie close to the projection of the un-

search to obtain th, first estimate of an x which sat- constrained optimal onto the violated constraint sur-
isfies g. (x) = 0. If xk is the present design and face. Hence, for this case, several additional steps

xk+l is the estimated root then Newton's iteration have been added to the end of phase 2 which adjust the
formula can be expressed as phase 2-determined usable design to the usable design

given by the above projection.
xl=x

k 
-X h(x

k
) (2)

The algorithm for completing all of the aforemen-

where tioned operations is as follows:

Xk g(xk) 
/g-(xk

)  (3) Step 1. Determine A at x
k 

from (7) and P from (8).

1 1 k.
with Step 2. If x is usable go to step 7; else

select one violated constraint and the e.

gi(x) Vgi(xk)
T 

h(x
k  (4) which corresponds to the design vector

component which this constraint governs

where a line search along the vector h emanating from and compute h = Pe .
xk is assumed. To conduct a pure coordinate search h k+l

is taken to be the unit base vector e. which corresponds Step 3. Compute x from (2) and (3).

to the coordinate x. which is to be saarched.
3 Step 4. Set k = k+l.

k+l When the constraint function is evaluated at
x information at two points is available. At this Step 5. If constraint now satisfied, go to
juncture, the derivative estimated iteration formula [5] step 1.

given by Step 6. Compute x 
k+  

from (2) and (5) and go to

g (x k) .(x- step 4.

A k i + gi (5) e _ -k k
g(x

k
) Step 7. Computeh = P (x x) and x= + h

where Step 8. If x is usable, stop; else, determine a
such that xk + ah is usable.- - 6 [gi xk).(xk-l)I 6 k-

( k-l) 2  Step 9. Set x 
k+ 

= x
k 
+ ah; k - k+l and go to

step 1.
2k- 2 g.'(x k) + g.(x k-1

,-1 [ g If the initial design is supplied by the user, then the

algorithm terminates with a usable design in step 2.

can be employed in equation (2), where g' is again found Thus, the last three steps are entered only if the
from (4). If necessary, this formula can be reused on initial design is the unconstrained optimal generated

the last two points of the sequence Jxk~until a satis- in phase 1. For this case, the last three steps and

factory estimate of the root is obtained, step 1 constitute an adjustment operation. The usable
design which results from the first six steps is ad-

During the line search, to avoid ,violating con- justed to approximate the projection of the uncon-

straints which lie close to the present design vector, strained optimal onto the surface of violated con- i
an additional mechanism is utilized. Rather than con- straints as discussed previously. The design vector x

duct the search along a coordinate base vector, the referred to in step 7 is the initial (i.e., uncon-

base vector is instead projected onto the surface of strained optimal) design. If phase 1 is employed in

active constraints (all constraints i for which conjunction with phase 2, then at the conclusion of

g (xk) - 0) and this projection then serves as the phase 2 what should result is a good estimate of the

search line. The search thus takes place along a tan- location of the optimal design.

gent to the active constraint surface thereby reducing
the possibility that these active constraints will be Note that if the initial design is found to be

violated. To present the projection operator, an usable, then almost all of the phase 2 apparatus is

additional definition is required. skipped and control is passed onto phase 3. Thus, the
above algorithm is used only in the case of an unusable

Let A be a matrix whose columns are composed of the initial design.

gradients of the active constraints at xk, that is* At the close of phase 2, at the very least, a

A .Lgir( k ) ...... 9T (xk)] (7) usable design is available and, at best, a good estimate
A = V~ix)......Vajx~jof the optimal design. The scene is thus set for a

formal search for the optimal design which brings the

where e through g are active constraints and Vgi is a design automation procedure to phase 3.
column 4. tor. J

Optimal Design

The gradient projection operator is given by Phase 3 is the design improvement portion of the

automated design algorithm. This phase begins with a
P1 A(AA) AT  () usable design which, if supplied by phase 2, resides on

a surface of active constraints. Since the optimal
where I is the identity matrix. The search vector h in design is in general expected to be partially con-
equation (2) is found from h - Pe where e is the strained, a computational method which is efficient in

appropriate unit base vector. e moving along constraint surfaces would appear to be
called for.
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An appropriate approach to this phase is provided 6 and the algorithm proceeds on.
by the gradient projection method [3, 4]. In this pro-
cedure, the gradient of the cost function, Vf, at the The stop criterion in the above computational
present design, xk, is projected onto the surface of sequence is that d - 0. In actual implementation this
active constraints. This projected gradient then condition is impossible to satisfy and must be replaced
serves as a direction vector for one iteration in the with the more appropriate requirement that d n where
search for the optimal. The algorithm searches along n is a vector of small values.
the surface of the present set of active constraints
until a candidate optimal is found. The first-order The result of phase 3 is an estimate of the opti-
necessary conditions (Kuhn-Tucker), are then checked at mal design which is as refined as the user cares to
this point to see if they are satisfied. If they are, specify and pay for.
the procedure stops; otherwise, the current projection
operator is appropriately modified and the search con- The three phases presented in this and previous
tinues. Thus, the gradient projection algorithm pro- sections have been collected into a computer based
ceeds roughly as follows: automated/optimal design algorithm. Most of the fea-

k tures of this algorithm have been presented. Some
Assume x is usable, then further refinements have been added to enhance the pro-

k gram's flexibility, however.
Step 1. Find the set of active constraints at x

and form A as given by (7). If the user specifies an initial design, phase 1

k is skipped entirely. Furthermore, if an initial designStep 2. Compute P from (8) and d = -P Vf(x
k
) . is usable most of phase 2 is passed over. The process

can be terminated at the concL..ion of phase 2 if de-
Step 3. If d = 0, go to step 5, otherwise find g sired, yielding simply a usable design; if phase 1 was

such that f(xk + 1d) = mi f(x + ad) i bemployed then the result of phase 2 is a good estimate

a 2 0 and x + a d is usable of the optimal design. Alternatively, design improve-

k+l k ment can be attempted using the apparatus of phase 3.
Step 4. Set x = x + 6d; k = k + 1 and go to All of the designs generated in phase 3 are usable,

step 1. thus, this process can be stopped at any time. The
AT -1 AT V k design improvement procedure can be terminated in two

Step 5. Compute = A A) A Vf(x k ) ways. The user can either specify the number of design

k improvement iterations desired or an acceptable accura-Step 6. If B. 1 0 for all B. in B then stop, x cy for the optimal design estimate. Thus, phase 3 can
is the optimal, otharwise go to step 7. be tailored to fit the needs and pocket book of the

user.
Step 7. Delete the column from A corresponding to

the constraint with the most negative A phase 4 is also present in the algorithm. This
component of B and go to step 2. phase facilitates the option of specifying that only a

subset of the full set of constraint functions beRefinemem.ts are obviously necessary in order to make checked for violation during the design process. With
this aigorithm implementable. For example, the "c pro- this mechanism, constraint functious which are known to
cedure" of [4] is employed for computational reasons [6] be unimportant in the design definition, can be elimi-
and to insure convergence [4]. In addition, a means of nated from consideration at the outset. A full check
establishing S in step 3 is required. To this end, a of all system constraints is made only on the final
cubic equation is fit [3] through two points on the line dcslgn. A detailed discussion on the order of import-
x + ad with the minimum of this cubic being used to ance of constraints and the use of phase 4 can be
define 6. One point on the line is obviously the pre- found in [1].
sent design. The second point is selected through the
use of a heuristically maintained step size variable. Note that derivative information for the lifetime
Using the value and gradient of the objective function cost and system constraints has been assumed throughout
at these two points, the next point is selected using this presentation. While specific derivative informa-
the equations tion has not been developed herein, it is quite

straightforward to obtain. A fairly complete discussion
x = x + ad (9) of similar derivative computations can be found in [6].

where Examples

[ f'(x k + V - u 1 To explore the DC formulation and the automateda p - k k design algorithm developed here, three example problems
Lf(x - f'(x - ) + 2 are investigated. The one-story frame introduced in

k 3 [k- k ] [21 is briefly explored along with a four-story frame
u -f'(xkl) + f'(x ) + - f(x-(x (x and an eight-story frame.

v [u2 f_(xk-l) f(xk] One-Story Frame

The principal specifications for the one-story

k ) kT frame are given in [2] and will not be reiterated here.with f (xk) 
=

Vf(xk)
T 

d

As the optimal design for this problem is known to
where p is the step size variable used in selecting the be unconstrained, only the apparatus of phase I is re-
second point xk, thus, p is given by pd - xk - xk7 . quired in the design search. Applying the design

algorithm to this problem results in the sequence of
In order to procure an x + ad which is usable, the intervals shown in Fig. 1. The starting point for the

constraint location apparatus of phase 2 is emplcyed to search, slekted simply for the sake of illustration,
modify m whenever x + ad makes an excursion into the is labeled (1 ad is a considerable distance away from
unusable design space. This suitably modified a becomes the optimal. The large rectangles in the figure repre-
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sent attempts to establish bounding intervals. Once explore the design space which results from the LC
a bounding interval is found subsequent intervals are approach to design, a task started in (2]. A very good
nested within it. Thus, the nested rectangles repre- initial design was available for this particular prob-

sent bisected intervals obtained as the procedure con- lem and thus it did not represent an adequate test of
verges about the optimal. The sequence of analysis the automated design algorithm. Observations on the
points in this operation are yen as the circled num- operating characteristics of the automated design algo-
hers and extend only through . to avoid further con- rithm will, thus, be reserved for the more difficult
fusing the figure. The cost lines given in the figure problem of the eight-story frame.
are computed from the relationship

The principal characteristics of the four-story
100 [LC(X) - LC(X*)] frame, other than its height, are similar to the one-

Cost =Construction Cost at Optimal (10) story structure introduced in [2] and discussed in the
previous section. A detailed description of the four-

where LC(X) is the lifetime cost as a function of the story frame is given in [1].
present design vector X and X* is the optimal (minimum
LC) design vector. The optimal design is depicted in part in Figs. 2

and 3. Each of these figures was constructed around
the optimal frame design by varying two components of
the design vector while fixing the remainder, thereby
obtaining a two-dimensional view of a portion of the

00 ab- STRONG EARTHQUAKE design space. The constraint functions illustrated are
COLUMN CONSTRAINTS those associated with the selected design vector com-

ponents, thus, many of the system constraint functions
c- STATIC LOAD are not shown. In particular the single active con-

I00 straint at the optimal is not illustrated. It is a

strong earthquake load limit~tion on the second-story

1 column.

1100

- 2500
COetUo.8

S 9800

300 0

0t200 400 600 60 1000 0
0o.ummmomernt Inerti (hin) 18100

d- STRONG U .RTH0UAKCEF Ig.i. Solution sequence: one-story frame.0

1800200 40 600 Soo 1000 1200
oohid story o w momeft of ki0 (la.w)

Although it is not shown in the figure, it is not Fig 2. Be. verSUs column design space.
necessary for all of the bounds on each cordinate to
be established before the bisection process can begin.
Since each of the coordinate searches is conducted,

4..! essentially independently of one another, soe coordi-

..: nate intervals say he bisecting whi]l- others are still
; in the bound search mode. If the available search The principal observations of (2], made on the
. : parameters are properly adjusted, this type of activity basis of a one-story frame, can be clearly seen in

*i hould not be very prevelent, however. Figs. 2 and 3.

Aour-Stoxu Fram . First, the optial design is only partially con-
bestrained. Thus, the optial design i defined only in

A somewhat more interesting problem is found with part by design limtations and in the main by the objec-
a four-story frame. This frame will b type usedctifirthr v function. This is in striking contra t to least
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acceptable practice, they are strikingly different,
however, with the minimum weight frame substantially

1300 more flexible than the optimal LC frame, reflectinq a
d.e.f-STRONG EARTHQUAKE CON STRAIN very ral difference in design philosophy.

- MODERATE EARTHQUAKE CONSTRAVIT I  Based on the results of this section the automated
1100 --67 design algorithm developed herein appears to offer a

19 viable methodology for design on the basis of a minimum£ lifetime cost objective. Evaluation of the numerical
9 9.2 efficiency of this algorithm is reserved for the eight-
. g story frime analysis of the next section.

Eight-Story Frame

700 The eight-story frame examination ser"'s a two-I 00fold purpose. First, it is of interest to determine
O what effect, if ainy, frame height has on the results
E 0ascertained to this point. Second, a clear test of the

design algorithm is in order. The eight-story frame

0500 examined here is identical to the previous four-story
0 structure except that eight stories are involved in-

S..stead of four. A complete description of the eight-
story frame can be found in [1].

The initial desz.gn selected for the analysis is
given by X = 1000 u where u is the unit vector (vector

200 400 600 B00 1000 1200 of ones). Despite such a poor starting vector, phase

fourth story column moment of Inertia(4) 1 of the automated design algorithm required only nine
analyses to locate the unconstrained optimal. Included
in these nine analyses is the interval establishment

Fig. 3. Column versus column design space. and interval bisection operations. The simultaneous
coordinate search procedure would thus appear to work
quite well.

An additional nine analyses were required to com-
weight optimals which are typically fully constrained, plete phase 2 of the algorithm. It was necessary to
as they must be, since the least weight criterion con- resolve four violated constraints in this phase: four
tains no extremum. strong earthquake loading lvnits dealing with the

second, third and fourth story columns. Thus, theSecond, it is apparent that the constraint func- optimal was again found to be only partially con-
tions are nearly uncoupled as each is roughly parallel strained. During this phase the LC increased only
to one axis or the other. This characteristic of the 0.35%, clearly indicating the close proximity of the
constraint functions, i.e., the lack of uependency on constrained and unconstrained optimals.
all but one component in the design vector, forms the
basis for the constraint search mechanism of phase 2. Phase 3 produced minor changes in the phase 2

result, lending suppor-t to the conjecture that projec-
Third, the cost surfaces displayed in these tion of the unconsf.ained optimal onto the violated

figures carry the appearance of uncoupled functions, constraint surface results in a good estimate of the
That is, the principal directions in the cost surface constrained optimal. Despite this, phase 1 -nsumed
(eigenvectors of the Hessian of the cost function) are 25 analyses. The explanation for this seeming incon-
nearly parallel to the axes. This is the same result sistency is two-fold.
as was obtained for the one-story frame shown in Fig. 1,
the effect is clearly more pronounced, however, for the First, it is a reflection on the poor convergence
four-story objective function, as was anticipated [2]. rate of the method of steepest descent, which is the

technique used in the active constraint space (pro-
Note that the cost lines in Figs. 2 and 3 were jected gradient space) to pursue the optimal (see

computed using equation (10) wit he constrtion cost step 3 in the gradient projection algorithm). As can
in the denominator representing the individual frame be seen in Figs. 2 and 3, the design space is somewhat
members being examined, ill-conditioned. This situation carries over into the

active constraint space. The method of steepest des-One final feature is worthy of comnent. The ini- cent is a poor choice under these conditions. Better
tial design mechanism of phase I is based on the assump- use of the projected gradient in the active constraint
tion that the constrained and unconstrained optimals space would most certainly shorten phase 3.
lie close to one snother ir the design space. For the
four-story frame this was izdeed found to be the case Another probable cause for the longevity of phase
with the constrained and uncc,,!,9xined designs differ- 3 is what appears to be an unrealistically small stop
ing essentially only in the size of the second story criterion (the n in d 5S n). The criterion used herein
column. This result is easily anticipated since the was chosen with investigation in mind, rather than
two optimals are separated by only a single design design, and thus is smaller than what would be em-
limitation. ployed in a design office.

The minimum construction cost (weight) frame for One further item of note is the superb perfor-
the same set of conditions was also computed. As ex m~nce of te constraint function search apparatus
pected it was foud to be fully constrained. The con- hich was presented as part of the phase 2 development.struction cost for this frame is 28% less than that for Despite repeated tests of these procedures at some-
the minimum LC frame. Its LC, however, is 10% higher times considerable distances from violated constraint
than for the LC based results. Onth designs represent surfaces, more than two iterations were never required
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and in actual operation one iteration usually proved 3. D. G. Luenberger, Introduction to Linear and Non-
to be sufficient. This is in direct contrast to the linear Programing, Addison-Wesley (1973).
difficulties encountered in [6] using alternative
procedures. It would be difficult to improve upon 4. E. Polak, Computational Methods in Optimization,
this performance. Academic Press (1971).

In general the overall number of analyses required 5. A. Ralston, A First Course in Numerical Analysis,
during each phase of the algorithm depended greatly on McGraw-Hill (1965).
the numerical tolerances which were specified. These
tolerances are given as recommended values in [i] and 6. N. D. Walker, Jr. and K. S. Pister, "Study of a
should be accommodated in any future algorithmic com- Method of Feasible Directions for Optimal Elastic
parison. Design of Framed Structures Subjected to Earthquake

Loading," University of California, Berkeley,
It must be stated that the algorithm as developed Report No. EERC 75-39 (1975).

here does nct represent a final polished product. It
is composed of essentially off-the-shelf items, usu-
ally in their most rudimentary forms. It is presented
primarily to demonstrate the inherent simplicity and
efficiency which results from developing solution pro-
cedures specifically suited for the problem being
addressed. The algorithm is also presented as a possi-
ble methodology for automation of the LC approach to
design. The algorithm is operational and thus provides
a foundation for further developments in this direc-
tion. In addition there is considerable room for
improvement in this algorithm. It seems very probably
that the operational cost of this automated design pro-
gram could be brought in line with design office bud-
gets.

Conclusion

An automated design methodology has been presented
which is specifically tailored to the lifetime cost
design approach for multistory building frames in seis-
mically active regions. The design algorithm takes
advantage of the principal characteristics of the LC
formulation, resulting in an efficient computer code
which holds promise of eventually achieving operational
cost levels compatible with design office budgets.
Much work remains to be done in this regard. It is
hoped that what has been presented here will provide a
firm foundation for this endeavor.

In conjunction with [1, 2], this effort has shown
in a limited fashion the potential viability of the
lifetime cost design philosophy. The lifetime cost
approach results in a distinctly different design
alternative to standard minimum weight (construction
cost) procedures. A definite choice is thus available
with the LC approach deserving serious consideration
in this context.
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Summary safety among similar structures. Furthermore, the
level of safety can be adjusted by the designer

_A comparison of designs of steel frames using according to the type, location, and importance of
a reliability based optimization procedure and the structure.
the deterministic AISC code procedure is presented.
The reliability based optimization procedure Several schemes for structural optimization based
utilizes an iterative method to produce designs for on reliability have been suggested. These include:
each structure at various prescribed risk levels, minimization of the cost or weight for an allowable
The optimum risk level, expressed in terms of failure probability, minimization of the probability
the probability of failure of the structural of failure for a fixed cost and, minimization of the
system, is then obtained as that value which total overall cost. Most studies concerning reliability
results in the minimum total expected cost The based optimum design consider the first two procedures.
total cost is taken as the sum of e--tne- ; ial cost Also, the analysis is usually limited to either stati-
and the expected cost of failure. The factors con- cally determinate structures, or to a consideration of
sidered in the computation of the expected cost of member failure rather tha system failure for statically
failure include: replacement cost of the structure, indeterminate structures.
business losses, and liability due to death and in-
jury., The reliabili" analysis is based on a first Hilton and Feigen [l) and Switzky [2) developed
order second moment approach treating loads and a minimum weight design based on a given total
resistances as statistically independent random structural system probability of failure. Their
variables. Several modes of failure for both beams studies included statically determinate or one
and columns are considered in the reliability analy- member structures for which the system failure
sis. Upper and lower bounds on the probability of probability could easily be determined. It was
failure of the structural system and on the total shown that for these types of structures an overall
cost are computed, minimum weight is approached when the individual

probabilities of failure of the components of
Whe results indicate that there are significant the structure are made proportional to their

diferences in designs obtained by the two methods weight.
for the five and ten story steel frames considered.
The AISC design results in a structure with lower Turkstra [3) developed a method whereby a reason-
initial cost than the reliability based method, able level of safety could be determined based on the
However, the reliability based method produces design situation. He developed an approach based on
designs with lower total expected cost. It is the statistics of success and failure of a structure
also found that designs based on the AISC specifi- and the minimum loss criteria for decision. In his
cations do not result in a consistent system formulation the optimum design occurred when the
failure probability expected loss due to failure was minimized. Thus

a means for including loss due to failure for a parti-
Introduction cular structure in question was developed.

Many proposals for the introduction of prob- This optimization method was extended by Rosenblueth
abilistic methods in design codes have been made and Mendoza [4), Moses [5J, and Sexsmith and Kau [6].
in recent years. This is due to an awareness of In their formulation the total cost was defined as the
the advantages that a reliability based procedure sum of the initial cost and the expected loss due to
has over a deterministic design procedure. In the failure. This total cost was calculated at various
probabilistic approach, the loads and the struct- levels of failure probability, and the minimum value
ural resistance are treated as random variables was taken as the optimum design.
rather than fixed deterministic constants, and
failure is defined as the event that the load In this paper a procedure for the determination
effect exceeds the structural resistance. The of the optimum probability of failure of indeterminate
safety measure that corresponds to this is the rigid frame steel structures used the expected loss
probability of failure (or the reliability index) criterion is presented. The objective function to be
which is obtained from a systematic analysis of minimized is the total expected cost of failure which
the uncertainties in all the variables. It is includes the initial structural cost as well as the
thus possible to include the effect of the loss due to failure. Uncertainties in the loads and
uncertainties in the load and structural structural resistance as well as modeling and prediction
resistance in the design process. Such a method errors are included in the reliability analysis which is
can also provide a uniform and consistent level of based on a first order second moment approach.
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Loads and Load Combinations total uncertainty in the member resistance was
conducted based on available data. The statistics

The loads considered are the dead, live and of the member capacities used in this study were
wind loads. The dead load is assumed to be constant obtained from the results of the above mentioned
in time. The live and wind loads are both time and study.
space dependent and are generally modeled as stoch-
astic processes. However, only simplified formula- Failure Modes
tions are considered herein. Live loads are
modeled at three different levels: lifetime max- Column Failure. Columns are typically subjected
imum total live load, lifetime maximum sustained to both axial thrust and bending moment. Thus, the
live load, and instantaneous sustained live load. possible failure modes for a column are:
The wind loads considered are the lifetime maximum,
annual maximum and daily maximum wind loads. The a) failure by yielding at the ends
transformation of a particular load intensity into the
appropriate load effect such as shear, bending moment b) failure by instability in the plane
or axial load is accomplished by means of an in- of bending without twisting
fluence coefficient obtained through structural
analysis. Statistics of the various load effects c) failure by lateral torsional buckling.
are summarized in Refs. [7,8].

Each of these failure modes can be expressed
The following load combinations are considered: as an interaction between the axial force and the

end moments. These interaction equations are
1. Dead Load + Lifetime Maximum Total Live

Load M
1 P M

2. Dead Load + Lifetime Maximum Sustained y y
Live Load + Annual Maximum Wind Load CM

3. Dead Load + Instantaneous Sustained Live 2 P P M(1 - P/PE(4)

Load + Lifetime Maximum Wind Load cr y

CM
4. Dead Load + Lifetime Maximum Total Live 0 P+ m (5)

Load + Daily Maximum Wind Load 3 Pc M -
y

5. Dead Load - Lifetime Maximum Wind Load in which P and M are the applied axial load and

For each loading combination the mean total load bending moment, Cm is an equivalency factor for

effect, Q, due to the combined action of dead, live, different support and loading conditions, and a
and wind loads can be expressed as is a nondimensional parameter representing the ratio

Q- QD +Q +V (i) of the load to the strength of the member in a
D L W given failure mode I.

in which QD is the mean dead load effect, and QL' and The probability of failure in a given mode i

QN the appropriate mean live and wind load effect 
Is

respectively. It is assumed that the loads are P = Pr(8i > 1) (6)
statistically independent. The coefficient of
variation of the total load effect is [7] For certain prescribed probability distributions,

1 P can be evaluated in terms of the first

Q; [ -2 -2 2 -2 2 fiQ Q 2  DQ + Q L V QL +WQ + two moments (i.e., the mean and the coefficient

(2)(0.10) 
2
(QDQL + &W + ,L)

11
1 (2) of variation) of 0i. The statistics of 0, can be

obtained using a first order approximation.
Analysis of Resistance and Failure Modes For example, the mean and coefficient of

variation of 81 are [7,8]

The resistance capacity of steel members is a
function of several variables such as the section 01 = N 1 [P/Py + M/My] (7)
dimensions and mechanical properties. The statistics y
of the various member capacities such as the yield
moment My, the yield load P, the axial load 2 2 1 22 2

yV .v +:L ./ ( V +capacity Pcr' the Euler buckling load PE and the 8 1 +618 8 1 2iV

critical moment causing lateral torsional buckling
M can be determined from the statistics of the (/i )2(V+ 2

section properties and the yield strength Fy. The M y

uncertainties in the various member capacities used 2(PI' ) (W)('" Vp V + pVV)]
in the analysis of the resistance of steel members y yP H H P M
have been estimated in Ref [7,9]. The factors con- Y y Y Y

sidered in the analysis of the statistics of member (8)

resistance included variabilities in section prop- in which the bar indicates that the variables are
erties, material strength, fabrication and inaccuracies evaluated about the mean values, V is the coefficient
in the strength prediction equations. A systematic of variation, p the correlation coefficient and
analysis of the contribution of these factors to the
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N l and VN  the bias and prediction uncertainty 2). Since the structures considered are in-
81 determinate, the forces and hence the

probability of failure of each member is
respectively in the prediction equation. dependent on the size of the other mem-

The probability of failure of the column can bers. This is especially true in the

be expressed as case of columns which are particularly
sensitive to the size of the beams

> U > 1U ) (9) connecting to each end. No explicit

fco 2 3 
>  relationship exists between the column

where Urepresents the union of the events, and beam sizes.

A procedure which considers the correlation between These two factors are further complicated by
the various failure modes [10] is used for eval- the desire for practicality in the design solution.
uating bopmds on the probability of failure of It is normally considered good practice to keepcolums. h: application of this procedure toItsnoalyosded odpcietokp
column.he a pplicationofhis procablit edurea tthe columns, within a row, identical in nominal
the anaeyxis of failure probabilities of beam depth, change column size only at alternate story
columns end the expressions for the evaluation heights, and to design the structure symmetrically.
of the correlations between the failure modes For beams the problem is not as critical and
are given in Ref [7T8). usually only involves keeping the beams symmetric

within each story height. In this study thelema,s lears which are not laterally supported above guidelines are applied to both the AISC

and which are subjected to high levels of concen- code design procedure and the reliability based

trated loads may fail in one of several different oti n procedure.

modes. These include yielding due to flexure, optimization procedure.

yielding due to shear, lateral-torsional b,-ckling, With the preceding additional practical
and local buckling. However, in typical office constraints, the optimization problem becomes a
frame systems beams aie usually adequately braced minimization of the weight of the structure witt
and are not subject to heavy concentrated loads, the mathematical constraint
Hence, in this study yielding due to flexure is
considered as the only likely failure mode. The < (
statistics of this failure mode. may be obtained using fd - f (10)
an approach similar to that presented for columns. where Pf is the allowable probability of

I Optimum Reliability Based Design failure, and Pfd is the calculated design prob-

The optimum reliability based design procedure ability of failure for the ith member of the
conslitsaof tvo steps: structure. Equation (10) must be satisfied for

each member of the structure before a given design

1) Designs are obtained for specified values is acceptable.

of the allowable member probability of To insure conformity with the mathematical and
failure using an iterative procedure practical constraints, an iteration procedure was
structure developed based on iterations beginning at the

smallest possible design and iterating upward.

2) The optimal risk level expressed in terms First, each available member size was given an

of the system probability of failure is index number, with the smallest member being
index number one. Each member in the structuredetermined by minimizing the total ax-

pected cost. was then given an initial count number of one
J cand the probability of failure of each member was

calculated and compared to the allowable failureDesign for a Prescribed Risk Level. The design pro- prbilt. Tecutnmrwathndjsd

cedure consists of specifying an allowable member probability. The count number was then adjusted
failre robbiltyP an thn slecingupward by single steps until each member satisfied

failure probability, Pa' and then selecting the specified risk level. Finally, each member

trial configurations until each member satisfies was checked for overdesign by iterating downward
this constraint. For members capable of multimodal one step at a time. It was found that generally
failure, the upper bound on the probability of fail- some member sizes could be decreased because of
ure of the member is compared to the allowable risk the dependence on the size of surrounding members.
level to insure a conservative design solution. Once a count number was repeated twice, the member
Designs are obtained for values of the allowable remained at this size.

member failure probability ranging from 10
-
2 to7Optimal Risk Level

10
Several schemes for the determination of the

Two factors hinder the use of classical optimum optimal risk level based on a relaibility analysis
design procedures in the design of steel structures, have been suggested. These include: (a) minimi-
These are: zation of the probability of failure for a fixed

cost [12] and (b) minimization of the total over-
1). In order to achieve a practical design, all cost, which is taken as the sum of the initial

member selectiops are limited to wide cost and the expected consequences of failure (3].
flange rolled shapes from the AISC steel In this study the second approach is taken and

V construction manual [111. Thus, no applied to statically indeterminate rigid steel
continuous function of a design variable is frames. The objective function to be minimized is
available. The optimum design point of given by [4]

* such a variable my or may not fall close

to a given structural shape. GrC I + CEL C1  (11)
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where C = total cost, Ci= initial cost which is a 3). Liabilities due to death and injury are
function of the design variables, C = expected taken to only include those incurred by

CEL the people present in the building at

loss cue to failure, CB - the benefit derived from the time of collapse. The statistics of

the system while it survives. Since the benefit the number of deaths and injuries are
derived from the system is essentially constant described in detail in Ref. [19]. Costderied rom he ystm isessntilly onsantof each death is based on the assumption
over a reasonable range of safety levels, it can be of a e death ae of thi a n

eliminated from the objective function. Thus, of an average death age of thirty and
is taken to be the sum of the persons

C= C + C = C + P C (12) salary until he would have reached sixty-
T I EL I fs f five years of age. Costs for injuries

are divided into two parts, the first
in which Pfs is the system probability of failure being those injuries of serious or dis-

abling nature. The costs for disabling
and Cf the expected cost of failure. The variables injuries are obtained from Ref. [18].
in Equation (12) are estimated as follows: The second type of injury are those which

do not have a permanent effect and re-
Initial Cost, CI is a function of the design vari- quire short periods of hospitalization.

ables and the specified risk level. It comprises An average cost for this type of injury
of structural material cost, and miscellaneous is taken to be five thousand dollars [181.

systems cost [13]. For a structure of constant
dimensions, only structural material cost [14] Upper and lower bounds on the cost of failurechanges significantly with varying allowable are computed using bounds on the system failure
proa ltyignificantlyret, probability. It should be noted that the computedprobability of failure. expected cost of failure, and hence the optimal

risk level depends on the assumptions made inProbability of Failure, P The estimation of system establishing monetary values for the various

failure probability is quite complicated. Hence, items which contribute to the cost of failure.
the probability is approximated by means of upper Due to the uncertainty in estimating these values
and lower bounds. A lower bound on the system a sensitivity study was performed to determine if
failure probability based on the assumption that the computed optimal risk level is altered signif-
all members are perfectly correlated is given icantly by variation in the estimated cost of fail-
by [15,16] ure.

Pfs > max[Pfl,Pf2 ... ' Pf ] (13) Results
1 2 n

The reliability based optimization procedure
where n is the number of members in the structure, was applied to the design of a five and a ten
The upper bound on the system failure probability, story rigid steel frame office building. The first
based on the assumption that all members are in- story of each frame is 18 ft high and the upper
dependent is expressed as [15,16] stories are each 12 ft high. The spacing between

adjacent columns as well as between adjacent frames
n is 25 ft. A typical interior frame of the five

Pf. 1 - (1 - Pf) (14) story building is shown in Figure 1. Designs were
i Pl also obtained using the AISC code speciffictions

so that a comparison could be made between the
Expected Cost of Failure, Cf is the total loss in- reliability based d~iign procedure and the current

curred if the structure were to collapse. This deterministic code procedure.

includes replacement cost, business losses, and
liabilities due to death and injury. The above Results of Reliability Based Design
quantities vary considerably with time and geo- Using the iterative procedure described earlier,
graphical location and are in general difficult to member sizes were obtained for specified values of
determine. Herein, the expected cost of failure -2
is estimated based on the following assumptions: the member failure probability ranging from 10 to

10 . Since only bounds on the system failure
1). Replacement cost is taken as equal to probability can be realistically determined, two

the initial cost of the structure plus a optimum designs are found for each building. One
fifty five percent additional cost to optimum design corresponds o the lower bound on
account for removal of the collapsed system failure pr-oability while the other corre-
structure and inflation until replacement. sponds to the upper bound on the system failure

2). Business losses are taken to be the total probability.

loss of the companies operating in the Initial Cost. The initial cost versus the
office building. A replacement period of lower bound on the system failure probability
four years is assumed for the businesses for the five story strilcture is shown in Figure
to resume normal operations [17]. Thelosses during this period are approximated 2. A definite, steadily incresing trend is

observed. The data approximates a straight line.as the sum of the salaries of all workers The apparent discontinuity in data points is due
[18] in the building plus two percent of to the practical restrictions on member dimensions
the initial cost for office equipment. and the difficulty in obtaining an exact continuous

function for the member dimensions of available
standard sections. This member dimension dis-
continuity, inherent primarily in metal structures,
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Figure 2. Initial Cost Versus Lower Bound

on System Probability of Failure
for Five Story Building.

6.6

Figure 1. Plan and Elevation of Five Story Building - 6.5
Considered. 6.5..

M Upper bound
is the main cause of the small fluctuations in the

0
data points throughout this study.

The results for the ten story frame were similar c 6.4

to those of the five story frame. A straight line
trend was again observed over the range of member
failure probabilities. The fluctuations in the
data points were greater due to the greater a 6.3
influence of the discontinuities in member di-
mensions.

Total Cost and Optimal Risk Level. The total 6.2
cost versus the lower and upper bounds on system
failure probability for the five story building - a

0
is shown in Figure 3. The optimum system failure U Lower bound
probability computed using the lower bound on the 1 1

total cost was found to be 0.94 x 10
-4

. T6.1
,orresponds to an allowable member failure prob- F_

ability of 10
- 4 

for both beams and columns. The
optimum value of the system probability o failure 6.0

based on the upper bound on the total cost was
0.54 x 10

-4 
which corresponds to an allowable 10 102 

3 
10

- 
10

-  
106 -7 -8

-l0 1 0 0 1 0 10 10

member failure probability of 10
-

. Member sizes

and the probability of failure of members at the System Failure Probability Pf
optimum design are presented in Table 1.

The computed failure probabilities of the Figure 3. Total Cost Versus System Probability

members differ from the allowable values because of Failure for Five Story Building.
of two practical considerations. First, the member
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sizes are limited to a finite number of sections 1.34
taken from the AISC tables of dimensions and pro-
perties [i]. Second, the structure is kept symmetric
and the column size is only changed every two stories.
These twc factors are especially important in column 1.32

design. For the columns, the critical failure mode
is usually buckling about the weak axis which is de-
pendent on the moment of inertia, I , a property which 1.30

may double between consecutive available member sizes.
This accounts for the small failure probabilities of
some of the members. Although the failure probability
of the members is sensitive to this section property the 0 1.28

cost of the member does not change significantly.
0

The structural cost and the total cost for the ' 1.26 Upper bound

bounds on the optimum design were found to be close.
For the structural cost, a 7.8% increase was found
between the lower and upper bound optimum designs. The U

difference in the total cost was 0.2%, which is negli- 1.24
gible. I Lower bound

The total cost versus the lower and upper bounds 1.2
on the system probability of failure fcr the 0

ten story building is shown in Figure 4. For this j I
structure, the optimum system failure probability based I
on the upper bound on the total cost was 0.46 x 10-

3  
1.20. I I I

which is slightly higher than that for the five story -l -2 -3 -4 5 -6 7 -8
building. However, the optimum system failure probab- 1 10 10 10 10 10 10 10 10

ility computed using the lwer bound on the total cost System Failure Probability P
was found to be 0.46 x 10

- 
, which compares very favor- f

ably with the five story design. As with the five story
frame the optimum upper bound design corresponds to an
allowable member failure probability of l . Figure 4. Total Cost Versus System Probability

of Failure for Ten Story Building.

The structural cost and the total expected cost for
the bounds on the optimum design were again close. For
the structural cost, an 8.2% increase was found between
the lower and upper bound optimum designs. The total 10-_7
expected cost for the lower and upper bound designs was
found to differ by 0.35% which is negligible.

A sensitivity study was performed on each building 10
- 6

to determine the effect of changes in the total expected
cost on the computed optimum risk level. The results UL0
for the five story building are presented in Figure 5. 0. l5 Upper bound
It can be seen that no significant change in the
optimum design occurs within a range of one half the
calculated failure cost lower and two times the failure
cost higher than the calculated expected cost of -4 Lower bound
failure. Hence, for the five story building, the 0
optimum deisgn is, for practical purposes, insensitive a.
to the expected cost of failure. The sensitivity study W
for the ten story building indicates a higher degree of n 10

- I
sensitivity to the expected cost of failure. However,
at expected failure costs greater than ten times the W
initial cost, this design was also found to be in- S. -2 Calculated Cost of

.0) 1sensitive to failure cost. . Failure

Resilts of AISC Based Design

Each building was designed using the current AISC n 1
specifications [20] for the same loading conditions des- a1

cribed above to assure a fair comparison. However, the 0.
nominal rather than the mean yield stress was applied C

to the specified safety factors. Also, the AISC design 1
was subjected to the same limiting design assumptions
needed to insure a practical solution. 0 5 10 15 20 25 30

Member sizes and member failure probabilities for Ratio of Cf to C1
the five story structure for both the AISC and the
reliability based design are presented in Table 1.
It was found that for the five story structure Figure 6. Optimum Member Probability of
the AISC design was extremely close to the Failure Versus Ratio of Cost of
lower bound optimum design. The lower bound on Failure to Initial Cost for Five

Story Building.
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the system failure probability for the AISC design From the results of the study the following

was found to be 0.55 x 10
- 3 

and the upper bound conclusions can be made:

-20.27 x 10 . Each of these values is higher than 1). The reliability based optimization pro-
those obtained from the reliability based design. cedure results in consistent risks in
The structural cost for the AISC design was found terms of both the member probability
to be 4.3% lower than the lower bound optimum of failure and the system failure
design. The total cost for the AISC design was, probability. Furthermore, it Pllows
however, 1.3% higher than the lower bound optimization based on the type, location
reliability based optimum design, and importance of the structure.

For the ten story building the lower bound on the 2). For the type of structures considered,
system failure probability of the AISC design was the optimum member failure probability

3-4 - 5found to be 0.97 x 10
- 

and the upper bound is of the order of 10 to 10 for both

0.77 x 10 . These values are only slightly beams and columns.
higher than those obtained for the lower bound 3). The computed optimal risk level is
optimum design. The structural cost for the AISC relatively insensitive to the estimated
design was 10.3% lower than the lower bound reli- cost of failure.
ability based design. The total cost was 4.1%
higher than the lower bound optimum design. 4). Member sizes obtained using the AISC

specifications are comparable to those

Conclusions obtained by the reliability based design
procedure at the lower bound on the

A reliability based optimum design procedire system failur. probability.

was presented. With this procedure it is possible 5). For the structures 4onsidered the designs
to include uncertainties in modeling the design obtained using the AISC specifications
parameters, the inherent randomness of the consistently resulted in a structure with
loads and the structural resistance and the lower initial cost than the reliability
idealizations involved with the analysis pro- based designs. However, the total expected
cedure. Also, the level of safety and the con- cost for the AISC designs was higher;
sequences of failure can be directly included
in the optimization procedure. 6). Designs based on the AISC specifications

did not result in a consistent systen iailure
probability.

Table 1

Member Sizes and Member Failure Probabilities for Five Story Frame

Optimum Design at Upper Bound Optimum Design at Lower Bound AISC Design

Member Member Size Prob. of Failure Member Size Prob. of Failure Member Size Prob. of Failure

1,4 WI4x6l 0.1239xi0-7 WI4x53 0.4826xl0-4 W14x6l 0.9060x10-7

2,3 Wl4x9O 0.2283x10-5 W14x82 0.4911xi0-4 W14x90 0.2869xI0-5

5,8 W14x6l 0.1938xI0-6 W14x53 0.9679xI0-5 W14x53 0.9597xl0-5
6,7 W14x68 0.2263x0-

5  
W14x6l 0.2699x10-4 WI4x61 0.4049xI0-4

9,12 W14x6l 0.1055xi0-9 W14x53 0.2123xI0-7 W14x53 0.2127xl0-7

10,11 W14x68 0.4128xl0-8 W14x6l 0.9556%10-6 W4x61 0.1415xi0-13,16 W14x43 0.4092x0- W14x38 0.3534xI0 Wl4x38 0.3624xl06
14,15 W14x34 0.9703xi0-5 Wl4x34 0.9540xl0-5 W14x34 0.5537xlO 3

17,20 W14x43 0.l089xi0 -7 W14x38 0.l109xlO-5. Wl4x38 0.5600xI06

18.19 Wl4x34 0.8327xl0-15 W14x34 0.1180xlO1
4  

W4x34 0.3603x10_1

21,23 W21x57 0.6318xi0-6 W2lx57 0.8225xi0 . W21x50 0.2696xl0-
22 W21x57 0.7749x10 W21x30 0.4774xi0 W21x50 0.4506xI0-
24,26 W2lx57 0.1371xlO0- W2lx50 0.9352xi0-4 W2lx50 0.9120xI0-4

25 W21x57 0.4768xl0-6 W2lx50 0.3690x10 - W2lx5O 0.3338xlO-
27,29 W21x57 0.9537xi0:- W21x5O 0.6753x10 - W2lx5O 0.6717xlO-4

28 W2lx57 0.5960xi0 6 W2lx5O 0.3791x104- W2lx5O 0.3767xi0-4

30,32 W2lx57 0.5364x10-6 W2lx50 0.4500x10-4 W2lx50 0.4578xl-4
31 W2lx57 0.4172x10-6 W2lxSO 0.3004x10-4 W21x3O 0.3034x10-4

-5 4 -33,35 W21x57 0.2742x10 W18x55 0,6938x10- W21x0 0.1733x10-
34 W2lx57 0.1073xi0 W2lx50 0.6634x10 W21x5O 0.6485xI0
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Introduction The allowance for stiffeners is consistent with a
tendency exhibited by numerical solutions to concentrate

The theory of optimal control represents the modern the material along discrete stiffeners. For the same
extension of the classical calculus of variations amount of material being used, the superiority of the
allowing relaxed requirements on the control functions stiffened plate over the smooth one has in fact been
and dealing with the presence of restrictions other recognized for a long time.
than equalities. The powerful numerical methods
developed within its scope have proven their usefulness However, generalization of this analogy to cover the
in providing numerical solutions to some extremely two-dimensional situation for a plate with arbitrary
challenging problems of optimum structural design (see, shape cannot be directly inferred from the above and
for example, Refs. I and 2). The theory of optimal requires a different type of approach. The absence
control also provides answers to fundamental questions of optimal solutions for controls belonging to the
such as the existence and characterization of solutions initial class U of scalar control functions D is
and, when necessary, provides insight into the intimately related to the impossibility to satisfy
regularization of the original formulation, that is the Weierstrass necessary condition at almost every
the attempt to construct a proper extension of the set point of the region delimited by the plate boundary
of admissible control functions which guarantees the (Ref. 8). One ingenious approach overcoming this
existence of a solution. The recent recognition of difficulty has been to prescribe in the design stiffeners
analytical difficulties associated with the occurence of arbitrarily specified shape and to derive directly
of singular designs in the case of simple structural the necessary conditions of optimality, yielding
members (Ref. 3) has demonstrated the need for their optimal stiffness distributions (Ref. 9).
satisfactory answers to such fundamental questions,
which can no longer be ignored by the practical Reaularization through the allowance for
designer. anisotropy

The present paper, presented here in extended Non-existence of a solution to the traditional
abstract form only, focuses on the latter aspect in optimum plate design may in fact be directly linked
describing sne of the difficulties encountered in the to previous investigations of optimal control problems
problem of optimum design of plates, shown to be related governed by linear elliptic equations which have led
to the non-existence of a solution to the optimization to a number of non-trivial examples where the minimum
problem within the scope of the traditional formulation, of the functional is not attained. In order to
A regularized formulation is presented, guaranteeing guarantee the existence of solutions to such problems,
existence to a broad class of optimal design problems it has been proposed in Ref. 10 that the set of
for plates, in which tensor-valued controls representing admissible control functions be extended by introducing
anisotropic properties of the material are introduced tensor controls. Within the scope of structural
within the classical plate theory. optimization, this suggestion may be interpreted as

being equivalent to a relaxation of the severe restriction
opti design of plates imposed by the isotropic nature of the material and

which is present in the traditional formulation; it
The problem of optimum design of plates has within allows for the inclusion of anisotropy in the design,

the past decade received sufficient attention to justify such as may be achieved by the use of composite
a recent comprehensive review listing as many as 111 materials. The initial set of admissible materials U
papers on the subject, Ref. 4. However, numerical is within this assumption extended to include composites
difficulties reported by early investigators, as well of appropriate layered microstructure. Such an extended
as the radically different designs obtained for the set, composed of arbitrary combinations of the elements
same problem by different researchers, are evidence of of the initial set U, will be called the G-closure of U
the singular nature of the problem. Smooth, stationary and designated as GU (Ref. 11). The C-closure may then
solutions obtained to geometrically unconstrained be viewed as the set of composites assembled from
formulations for optimal design must be considered as compounds belonging to the set U.
local optimal solutions only (Ref. 5). Upper and lower
bounds imposed on the control (design) variable, taken C-closure of the fourth-order plane operator
as the thickness t or bending rigidity D, have not V V.. D ..V V arising in the classical theory of
helped to improve the situation, plates and involving self-adjoint tensors D of rank four

(Ref. 12) regularizes the initial optimization problem
In fact, for the nxisysmetric, one-dimensional case by guaranteeing the existence of a solution to the

of a circular plate, the numerical solutions reported extended optimization problem which preserves the
rapidly oscillate between the upper and lower bounds infimum of the functional being minimized. Such
on the thickness prescribed in advance, exhibiting extensions CU of sets of admissible control functions
the characteristic features of so-called relaxed control have been constructed for a set U(K , K ) of two
(Ref. 6). A regularized formulation has been offered - I
for that case based on an alternative physical plate isotropic media with the same value P of shear modulus

model allowing for a distribution of infinitely thin and different values K., K+ of bulk moduli ( K_ < K+
integral stiffeners, the variable density of which K and K given ), as well as for a set U(VI,*2,9)
being introduced as a control (design) variable, Ref. 7. -
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of materials possessing cubic symetry with the same and plates. Jo of timization Theory

value K of bulk modulus, the shear moduli p1 and p2  and Applacations topear-.

and angle 0 between the principal axes of elasticity (12) Lurie, K.A., Some Problems of Optimal Bending
and some reference axes being allowed to vary between and Extension of Elastic Plates. Mechanics of
given bounds. Solids (MTT), Vol 14, No. 6, 1979, pp. 71-78.

This result guarantees the existence of solutions to

two broad classes of optimal design problems for plates
which are built from materials belonging either to the
set U(K , K +) or to the set U(pI, i12 , 0). These two

classes correspond, respectively, to the problem of
optimal distribution of shear modulus for an anisotrooic
plate, and to the problem of optimal orientation of the
principal axes of elasticity of an orthotropic plate.

Complete regularization of the plate optimization
problem, that is the construction of the G-closure for
the most general initial set U of admissible materials,
has not been obtained yet and is presently being
investigated by the au:hors.
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STABIL4Y IMPLICATIONS AND THE EQUIVALENCE OF STABILITY AND OPTIMALITY CONDITIONS
IN THE OPTIMAL DESIGN OF UNIFORM SHALLOW ARCHES
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Summry (iii) The selection of a precise meaning of
the term "optimal." This always involves the intro-

The simple arch and the uniform shallow arch are duction of a preference relation 5 on the decision
used to illustrate the possible coalescence of set Z ; that is, some manner of prescribing that a
optimality and stability .onditions. The calculations member d1  of Z is better than or equivalent to some
for the simple arch are carried out with the initial other member d2 Of Z . This is then denoted by
rise of the arch used as . design variable. It is
shown that the necessary conditions for the con- d1  . d., in analogy with the usual orlering on R.
strained minimum weight arch are sufficient for
instability, that the minimum stored energy problem The preference may be introduced on Z directly or, as

has no solution, and that the necessary conditions is most often the case, indirectly by using a criter-

arising in the calculation of the natural shapes o ion 2 (dO f(d).
the arch, involving the simultaneous rminimizationk of Another related possibility consists of the use of
mass and stored enej, turn out to be sufficient for several criteria with mapping g(-): Z -w R" defined
stability. A summary of the results of similar
calculations for the optimal design of uniform shallow by g(d) = (gl(d),. gn(d)), d C Z) . An appropriate

arches with initial curvature and the axial load as preference on RM then induces a corresponding pref-
controls is also presented. erence on Z. The most often used preference on

rction R" in this connection is the standard ordering "4"on Rn defined by: For i = 1,...,n

The optimal design of structures is one area x 4 y 4# xi 1 yi,
where there is a great amount of leeway for a designer
to express his own views and approaches to a "best" x e y 4# xi 4 Yi' x # y,
design. There are two fundamentally different
philosophical viewpoints:, one which reduces every x << y 44 xi < yi.

problem to an economic one, where the designer "Minimizing" no longer has meaning in this
ultimately minimizes the expense or maximizes the "iiiig olne a enn nticontext, and one needs the more general concept of a
profit, the other may best be expressed in viewing minimal element with respect to a preference; such
nature as an optimal designer through evolution, the elements are also termed Pareto-optimal in honor of
task of the designer being the deduction of a shortcut the political economist Vilfredo Pareto, who intro-
to evolution through the discovery of minimum or
maximum principles. This is not meant to be under-
stood in the Leibnizian sense that this is the best of [1] Definition (Pareto-optimality). A decision
all possible worlds; rather, the intent is to d* C Z is Pareto-optimal iff d C b and 4(d) 4
encourage a discretionary look at nature's designs in g(d*) 4 g(d) = g(d*), for every d*-comparable
order to discover those which may have evolved to a d 6 0 .
state which is optimal for some particular purpose. These and other aspects of multicriteria decision
It is in this latter context that the concept of
natural structural shapes was proposed in Ref. (1). making are reviewed in Ref. () and in a survey of the
Such shapes are the result of the simultaneous "mini- subject, Ref. (2).
mization" of the mass and of the strain energy of the (iv) The selection of the analytical or
proposed structure; the implication is that nature numerical methods used to obtain a solution of the
would evolve such a design for a given set of boundary "minimization" problem which has been posed. These
conditions and loads. may consist of methods from the calculus or the cal-

These differences in philosophy, however, do not culus of variations, or, more recently, of methods in

affect the procedural aspects of optimal design. Thus, control and in programming. When several criteria are
aefery otiml rucural apetsin o ima b eas n.Thu, present, the theory of multicriteria decision making
veryfollowingoalr stpa: design may be based on the becomes a necessary tool.

S(i The eleotn of a sufficiently general [2] Remark. The question of statical determinacy

mathematical model of the physical structure. Usually or indeterminacy of a structure is an irrelevant one
c m l as far as the application of the methods of control

this concerns the particular theory within which the and of programing are concerned. However, a stati-
design is to be accomplished, such as beam theory, cally determinate problem may often be easier to work

0 shell theory, etc. Naturally, any postulated laws and cause oete ae o moftn be esi two
limitations of suc' a theory carry over as liitation beequilibrium requirements.imposed upon the optimal design.eqiiru reieets[3] Remark. In all problems of optimal design

.(ii) The selection of the given "parameters" in the sciences, the postulated laws and principles of
i and of the design or control "parameters." In its a particular discipline may impose restrictions on the

most general sense, the term "parater" here is used design possibilities. In static structural design,
to identify anything which serves to characterize a on* such condition is the required equilibrium of the
particular design of a structure. Usually, the selec- final structure. Often this is only an implicit con-
tion of design parameters is constrained in some dition in the design process; in fact, it shouldmanneri that is, the possible choices or* presumed tobelon to mat ist of admissible decisions, always appear as an explicit constraint on the design

bb variables, although the constraint may be inactive.
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As a consequence of this requirement, one has an method, although some of the results might be the same.
optimal equilibrium state of the structure corre- More recent optimal design of arches is exemplified by
sponding to each optimal 3esign. The question of the tne work of Wu (Ref. (10)), who used perturbation
stability of such optimal equilibria thus is an methods to determine that shape of a hinged circular
essential part of any structural optimization problem. arch which has the largest critical buckling pressure

The inclusion of stability phenomena in optimal of all circular arches of given radius, central angle,
and volume (he assumed that the cross-sections weredesign appears to fall within four categories:retnlaadofcsatwihwthhevain
rectangular and of constant width with the v~riation

(a) It is known a priori or from previous in depth used as the design "parameter"). There are a
calculations that some structure possesses certain number of additional papers dealing with the optimal
optimality attributes; it is then pointed out that design of non-shallow arches. The optimal design of
this same structure has undesirable characteristics shallow arches is considered in Refs. (11) and (12).
with respect to imperfections or post-buckling Both authors consider a shallow arch of specified
behavior, volume, length, and initial shape, loaded symmetrically

Basically, this category involves no interaction in the plane. They then seek to maximize the buckling

between stability and optimality conditions, although load, the first author analytically by variational

one may, somewhat artificially, relate these discus- methods, the second numerically by formulating the

sions to optimization problems by using the problem in displacement terms and discretized as a

imperfection parameter as a design variable. These finite element problem. Control theory and multi-

and other aspects, together with a summary, are the criteria decision making are used in Refs. (13) and

content of Ref. (3). (14) to determine optimal initial curvatures and axial
loads for the shallow arch problems indicated in the

(b) This category differs from the previous titles. The stability implications of these designs
one in that tne optimization is carried out at a are treated in Refs. (15) and (16). The present paper
critical point; either the mass is minimized for a serves to summarize and extend the results in these
specified critical load or the critical load is last two papers.
maximized while the mass is held constant. Two types
of critical point are involved: divergence (buckling The Simple Arch
or static instability) or flutter (oscillation with
increasing amplitude or dynamic instability). The This is the simplest problem which exhibits some
former problem type is reviewed in Ref. (4) and in of the aspects of the more complicated shallow arch
several similar papers by the same author; the latter problem. The initial shape (dashed line) and the
is reviewed in Ref. (5). deflected shape (solid line) of the arch are illus-

In this category, the question of stability enters trated in Fig. 1. Assume that the arch is composed of

only insofar as the optimization is carried out at a
critical point.

(c) Instability is avoided by the explicit
inclusion of inequality constraints on the loads, k , | .--' k
deflections, or eigenvalues of the structure. These ,,

constraints then must be satisfied in addition to any I,.-

optimality conditions which arise due to the optimiza-
tion 'rocess. Generally, such constraints are
introduced in numerical algorithms for optimal I - L
structural design, aseremplified by Ref. (6).

(d) The conditions for stability (or
iastaL lity) turn out to be the same as the optimality Fig. 1. The Simple Arch
conditions. That is, a necessary condition for
optimality may be identical with a condition assuring two linear extensional springs with stiffness k which
the onset of instability or, more ideally, it may be are pint.ed to each other and to the rigid supports as
the same as a sufficient condition for stability. It shown. The springs are assumed to resist both tension
is this category which is a major part of this paper. and compression. The distance between the supports is

Throughout, it suffices to use the definition of taken to be L. The initial angle of the springs is

stability in its usual form. o and the central pin is loaded by a dead vertical
force with magnitude P. Only the symmetric deforma-

(4] Definition (Stability). A structure is tion of the arch is considered; thus, the final
stable at an equilibrium position iff the potential dflected shape of the arch may be characterized by the
energy of the structure has a (weak) minimum for this single angle A. The mass per unit length of the arch
equilibrium. is 0. It will also be assumed that the arch is

shallow. This assumption does not d.minish the concep-
sta er are asreato any. pes dengith het b tual results, and it simplifies the algebra. However,

stability of shallow arches. The extensive report by for convenience, C- T/2, T/2) will be kep~t as the
Fung and Kaplan (Ref. (7)) is used here for comparison ambienine, for the wirame e cc a 13.
purposes and as a basin reference on this topic.

It is instructive to pose the probleme within the
According to the survey by Wasiutynski and Brandt cls itions (i t pose he erle

(Ref. (8)), the fzrst steps in optimal arch design

were made by Levy (Ref. (9)), who published a detailed i) The theory in that for the so-callpi
study of trusses and arches of uniform strength, simple shallow arch composed of two linear compression
including the determination of the axis of an arch of members 4s indicated in Fig, 1. Strictly speaking, all
uniform strength. There are about ten more papers of the final results must thus be interpreted within
cited in Ref. (8) which appear to be concerned with this shallowness asmumptiun.
the optimal design of arches, including minimum weight (ii) The given parameters are 0, k, L,
design. Unfortunately, most of these references were (i3 ) The in prsete arc c, , in
either unobtainable or could not be found on the basis and P • 0. The initial rise of the arch, w , is
of the abbreviated citations. However, all of these chosen as the control or design parameter, with
date prior to 19611 hence, they certainly differ in - c eL- c An additi,.31 restriction is imposed
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by the equilibrium requirement is given by I(ct') L () The use

PkL sin (3 (sec c - secA) Q-tkL3(cc2 - 3 2 ). (1) L ( -L'
2. of the word "optimal" is justified because one also has

These two conditions together define the decision set b. d
2
a,~.k\/

(III) The previously indicated indirect dppViT 0
approach is used to introduce a preference on D). The I olw ht~'sle h rbe: Mnmz
criteria are the mass I olw htO*sle h rbe:Mnmz

)ta3pLec ~L(+o() (2) .LA( (oc) subject to equation (1) , 0OoL < M, (3~ ..

and the strain energy [5] Remark. Generally, for a given load P, and

a given design oc, there may be one, two, or three
b (oo- l (sec cci-bs r en W' Z I (3) corresponding equilibria P. Here, there is a unique

- 12 equilibrium determined by condition (5) which is the
These criteria are then used to define the following same as the usual critical loading condition given by
three problems:

A. Minimize A( subject too) subject to eqtkL( o1. (31) 0;

B. Minimize () subject to oL- r. (
13* is the critical equilibrium position indicated

C. Obtain Pareto-optimal decisions for for the load-deflection curve (Fig. 3). From an energy

g(or.) - (A(ot) , E(m)) , subject to OL C viewpoint, a look at the total1 potential energy tr(-

In addition, the potential energy indicates that tr(e) is locally cubic at o h

(6) -- L e K L-(o-2)- J-FL (o-A) (4) so that the optimal equilibrium is unstable.

will be used for comparisons concerning the stability ec

of the arch.

(iv) The present problem is ideal for illus-
trative purposes, since it requires no more than the it

use of related rates from calculus and some results
from multicriteria decision making. hqi

The Minimum Mass Problem Fig. 3. Load-Deflection Curve

If no further restrictions are imposed, the [6] Remark. Note that only the explicit inclu-

optimal design is obviously given by (Y - 0 with 4ion of a stability condition such as 77,r) 2(,3)
minimum weight .A( a.') - p L. The corresponding for some neighborhood of A*', or (3 > jS' or
optimal equilibrium is obtained from equation (1) as H > H , H being the axial load in the spring, could
will_( have avoided this result. A simple constraint on theivj)). The equilibrium is unique and it maximum deflection or on the maximum axial stress

clearly is stable. would not suffice, in general, to eliminate the
Su w epossibility of unstable optimal equilibria.

Supposel nowrner wre o ainitog . > 0 I

that case, the problem has no solution if one allows The Minimum Stored Energy Problem
(3 < 0 as a possible deflected state, since one may
choose o arbitrarily close to zero, resulting in This problem serves as an excellent example for a

oA ds(i) arbitrarily close to p L with PL not a standard approach to nonexistence proofs in optimiza-
poszibility. This result also is evident from a graph tion.
of c !ersus (6 shown in Fig. 2. The substitution of equation (1) into the

expression for the strain energy yields 6(00 t

As a consequence of < one has

thatcas, te poblm hs n soutin i oneallws he inium tord oneg Phase

2
/k a as the greatest lower bound which is,

( however, unattainable. It follows that the minimum

p b . r t i iif it exists, must satisfy ' > P 2 /kfo.

L)- Let 8be such that P 2/kw r C 1!< E ta!-te

o F i. 2.su Defshown in versu IntilS.p

Thus, there exists an & satisfying all con-

usually, the intends- use of an arch is one for straints, much that e( &).c Fe , a contradiction.

which the arch does not sag upon loading; that is, one Furthermore, this result is not affected by including

imposes both Ot. 0 0 and (3); 0 as design con- the additional constraints oa? 0 and t3?i 0, or by
straints. This is a so-called state constrained Including the shallowness assumiption restricting (3 to
problem and the possible combinations of K and (3 now - 0 < [5 <
are restricted t; the positive quadrant in Fig. 2. It

follows that the final state 3 which implies t The Natural Shapes of the Siwle Arch
smallest initial angle fc is the optimal one. The

condition Some general coements concerning Pareto-optimality

d". 3L1 - OLL with two criteria may be helpful. The mapping

d1% 2is 9(. )i Z - R1 , given by g (d) - (g I(d).q2 (d)), maps

implies at - -5. Substitution into equation (4) the decision set into an attainable criteria eot

results in t - se) I a with corresponding gor (stants ch as shown in Fig. 4. The set of

optima) equilibrium (3 ' ) ) The minimum ms Pareto-optimal criteria values, an o consists of the
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boundary points indicated by the heavy line; the which is greater than zero for all choices of oL such
corresponding set of Pareto-optimal decisions d* C that 3P> cc2 . It follows that the family of

is given by g- 
1 ( ). designs specified by 43(.&193,< C' < 1- is

9HPareto-optimal. 2
[7] Remark. A further look at the use of the

A preceding sufficient condition may be helpful. The
Aminimizing choice c* of course depends on the

particular r which has been used. For each choice of
r > 0, 0(*(r) is a minimizing decision as long as one
uses that corresponding equilibrium 1 *(aC*) which

91 satisfies the condition 3 A*2 > C,
.
2.

[8] Remark. Condition (7) above leads to the
Fig. 4. The Attainable Criteria Set same requirements for cc and (3 as the condition

aRLr 2(3(62 - X
2
) > 0

In Ref. (1) the natural shapes of a structure were a$3- T (8)
defined as those Pareto-optimal decisions d* 'eZ assuring a minimum of the potential energy. Thus, a
which remained when the minimum mass decision and the necessary condition for optimality is sufficient for
minimum stored energy decision were excluded. This stability. This is an ideal result; in view of the
restriction can be enforced in terms of certain example in the next section, however, this is not
requirements included in the necessary conditions of generally the case.
the control or the programing problem. Here, this
goal may be accomplished by using the necessary condi- The Uniform Shallow Arch

tion --9Z(di*) 4 0 , derived in Ref. (16), b-
Cg 1 The details and generalizations of the following

requiring that the strict inequality be satisfied, example may be found in Refs. (15) and (16); only the
The restrictions 0 eOt < 0!6 (3 <.! are problem formulation and major results are presented

a here.
again imposed. The mapping g(.): [0,!-) - he2 here

Consider a uniform shallow arch of span L and
is defined by g(0c) = (A (c), £(o.)) so that the loaded by a transverse load w(x). In addition, there

attainable set . is a curve in R 2(see Fig. 5). The may be a given axial load or one may arise as a reac-
use of the expressions (1), (2), and (3) yields the tion due to the boundary conditions. With initial
necessary condition shape and final shape specified by yo(

"
): [0,L] -R

d A = p(-- -. 312) and y(.): (0,L]-*R , respectively, the equilibrium

d6 kL(' -32-)F < 0 . (6) equations of the arch have the form

The condition k-- 3f32 < 0 together with the d2 + _ - d - M() (9)
equilibrium equation (1) result in the requirements dX

2  -El -dx - EI

t ( ) and (3 > )3 to be satisfied for the transverse direction, and
by the Pareto-optimal arch-rises 00* and the corre- dz H _ y1 0)I 1)?
sponding Pareto-optimal equilibria. dx "-A-T d x 2 . - 'dx 'y 0 (X).Y)y1 (X)

A for the axial direction. Here, E is the elastic
modulus for the linearly elastic arch, I and A are
the cross-sectional moment of inertia and area, z is
the displacement of a point on the arch in the axial
direction, and M0 (x) is the moment due to the trans-
verse load only.

/4- I The relevant criteria are the mass,
, i l( ld 2

= p{L + 'J dXJU J (11) ,

with mass per unit length p , and the strain energy
j L d'y d 2 Y d{ +y d HL (12)

22 -d dx d
A(6) - pL[l + + -LE 1] The total potential energy is given by

Fig. 5. Mass-Strain Energy Criteria Space V_ I L JE[ +EAI ,+

The term Pareto-optimal, rather than Pareto- 0tdxx (lxJ
exremal, is justified in view of the following argument. - aw(0Y'(0)d (13)

Among the conditions presented in Ref. (1), the
sufficient condition for Pareto-optimality which is to be used in statements concerning the stability of
easiest to use here may be stated in the form: 3uppose the arch. Throughout, the initial curvature and the
d* a Z minimizes G(d) - c1gi (d) + cg(d) subject axial load are used as control parameters in optimizing

to d e b , for some cl,c 1 > 0. Then d* • . is the criteria mass and strain energy.

a Pareto-optimal decision. Control-theoretic and programming results are most
easily applied when the problem is formulated in a

The second derivative of G(ft) = A C () + r 6(w.), standard form. This is accomplished by nondimension-
r 2"0, is alizing and by introducing some auxiliary variables as

A~ d L rkL' ( 2 - 1
2.X . OI)(34

4 +. O£) ) follows:
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t = , yt) yt X )t) ! 9, X ,) -tL Collective Necessary Conditions and
-L L 5  L Problem Restrictions

d - L=M(tL) L
3  

The necessary conditions for each case consist of
dK 1 _)L L (t) 4' 1 (t) - 'M=E1 the appropriate formulations of the maximum principle

along with xt - x3, x. In terms of these new and of Kuhn-Tucker conditions in programming. Summary
conditions for all may be given in terms of those for

variables one may then define the modified criteria Pareto-optimality. The general Hamiltonian has the

X 2-4)d= (14) form

as the nondimensional mass, and N(xX, I- 1 X: je[ir 1  +

g(U i (3) - [tIxq) . 2mn(Et)3I . 2.~ 1)+X[-(i' 1 -Ym

with 1\ _6 a _ j _L (X42~ (19)

- (H> for compression), f2_ E - 'k2L  
OA2 with c ) 0, c I 0, not both zero, and with 'A .0

The adjoint variables )i satisfy the equations
as the nondimmnsional strain energy. The total poten-

tial energy has the form i

aHg3(XI ('), X 5 I 2-- t] 4- 2 LXR 5 ) + With x,(l) =0, the use of the condition ju = 0

(16) in combination with the adjoint equations eventually

-- -(X ( )-I(( )fl'-4q(4)[,(t)-x1(t)]1dc yields the differential equationVI IZ XoCiU 1v + 2 irf3[A. + ZoC, - X oc Ti/l I i + (20)
where the dependence on x I (.) and x5 (-) has been 0 '4-1A 2AC -c1T

2
t.i+2

emphasized because of the intended stability applica-
tions. which must he satisfied by an optimal initial curvature

u(.). The necessary condition for an optimal selection
The nondimensionalized equilibrium equations and of the parameter (3 is

boundary conditions are given by 4X [aAO ( 0 w ,t- ) d { "-UA- Oc
- 2

s3. (21)
I - X x1 (0) - x,(l) - 0; 0 1 3 2kd(502.

3 (17)
2 12 X4  x1(0) = x1(1) = 0; [10] Remark. Note that these results are

x 3 = u - Ir 
2 3x 1 - 62m x3 (0) and x3 (1) arbitrary; restricted to x5(1) = 0 and that one has X 5(t) = As

A4 -u x4(O) and x4(1) arbitrary; const. as a consequence of the adjoint equations.
4( Note also that the present problems are formulated for

AS =- (x - x2) x5(0) = 0, particular boundary conditions. Naturally, one may

with x5(1) either arbitrary or specified as also consider clamped arches or a mixture of clamped
and hinged with corresponding changes in the necessary

x (1) = 6, some given displacement. conditions (20) and (21).

One of the control parameters is the initial The preceding formulation is given for an arbi-
curvature u(.); the axial load may either be trary loading w(x). The remainder of the article is
specified as a given 13, or it may be used as an devoted to a summary of the results for the particular
additional control parameter. Collectively, it is loading
assumed that Vcx=- qO in2  (22)

Iu(t)f< Go and 11 < 0. (18) with 1Zm(t) = -a sinirt, a = (qL3)/( ITEI).

(9] Remark. There seems to be no consensus con- In all cases the solution of equation (20)
cerning the bound on slope which constitutes a shallow eventually yields only sinusoidal arches of the form
arch. The mathematical model itself is a mixture of
seemingly contradictory assumptions. In the expression x . (t) = A(,3) sin irt (23)

for the curvature it is assumed that 2is as candidates for optimal designs. The problems thus
dx reduce to the selection of an optimal axial load for

negligible in comparison to unity; in the expression the family of hinged sinusoidal arches subjected to a

for the axial strain the term (99)
2

is assumed to sinusoidal load.dz
be of the same order as Here, no further [11] Remark. All of the results are stated in

terms of the optimal equilibria and ranges of the
limitations have been imposed on u(t) and is in order applied load. To allow an easy comparison of the
to allow for the full range of stability phenomena. results with the stability conditions for shallow
Their physical applicability, of course, ultimately arches, the notation of Ref. (7) is used. The use of
depends on the geometric and constitutive limitations p1  instead of A, for the amplitude of the initial
of the mathematical model as obtained from experimental

observations. hape is an exception, since is used as an adjoint

Concise general problem statements may now be given variable here. The terms B, R, and pI are

in terms of the nondimensional expressions above: related to the nondimensional variables by

A. Minimize g(u(.);,() subject to the equilibrium x1(t)- AL B Ieint , x(t-Piwt and R- •'

conditions (17) and the control constraints (18). The critical parameters for the shallow arch are

3. Minimize 9 2 (u(-);IS) subject to the equilibrium ~ 'p~~p-),(I=*(+ )

conditions (17) and the control constraints (18). or,. aty

C. Obtain the remaining Pareto-optimal decisions fox for p, < and for p1 * they are

g 1 (u(.);f) and q 2 lu(.); ) subject to the equilib- I = , = pI 43 V T=, (31-4.
rium conditions (17) and the control constraints (18). The main goal here is qualitative results; quanti-

tative results are found in Refs. (15) and (16).
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The Minimum Mass Arch In this range the arch still buckles symmetrically.
Loading proceeds through stable equilibria to the

The corresponding necessary conditions are unstable optimal equilibrium B*. The arch snaps
obtained with c, = 1 and c2 = 0 in equations (19), through to the non-optimal equilibrium in fact,

(20), and (21).

the equilibrium is excluded as a solution possibility
Similar to the results for the simple arch, the by the assumption ( a-0.

admission of tensile axial loads implies u*(t) m 0,
the flat arch, as the unique optimal solution of the 11+3 . < R
problem with obviously stable optimal equilibrium. The

- 
T design i<0

inclusion of the additional constraint (3 ' 0 yielded - load
some unexpected results, depending on the ranges of the 

load

load parameter R of the applied sinusoidal load. I >'. \
All of the results are illustrated in terms of / '-i

load-deflection curves. Solid lines denote stable I I
equilibria, dashed lines unstable equilibria, and the '.
small circles denote the optimal equilibria. B B BB Bj

*~~~~ R I B1BFor 05•R 5<4 one has p, R withorepn1 1 I
ngFotma eui u AR4 onhsp wi correadond0 In this range the arch fails asymmetrically. Theing optimal equilibrium B* =-B and 1S* = 0. otmleulbimsili tH,

2 ~ optimal equilibrium still is at B'; however, upon
0S R S2 R loading, the arch passes through stable equilibria

design -"0 until it reaches B
1
I, snaps through, and is then

load loaded up to which is stable, not optimal, and

i I excluded by (3 0.

[121 Remark. Thus, depending on the magnitude of
the load parameter R, the optimal equilibrium may be

R stable or unstable, it may be non-unique, it may bereached after snap-through, or it may not be attainable
Upon loading, the arch passes through a sequence of at all by the usual loading process. Note that only
stable equilibria; the optimal equilibrium is stable, the explicit inclusion of stability constraints such as

2 < R < 4_n *-0 BI :. B or 3> (1 could have avoided these diffi-

load culties.

I (131 Remark. The necessary condition (21) for an

:I \ I optimal selection of (5 is= I / " 1I/:.,-
R 2 +Ll~ (30.-' 1)

B This optimality condition is the same as the usualB- 1 e_--
U 1 2 condition for the critical load, 0, as obtainedUpon loading, the arch passes through a sequence of dBI

stable equilibria until I is reached; it then snaps from the load-deflection curve

through. The optimal equilibrium is stable. R = PI - B
5 

+ (Pa - 1) B

R 4 des. (30 3 13 0 The Minimum Strain Energy Arch

Roa 4,

I \The corresponding necessary conditions are
I I obtained with c1 =0, c1 > 0 in equations (19),
I I (20), and (21).
I i
I IThe solution of equation (20) consists of a family\-------- -- - of sinusoidal arches. However, the use of necessary

Bl I *-_ conditions only is misleading here, since one can show
I that the minimum does not exist. An expression for the

There now are two optimal equilibria corresponding to curvature satisfying all conditions eventually leads to
1* - 3 and (3' - 0, the former unstable, the latter the expression
stable. Obviously, the arch will snap through to theg(U(.)./3) .V R R]2- 2 (24)
stable equilibrium. 22 I t3

for the strain energy as a function of /3. Evidently,
Fr p , p!2- is obtained by solving g(u(.);t 3) 0, and (b= 0 is necessary to attain
ft=p + - . The corresponding optimal the absolute minimum. However, (3. 0 in the equi-

equilibrium and axial load are given by librium equations yields g,(u(.);0) = Tj R so that

B I( Pi - 1) 3 and (* = (I + 2p) = I the minimum, ifit exists, must satisfy g 1 (u*(-);(3*)

respectively. _R des. A<0 g > 0. Note now that lim g2 (u(-) ; 0) -O so that
4 < R -C + 3 A1 -_ - , 0

4 load g2 (u(");iG) can be made arbitrarily small and hence

I /smaller than g, a contradiction.

I
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The Natural Shapes of the Arch For p1 , 1, one has the optimality condition given
b * >B

+
." e ete ouino

The corresponding necessary conditions are by Bi > Let p be the solution of
obtained with cI > 0 and c2 > 0 in equations (19), (B+)

3 
- (p

1 
- i)(B

+
) = p1 - R

(20), and (21). 1n,

The use of necessary and of sufficient conditions then the condition implies that p, > must be the

tor Pareto-optimal control ultimately implies that the case. For p ; 1, the natural equilibria satisfy

solution of equation (20) leads to arches of the form B* > BI* which simply means that the largest root of

x,(t) = p1Cf) 5J[n the load-deflection curve is to be chosen. The loading

and corresponding deflection sequence and the natural equilibria are stable.

xI(C) (tw Bt) i n V For R 3 1, let be the solution of
'(p -_I)5' then the natural arches

This reduces the problem to the multicriteria program- 2 = pf + -t e l

ming problem: satisfy p > p, and for any such p* the corre-

Obtain Pareto-optimal W3* for sponding natural equilibria satisfy B* > BI*. That

gi( 1 - -1 P 
(
0) and 2 is, for any p; one has three equilibria B

3 
> BI> B

f
,

and B .* B.
subject to I/i < co , where 92

and B > B

Bs~ (1) 1Z-P1 load /BB

If no further constraints are imposed upon p,

(that is, on the control u(o)) and on A, then the BA
globally Pareto-optimal solution is characterized by B B rf 91

p;( *) = -p, p > 0, where (3* is obtained from the Upon loading, the arch passes through stable equi-

solution of * = - , B being the real root of libria; all of the natural equilibria are stable.

B3 R
I (p

2
- )B - R. V 3 R 92

All of these arches are stable, sagging, and relatively

uninteresting. They do, however, give rise to the * I 1
following conjecture. B; >4 design /

[14] Conjecture. All of the equilibrium states 
"  

load /

of a natural structure are stable when based on a / c - B
global unconstrained concept of Pareto-optimality. I u' " • 4 /B /

As for the simple arch, the situation becomes more I
interesting when an additional constraint is intro- -

duced. Here, this is done by insisting that the B1  91 '
initial shape of the arch be a proper arch with p1 > 0.

The necessary condition (21) for an optimal selec- Let R be given and let BI and B" be the

tion of the parameter 13 may be written in the form corresponding critical equilibria; that is, BI

= =B,( - )l - i) , where is the solution of

eZ(B -p) 2
(B31 (D1-B-) 2c1  R p1 + 72 (p? - 1)3 and B1

1
' = 4 wherewhere 27|

_) t _ -+ p, is the solution of R : P 1 + 3 Vp, -4 Then the

P1 Inatural shapes may be characterized as follows:
Sufficient conditions are used to show that one must

have or p , r > 0, eliminating theFor p1  such that the corresponding B* satis-

ossibility B < B
-

. Thus, the condition r > 0 fies B' < B* ! BI, the loading sequence consists of
II t I

leaves one with the requirement (B - B
+ ) 

(B - B-) > 0 stable equilibria until B 1'* is reached; then the

as the final constraint to be satisfied by the equilib- arch snaps through in the asymmetric mode and eventually
rium parameter Bs l B which is stable but not optimal.

The results of the analysis again depend on the settles at B I I

ranges of the load parameter R, and they are most For p* such that B* > B
II

, the loading

easily summarized in terms of the admissible values of I I

the equilibrium parameter BI ; the ranges are illus- sequence and the natural equilibria are stable.

trated in terms of the load-deflection curve and the [15] Remark. The condition r > 0 is the same

corresponding bundary points of the attainable set. as g. < O. Both correspond to the stability

R < 1. 2/ requirement d% > 0 for the loading range in which
dB12

B B +  
design 

"  
/ the deflection is given by x -(t) B sinrt only;

loadthat is, for R < + 3 .

B
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HYBRID OPTIMIZATION OF TRUSS STRUCTURES
WITH STREN;GTH AND BUCKLING CONSTRAINTS

Prabhat Hajela and Holt Ashley
Department of Aeronautics and Astronautics

Stanford University

Stanford, California

Summnr Introduction

--'The problem of minimum weight truss layout is The minimum weight design of truss structures
studied via a feasible usable search direction has been an active area of research over the last
algoritlir. For specific material allowable two decades. Reference I is a comprehensive sur-

stre=ses in tension and compression, constraints vey citing published work in this area up until
on strength and stability are imposed. The idea the late 60's. Truss structures afford simple

of folding several constraints into a single cumu- test examples for new optimization algorithms,
lative measure of design specification violation while retaining complexities that sometimes

is used. In addition to fixed geometry, node require special treatment, It is recognized that
location movement is permitted through addition of an optimal nonredundant truss sized for stress

0-sign variables. Contrary to the usual practice constraints, is one that conforms to Michell's
.f using uniform-cross-section members for all (Ref. 2) criterion of maximum allowable strain

elements of the truss, optimally tapered bars are energy. The introduction of redundancies, side
adopted for those elements sized by an Euler buck- constraints and multiple load conditions moves the

ling criterion. Such tapered sections are design away from a fully-stressed configuration,
obtained through a closed-form solution resulting The resulting problem then requires a more

from the application of a distributed parameter involved design strategy.
method and incorporated in the solution process
via prerrocessors. Significant weight savings are Pedersen (Ref. 3 & 4) has Eolved the minimum

demonstrated weight layout problem with strength and stability

I constraints, via a linear programming algorithm.
A degree ofcomplexity is added as a result of The present paper approaches the problem by using

introducing redundancy in the structure through a feasible usable search-direction algorithm cou-
insertion of more elements. a statically determi- pled with a finite-element analysis program.
nate truss under a single load condition is opti- Constraints relating to strength in tension and
mal in a fully stressed configuration. However, compression are enforced. Side constraints on

both the prps-:,ce of multiple loading conditions design variable si=e are introduced to exclude
and the addition of redundancy drive the optimal failure due to an Euler buckling instability.
design away from this configuration. Starting Both free and fixed node designs are generated.
from a redundant truss and obtaining the global
minimum weight by omitting certain elements is A scheme, involving a modified cumulative

often difficult through conventional non linear constraint formulation, is proposed to adequately
programming algorithms. Practical side const- handle the problem of obtaining a minimum weight

raints such as those introduced from stability structure, starting from a highly redundant
considerations, render the design space dis- configuration. This problem was examined in

jointed, concealing the true optima. Moreover, detail in Ref. 5 and an iterative bounding techni-
hardening of certain constraints as a result of que solution proposed.
diminishing a particular design variabi value I
almost invariably moves the design to a non-global The aforementioned scheme has been used in
optima. As demonstrated here, the cumulative designing a cantilever truss with varying degrees
constraint idea, coupled with an artificial of redundancy. Optimal nonuniform section bars
'softening' of critical constraints, has permitted are used for all elements of the truss sized by
some of these difficulties to be overcome in the the buckling criterion, so as to further enhance

context of the nonlinear-programming (NLP) metho- the weight savings. These optimal shapes are gen-

dology. erated by the use of state-space methods as in

reference 6.
The optimization algorithm is coupled to a fin-

ite-element analysis program through pre- and
post-processors. In addition, further computa- Erb.mJLStatement

tional resource savings are obtained by piecewise
linear approximations to the objective function The design problem addressed in this study is
and constraint information. the optimum sizing of planar truss structures for

prescribed static loading conditioma. For

simplicity, idealized pin-jointed bar elements are

* Graduate Research Assistant assumed to comprise the truss, with material

allowable limits on axial loading under tension

professor, Department of Aeronautics & Astronau- and compression. The objective is to minimize the

tics and Mechanical Engineering. total weight of the structure. The problem cam be

mathematically formulated an
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drives the design away from the true opti-
Minimize W = PAiLi i-1,2,..n (1) mum.

1

Subject to the constraints (Z) Side constraints on the design variable,
such as those resulting from stability con-

g 0 J',2,..m (2) siderations, render the design space dis-
joint. These constraints conceal the true

Au > L 12 global optimum for an improper initial
A I i choice of the design variables.

where, Ref. 5 discusses an iterative bounding technique
Ia.I to deal with the above problems. By establishing

gE - 1 (3) lower and upper bounds on the optimum waight ofS
0
al( the structure, the authors isolate a reduced num-

or equivalently. ber of stable truss configurations. An extensive
search of these candidate designs yields the true

iJF 1 optimum. To make the problem more amenable to
A_ 1 (3b) standard nonlinear-programming methods, a connt-

J a J taint redefinition is proposed. The modified

pi is the weight density of the material. Equa- constraints become
tion Z establishes lower and upper bounds on the
design variables. For purposes of this study, the lied A,
cumulative constraint formulation of Ref. 7 is gi. (5)
adopted, which allows thu folding of 'm' const- Aae
raints into a single measure of constraint viola-
tion W here Aref is a prescribed softening factor. tak-

a ing on values between 5 and 10 times the starting

Q - + < g<>r (4a) design variable values. This parameter is reduced
as the optimum is approached, in order to counter
any suppression of constraint violation. The
cumulative constraint is then defined in terms of

g1 ) ( g 
> 
0 (4b) gj Note that, as g. approaches a finite value,

tie ratio A /Are £ apironches zero, removing the
10 gi: 0 constraint tiofening influence from Q The cumu-

lative constraint also includes the side const-
£ is a small positive initialization number. raints. In all such problems, caution must be

Side constraints can also be included in the cumu- exercised to prevent the design from attaining an
lative constraint definition. In addition to the unstable configuration.
cross-sectional areas of the bar sections Aj, node
locations con be established as additional design
variables. The above formulation casts the mini- U o 2 Non-Uniform ptimal DrC
mum weight problem in the most general nonlinear-
programming format. As an illustration of how optimal control solu-

tions can be adapted in a more practical NLP type
optimization algorithm, truss elements critical in

d n Truss Structures buckling were sized by a function space formula-
tion similar to that of reference 6. For simplic-

Shou & Sclmit (Ref. 5) examine the problem of ity, this study was limited to the use of solid
minimum-weight design of elastic redundant trusses circular convex sections with the property
for multiple loading conditions. For simple 2
strength constraints and a single loading case, a It(x) - K A(x) (6)
given set of nodes can be connected by elements
stressed to the maximum allowablo limits, in a Here lix) is the moment of Inertia and is the
determinate configuration. For multiple loading shape regtr (pl/4 for a circular section). Any
cases and in the presence of other constraints other regular polygonal section could be pre-
such as stability, this is no longer valid. One thaite circulafsection. ghor aied coln
way to approach this problem would involve con- of th 1ca ue r a ien d colthe
necting the prescribed nodes in all possible ways of length I and under a compressive load P, the
and searching the resulting highly redundant differential equation describing the lateral
structure for the optimum. Constraints would have deformation of the bar in buckling is
to be enforced to keep the final configuration
stable. EI(\)1x

w  
+ PL2

v - 0 (7)

If a standard NLP scheme is employed to dic-
tate the search strategy, convergence to an incor- with the boundary conditions
rect optimum has been demonstrated in previous
work with such structures. Two basic problems v(O) - v(L) - 0 (8)
have been identified with using conventional gra-
dient based search methods The Euler buckling load is given as

(1) A process of constraint stiffening is idea- Ir4 3
tifiable in most problem. As some cross- Pr =4t.

2  
(9)

rectionil areas approach zero values, the
ratioJFr° a.(Eqn 3b) tends to a finite where 'r' is the radius of the circular cross sec-
value, resulting in a corresponding const-rait volaion Suh cnstain stffeingtion. Also. for a given load P and an allowable
rcint violation. Such constraint stiffening ompressive stress eewe have
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= 2

r aal (10)

Combining Eqns. 9 
2P 

10 we have the design rela- 7_
tionship

P ,design for buckling al

RE
4r 2 L2 

.40.L

4oi
2

t> , design for strength

For a non dimensional area distribution a(x), tho

suboptimization problem can be formulated as fol-
lows. Hinimi-e the non dimensional mass, 0.0 0.2 0A 0.6 0.8 1.0

1

M f a(x) dx (12)

subject to the constraints given by Eqns. 7 E a. Fig. 2. Ratio of optimal weight to the
The Hamiltonian formulation (Ref. 8) was used to weight of a uniform reference
derive the necessary conditions required for the colun '1' versus amoptima. In addition, minimum gage constraints are
enforced to eliminate the unrealistic designs
marked by the appearance of zero cross-sectional
areas along the column length. Such constraints
provide a minimum area to handle the compressive umrr .l_1em=m.ation
stresses at all sections. Tile solution procedure A finite-element program uss coupled to a tea-
to satisfy the optimality conditions results in a Aib itus lesec dro a ( e1

cloed-ormtrascedenal quaiontha yildssible usable search direction algoritlun (Ref. 10),closed-form transcendental equation that yields via pro- and post-processors. The sequence of
the area distribution along tihe column length for flo trough thet-processors iseueae in
* prescribed end load. Details of this solution flg. throfutherauent sistced tn

are presented in an Appendix of reference 9. The Fig 3. To further augment savings of computa-
optimal tapered column appears as in Fig. 1. A linar roo s t te oect iectin
uniform cross section at the ends is followed by a a in t inormation til oeti f o
gradually tapered area distribution with the maxi- and constraint information was adoted.
mum at the center. A plot of 14 against a monsure aW
of the load level is shown in Fig. 2. new =o +

anew a 
(14)

0 71- X ~ (4

Limits on design variable move of Z0% were
imposed to preserve the effectiveness of the above
approximations. Thre factor 'r' in Eqn. 4b intro-
duces a non linearity in the conntraint which
requires special treatment of the corstraint gra-
dients, instead of a simple finite difference
approximation for Va.

a m 0.2  m

IA r [(g ]~ a ('

Fig. 1. Optimally tapered column to g !J = 
g  

+(6withstand compressive load P. M A (

Both buckling and compressive J ref ref J
strength failures are excluded, 6.jIia the Kronecker delta function. Usingupdbted information for g, and g in equations 15

t 16 permits better appr~imntis to Vn trquired
in the linear extrapolation of Fqn. 14, ror the
dosign of truss structures with simple strefs
constraints, the choice of reciprocal variables
provides further improvement in the constraint
approximations.
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COUNT "0 The first step in the study was to validate the
NC= 10I procedure of suppressing the constraint stiffening

effect. Truss examples from Ref. 5 were used to
PREPARE INPUT DATA FOR facilitate comparison. These examples typify the
ANALYSIS.. .PRE PROCESSOR problems associated with using gradient based "LP

I techniques in redundant structures. The result-
FINITE ELEMENT ANALYSIS ing designs ore radically different from the true

V optima.

POST PROCESS THE ANALYSIS
RESULTS..COMPUTE CONSTRAINT Threr-MR Ir g_. The classical three bar truss
AND OBJECTIVE FUNCTION was sized for three alternative loading conditions

depicted in Fig. 4. The design Is subject to sim-
ple stress constraints only. There were no side
constraints other than a design variable non-hogs-

N ARE ANY ELEMENTS YES tivity constraint, allowing a continuous design
NO CRITICAL IN space. Results of the present study with those

BUCKLING? reported in Pef. 5 are shown in Table 1. Excel-
lent agreement in both the design variables and

L the objective function is observed.

GIRADIENT ANALYSIS USE NEW LOADS
VF AND VX1 TO COMPUTE

A(x) : A~qiv 3-BAR TRUSS

COUNT COUNT + 1

It 1 3

OR5

I 1 oooo 2al = a20 P

p 3 =20.

Fig. 3. Flow:hart illustrating the flow
between the pre- and post-processors.

Fig. 4. Three Bar Truss example from Ref. 5.
Material properties and allowable
are also shown.

_q Unifor Sections For a uniform, circular
cross section column in critical compression. the
minimum radius required for stability is given by

rcr L (17) A1 A A3  WEIGHT

Sheu & Schmit 8.0 1.5 0.0 12.8137

Since the finite element analysis program had the Reference 5

capability of accepting uniform sections only, an
equivalent area obtained as Proposed Method 8.03 1.495 0.0 12.8153

A =- rMrtr
2

eq cr

we used as an input to compute the stiffness Table 1. A cogiparison of results from the
matrices. 'N' is the non dimensional optimum mass proposed method with those reported
ratio obtained as a suboptimi=ntion (Eqn. IZ). A in Ref. 5. (3 Bar Trues)was also used as a lower bound for the size of eq

design variables critical in buckling.
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This example also provides the opportunity to 0.0
visualize the cumulative constraint as a Aa V
3-dimensional surface plot. A region of interest,
encompassing both the true and the local optima,
was discretized into cubic elements and the const-
raint value j2 computed at the node points. A lin- OA PU
early interpolating contour plotting package was
subsequently used to generate the surface plots
for fixed 1 values. Plots for three values of p
are shown in Fig. 5. As the optimum is approached
(C tends towards zero), the constraint surface
exhibits sharp slope discontinuities. This dis-
continuity in the design space makes it v~rtually
impossible for a gradient-based search routine to
locate the optimum. The constraint definition
used in the present formulation suppresses the LOA. OPTj WA
discontinuity, allowing the optimizer to converge
to the correct result. 0AWG4 r 0-0001

0.0 Fig. Sc. Cumulative constraint surface plot
10 forQjl.000l. Designs on this surface

8_ are accepted as feasible. Note that
the global optima is on plane A3 .0.O.

Si ne .r rup. This five node. nine element
truss is shown in Fig. 6. The structure was sized

for two loading conditions, The symmetry of the
loading conditions permits reduction of the size
of the problem to five design variables. Lower
limits on cross sectional areas, designed to keep
the final configuration stable, render the desigq
space disjoint. A comparison of results obtained
with those of Ref. S are presented in Table Z.

OEQA 0.5 9BAR TRUSS

Fig. So. Cumulative constraint surface
plot foril-O.S. A large continuous I.e .~p

surface with a disjoint region of
satisfaction on surface A 3=0.0

5 6
43~

8
S1 2%

P P
1 2

E i -2.0xlO 6 s/cm 2 p...0078 ks/cm2
t 2 c c 21410-Kg/lc , a -- o 2-o'9-1,270 Kg/cm

d)-.J.=46 Kg/ce 1120 Kg/cm

193.5 cm >Al-1
2 . 9 

cm

OWEA :0A.26
Fig. 6. Nine Bar Truss example from Ref. 5.

Material properties, allowable stresses
:- and side costraints are as shown

fig. 5b. Cumulative constraint surface plots above.
for R-0.025. Discontinuity appears

fr on the surface.
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Figures 7 E 8 show the convergence histories 1400 -WEf KG
for the three-bar and nine-bar trusses respec-
tively. Both histories show an identical trend,
with the structural weights converging from below
to the true optima. The constraint 'softening'
procedure initially suppresses the constraint vio- 1300
lation. allowing the weight to fall below the
optimum level. As the parameter A f is slowly
relaxed, the weight converges to tLe correct opti-
mum value.

1200
A1 A2 A3'42 A 5-A6 A7-A8 A9 WEIGHT

CM KGS

Sheu & Schmit 17.92 90.16 72.13 0.0 71.67 1125.56 1100
Refrence 5

Proposed Method 17.88 89.98 72.32 0.0 71.58 1125.47

1000
Table 2. A comparison of results with those reported in

Refrence 5 for the five-node, nine-bar truss.

16 -WEI 0 4 8 12 16

CYCLE NUMBM

14 Fig. 8. Weight convergence history
for the nine-bar truss.

were generated for different values of the tip
12 load F. Reults, for a lead level of 40,000 g are

presented here, and these adlqutely demonstrate
the trend observed for other londs. Figure 9c
shows the optimal design for this lond using uni-
form circular cross sectional elements. Elements

10 are marked 'b' and 'Is' indicating if the corro-
sponding sizing criterion was strength or buck-
ling. Figure 9d shows the same configuration but

__,_- __- _ I with optimal tapered elements substituted for mem-
0 2 4 6 8 bars sized via a buckling criterion. As shown in

tie figure, a weight saving of 9.5%; is achieved
CYCLENUABM over the conventional uniform-member optimal

design.

To examine the variation of the optimum weight
Fig. 7. Weight convergence history with the addition of redundancy in the structure,

for the three-bar truss, elements were added between selected nodes. This
approach is one of adding 'seed' elements in the
structure and examining the resulting stiffne-s
increase vrr-ijs the penalty incurred in terms of n

FoEtI "e Tr".i. With the validation of the weight increase. Fig 1On shows the optimit truns
sizing algorithm complete, a fourteen bar planar with one redundant element. This reflects a
cantilever truss of Ref. 3 was selected as time weight decrease of 6%: over the correnponding opti-
candidate test structure. The initial structure mum determinate structuce. rurther w.ight ravits
and the loading condition were as shown in figure are demonstrated by the addition of two more
9a. This structure was statically determinate and redundancies in the structure. For this design.
had a fixed geometry. A large initial tip load of shown in Fig. lob, one of the original elem'ents
2,000,000 Kg was first applied. For this loading, drops out of the optimum configuration. As inter-
all members were sized by the material allowable mediate design with two redundancies yields an
strength criterion. As the tip load F was optimum weight of 700 Kgs.
decreased, the members continued to be sized pro-
portionately by the above strength criterion up to Here freedom was allowed in the design process
a value of Fr995,000 Kgs. At this load, the Euler by introducing the vertical locaticns of node%
buckling criterion, which depends on A o se 1.3,5 & 7 as additional design v'nrinblea. Thisresults in an opimlwegt fos Ka(Fg l
to the strength criterion dependence on A. begins results in an optimal weight of 7,9 K9, (fig. 10c)
to dominate the design. Four members with the as opposed to the fixed nodo design of 754 Kg.
lowetst compressi.m load demonstrate the onset of a Progressive incrense in weight savings were

linear elastic instability (Fig. 9b), dictating observed with the addition of redundnt elements
the need for an additional constraint in the to the free mode configuration. Fig. 10d shows as
design process. Severnl optimal truss designs optimal onfiguartion with four free nodes and

three redundant elcments Here, as in the fixed-

3- 
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node c.se, one of the original members drops out

of the final uonfiguration. 
4

t2xlOG kq 69"

MASS: W200 kg

(a) Fig. 10. Optimal truss configurations
1k obtained through addition of

redundancies to the fourteen
bar truss.

7*lA 9100 kg

(b, 4 An efficient schem e in the context of NLP meth-

1b b b odology is proposed for the optimal design of

Sb '-L b ,,elastic, redundant structures with strength and

buckling constraints. Numerical exa:,.ples demon-

b S b stra tenhowo the method, involving a conntrnint
redefinition, successfully overcomes certain prob-

SS 833 kg lems typical to such structures.

(c) sa scheme is applied to the design of a canti-
S410 /'k9 lever truss with strength and buckling const-
I raints. Optimal nonuniform crons section columns

are used for all elements critical in buckling, to

further enhance the weight savings. Permitting
node movement and the vddition of redund.iucies are

714 kq shown to lower the weight of the structure for the
prescribed design constraints. It is noteworthy

that the node e.,cursions in this configuration are

(d) relatively small. This can be explained on the
basis of nn efficient 45

° 
starting configuration

for tha truss. Also, although en increased depth

at the root would offer greater bending strength.

the weight penalty incurred as a result of
Fig. 9. Optimal configurations for the increasing length of members critical in buckling

fourteen-bar truss structure. limits such excursions. ror excessively high tip

loads, in which the strength design condition dom-

inates, larger node movement would be observed.

4 104 kq
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STOCHASTIC CONTROL IN STRUCTURAL DESIGN

D.G. Carmichael
Department of Civil Engineering
University of Western Australia

Nedlands 6009
Westera Australia

Summary ence equations are preferred over stochastic different-
ial equation models as the former are conceptually

teterministic optimal control has contributed to the simpler and linalytically and computationally more
field of structural optimization through the introduct- tractable. 'Difference equations correspond with the
ion of new concepts, alternative ways of viewing design so called discrete or sampled data systems while
problems and a systematic methodology for solving des- differential equations correspond with the so called
ign problems. It remains to show the applicability of continuous systems. Design constraints exist in a
stochastic control to the probabilistic structural problem formulation in order to ensure that the result-
optimization problem. Here the applicability is not so ing design solution satisfies such requirements as
self evident but its usefulness can be demonstrated. Code provisions, construction processes, manufacturing
The paper exa~nes open-loop, closed-loop, open-loop tolerances and the like. An optimality criterion
feedback and m-measurement feedback control policies (objective, performance index, merit function, ...)
and gives the optimal result for the general nonlinear provides a measure of how good a particular design
structural optimization problem. The special linear- solution is compared with other solutions. Example
quadratic problem is examined along with numerical criteria may be weight, performance, cost, ... The
approaches to solving the general nonlinear problem, general form of each of these problem components is
including the method of stochastic approximation. The detailed in the following section (Section 2).
design of members in flexure and compression is used
to illustrate the methodology A derivation of the conditions for optimality for the

igeneral stochastic problem is given in Section 3.
1. Introduction Generally it is seen, that some approximating numerical

process is needed to solve these general conditions.
The use of deterministic control theory is now well There is, however, one specific problem which admits a
established in the structural optimization literature, closed form solution, namely the so called 'linear-
Although the original introduction of the theory in- quadratic' problem. The form of the components for the
volved the designer in learning new terminology and linear-quadratic problem are given in Section 4 along
new concepts, the designer was rewarded with new solu- with the specific conditions for optimality applicable
tion techniques and a systematic methodology for prob- to this problem. Section 5 presents an alternative
lem solving [1]. The applicability, however, of stoch- view of the solution of the general stochastic problem,
astic control theory to the structural design problem namely one in terms of stochastic approximation. Ill-
has yet to be shown. The aim of the present paper is ustrationa throughout are in terms of beam and column
to show the applicability of the stochastic theory to members subjected to loading which is probabilistic.
structural optimization.

Stochastic control theory is the theory of control 
in 2. Problem Statement

the presence of uncertainty [2, 3]. Uncertainty may Consider systems whose states develop according to
arise due to unknown constant or parameter values of
the structural system, the environment or environment- x(kl) Fix(k), u(k), v(k), k] ()
structural system interaction (boundary and terminal k = 0, 1, ... , N-i
conditions and loading). The uncertainty is reflected where x(k) - (xl, .... x n) is an n dimznsional state
through characteristic system variables, the state, vector at stage k (tgtal of N stages),
becoming stochastic or random variables. The relevant u(k) - (uI, ..., u ) is an r dimensional control
theory therefore deals with stochastic difference or vector, r

differential equations. The prespnce of uncertainty v(k) = (v1 , ..., )is a vector of random quantities,
is also reflected in the design problem solutions which and F = (FI, ., n )T is a general nonlinear n-vector
are fundamentally different from the deterministic function of the arguments shown. Boundary or terminal
case. In particular the ideas of closed-loop and feed- conditions (probabilities) on the state at k = 0 and/
back control policies (as compared with open-loop or k - N are also required.
policies) are introduced in order to handle the uncert-ainty. Example Consider the beam equation

Probabilistic structural design, in common with all E d2- - p y [O,L]
systems design, exhibits characteristic variable group-

ings and characteristic problem components. The vari- converted to state equation form and discretized using
able groupings a~e according to a state variable/cont- a finite difference approximation over an interval
rol variable distinction where the state variables are size A. This gives
descriptors of behaviour, such as deflections, rotat- xl(k+l) - xj(k) + Ax2(k)
ions, internal actions, ... while the control (design)
variables are the quantities directly at the disposal x2 (k+l) - x2 (k) + Ax3(k)/u(k)
of the designer to vary. The characteristic problem x3(k+l) - x3(k) + AX4 (k)
components are a system model, design constraints and
an optimality criterion. x4 (k+l) - x4(k) + Av(k) k - 0, 1, ..., N-I

where the states are deflection, slope, bending moment
The system model is an expression of how the environ- and shear force respectively, 1he control is the beam
ment and system variables interact. Of concern here rigidity and the loading v(k) - p(k) is taken as being
are Markov assumptions on the state and system models 

a random quantity.

in terms of stochastic difference equations. Differ-
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Additional to (1), stochastic control theory includes process is repeated for the last three intervals, and
a measurement or observation equation, but for struct- so on.
ural design purposes, the states may be regarded as Define
being directly observable and hence this additional J N-1 E(G[x(N-I), u(N-i), N-!] + g[x(N)) I x(N-1),
measurement equation may be omitted. u(N-2)}

Constraints, typically, for the stochastic control JN-2 EG[x(N-2). u(N-2), N-21 + N-1 x(N-2),

problem are not handled separately. Rather, augmented etc., alf

optimality criteria are adopted using penalty function, etc., and the optimal return functions,L min
weightings or Lagrange multiplier concepts. This is SN-1 u(N- ) JN-1
in contrast to the deterministic problem where much
effort is spent in characterizing the effects of part- A min
icular constraint types. N-2 = u(N-2), u(N-t) N-2 (4)

Consider an optimality criterion (including any S A min J j3,4,..,N
constraint information) of the form N-j u(N-J), ..., u(N-1) N-J

N-1 Here SN- j is the minimum value of the criterion for

' g[x(N)] + J G[x(k), u(k), k] (2a) the j interval case, k - N-j to k - N.

k-O Applying Bellman's principle of optimality leads to

where g and G are scalar functions of their arguments. the recurrence relationship

Because x(k) is random through (1), J' is random and [x(N-J)] _ IG[x(N-J), u(N-J) N-J]
hence an unsuitable measure. A suitable deterministic N-j u(N-J)

measure (among others), however, may be obtained by + S Nj+l [x(N-J+i)] I x(N-J), u(N-J-i))
taking the expectation of J' to giveN-i

where x(N-j+l) - F[x(N-j),u(N-J),v(N-j),N-j] (5)

N-i
J = E{ g[x(N)] + G G[x(k), u(k), k] } (2b) The computations proceed by evaluating SNI [x(N-J)]

k-O
Special cases are those of weight, where J is a funct- and O(N-J) backward for j - 1 to N and proceeding
ion of u only, of serviceability where J is a function forward after using the known values for x at k = 0.
of x only, and others. Minimization of J is adopted The sequence 0(0), ..., d(N-I), where the superposed
without loss of generality. Probabilistic criteria denotes optimality, is the required optimal control
other than (2) may be postulated. sequence or policy. The end condition, from the

definition of S is
A statement of the stochastic design problem is then: S [x(N)] - E{ g[x(N)] I x(N), u(N-)) (6)
To determine the controls u(k), k = 0, 1, ..., N-I so N
as to minimize the criterion (2b) while satisfying the All minimizations are carried out subject to any
system model (1) (including any boundary or terminal constraints present in the problem.
conditions). In essence the problem is a multistage
decision problem if the analogy of decision with The result (5) implies that the optimal control policy
control is made. is a closed-loop control policy, that is the control

at any stage depends on the current state values while
A special case of (1) and (2b) will be considered also anticipating further information from the stages
later in Section 4. The problem is referred to as that have yet to be processed.
the linear-quadratic problem and is for the case
where the system equations are linear and the criter- Alternative classes of control policies may be defined,
ion is a quadratic. This is a particularly tractable and in the stochastic control literature are intro-
problem compared with the general nonlinear stochastic duced typically to simplify the computations over
problem and its solution can frequently be used as those involved assuming a fully closed-loop policy.
a guide to design. The solutions using these alternative policies are

necessarily suboptimal for the general nonlinear
3. Optimal Stochastic Control problem. The alternative classes of control policies

are the open-loop and feedback policies. Briefly an
The conditions for optimalirv for the general problem open-loop policy prespecifies the control to be
defined by (1) and (2b) may be derived using Bellman's implemented at each stage while feedback and closed-
principle of optimality. The optimality result is in loop policies incorporate new information during the
terms of a recursive expression involving conditional solution process. The distinction between feedback
expectations. It is assumed that the loading and and closed-loop policies is that while both utilize
system parameters, which are random, have known prob- information that is available at the current stage
ability laws or statistical moments. The loading and of the solution process, feedback policies do not
random system parameters are taken without loss of anticipate further information from the stages that
generality as being independent from one stage to have yet to be processed. In deterministic problems,
the next. (Dependence may be accounted for by augmen- 'future' stages are perfectly predictable and hence
ting the state space [2, 4].) This gives the state as there is no distinction between open-loop, feedback or
a first order Markov sequence and makes dynamic closed-loop policies. Two particular control policies
programming directly applicable to the problem. belonging to the feedback class are the m-measurement

feedback policy and the open-loop optimal feedbackAssume that the boundary values (probabilistic) of x policy. The m-measurement feedback policy is based
at k - 0 are known. Consider the computations for on using current stage information and anticipating
the optimization firstly associated with the last future stage information up to a stages ahead. The
interval from k = N-I to k - N where it is assumed open-loop optimal feedback policy utilizes only
that x(N-i) is known and it only remains to evaluate present stage information and assumes that the remain-
the control u(N-i). Consider secondly the computations ing stages follow an open-loop policy.
associated with the last two intervals where X(N-2) s-l

is assumed known and u(N-2) is to be evaluated. This
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Solutions to certain stochastic control policies exhi- C(k) - f R(k) + BT(k) M(k+l) B(k) J-1 BT(k) M(k+l) A(k)
bit a property known as the certainty equivalence prop-
erty. This prope is said to hold if the determin- M(k) - AT(k) M(k+) A(k) + Q(k) - cT(k) [ R(k) +
istic optimal control (using expected values for all B (k) M(k+l) B(k) I C(k)
the random variables) is the same as the closed-loop
optimal control. The certainty equivalence property m(k) - m(k+l) + tr[ M(k+1) V(k) ] (12)
can be shown to hold for the linear-quadratic problem with M(N) - Q(N) and m(N) = tr [ Q(N) V(N)
(Section 4). Commonly this property is assumed to
hold in order to obtain a ready, but necessarily sub- Similar, but more general, optimality conditions for
optimal, solution. (For the stochastic structural the case of A and B random are given in Aoki [2]. The
design problem with directly observable states, the equation in M is a discrete matrix Riccati equation.
so-called separation property of estimation and control The linear-quadratic problem exhibits the certainty
theory is equivalent to the certainty equivalence equivalence property. The uncertainties don't affect
property.) the control law but the performance of the system

The numerical solution of the general nonlinear stoch- may be strongly affected.

astic control problem is delayed until Section 5 where Example. Consider the design of a cantilever beam.
the technique of stochastic approximation is discussed. The relevant system equations are
The solution of certain specific control problems in
closed form is however possible; the most widely xl(k+l) = xl(k) + Ax2(k)
referenced being the linear-quaratic problem which x2 (k+1) = x2 (k) + Av(k)fu(k)
is discussed next.

with xl(O) = x2 (O) - 0. where the states are deflect-
4. The Linear-Quadratic Problem ion and slope, v is the bending moment and the control

u is the flexural rigidity. These equations may beThe general nonlinear design problem given by (1) and linearized about some reference solution given by
(2b) may take special forms, the most common and most x

0
(k), u

0
(k) and v

0
(k), k =f0, 1, ... , such that

tractable of which is the so-called linear-quadratic
problem. Here ;he system equations are x 

i 
x0 + 6x

u = u + 6ux(k+l) = A(k) x(k) + B(k) u(k) + v(k) (7) v = v
° 
+ 6v

k - 0, 1, ..., N-1
(together with boundary or terminal conditions on x at For small deviations 6x, 6u and 6v
k - 0 and k - N4) where A(k) and B(k) are matrices of FX 1 Fl 1 +r 6 [liul [v
appropriate dimensions. A(k), B(k) and v(k) are ran- + +dom variables assumed independent of k and each othe;, 6X2  = 0 1 6X2  v

°
A

and with known first and second moments. For v(k) k+l k k U_

white noise sequence properties are assumed, k

Elv~k)] - 0 (8) Consider as an example a criterion of the formE~v(k)] vT 0 (8) =EllT~vol() -N-i

EY(k) v T(j)] - V(k) kj J - g(6xT(N)( T)6 x(N + 6xT(k) Q(k) 6x(k) +

The independence assumption on v(k) can be altered by k0 6u T(k) R(k) 6u T(k)
augmuanting the state space [2, 4].
The quadratic criterion is taken as which may be used to give a desired response or rigid-

J - E[ xT (N) Q(N) x(N) ity by varying the weights Q and R.

N-i For this illustration let the reference moment be that
+ I x (k) Q(k) x(k) + uT (k) R(k) u(k) } (9) produced by a uniformly distributed load of 1 kN/m,
k-0 let the length of the cantilever be I m, made up of

100 subiatervals and let the reference rigidity be a
where the matrices Q(k) > 0 and R(k) , 0. quadratic as for the moment. Lat Q and R be unit

matrices.
Consider firstly the deterministic case. The result

&(k) -- C(k) x(k) The cacltosbeg in at k -100. HereTecalculations befna
T(k (10 -Ck ) 0.Hr

Six(k)] x x(k) M(k) x(k) () 100)

where C and N are r x n and n x n matrices, can be l
0

shown to hold [I, 5) using any of the several optimiz- At k - 99

ationmthds available. This result implies a feed- 9 1 0.011 [
0  1 R(99) -[1],

back or closed-loop control policy. However the mat- A(99) 
l  , B(99) -

rices C and M, which depend on A, B, Q, R and on the " 1 5x10. 2 5 0

state boundary conditions, may be calculated a priori, 1I

and hence the result is equivalent to an open-loop Q(99) =  J
control plicy giving, through the use of (12), 2 0.01 0I

For the stochastic case, a result similar to (10) can C(99) - [0 0.4xl0 3 ] 
and M(99) 0 1.8

be shown to hold [21. For the special case of A andL I
3 deterministic, the relevant relationships are At k - 98, 97, ..., 0 the routine is repeated. At

0(k) - -C(k) x(k) k f 0 the known boundary values of the state

S[x(k)] - xT(k) (k) x(k) + m(k) E -6X(O)

The uncertainty is reflected in an increased value 6x2(0) 0

(the scalar m(k))of the optimality criterion over the
equivalent deterministic case. The gain matrix C, the are used to give the control 6u(O). The process then
astrix N and the scalar m may be computed recursively works forward using E[6x(k)1 and 6u(k) together with
from [15
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the system equations to derive E[ 6x(k+l) ] which in 0 Hi - + AX2 (k+I) Pi 2 (e)
turn defines 6u(k+l). The whole process is then 3u(k)
repeated up to k - N.

Equations (a), (d) and (e), together with the boundary
5. Stochastic Approximation values on x and A, represent five equations in five

unknowns xj, x2 , X1 , A2 and u. Following their solu-

The general stochastic problem typically requires a tion the control is updated according to (13) and new

solution by numerical means and some form of approx- boundary values for x, and a new value for P are

imations. Various schemes have been proposed for the selected. The whole process is repeated until a
solution of this problem [2, 3] along the format of solution sufficiently close to the optimum is obtained.

the general conditions for optimality outlined in Sample calculations and results for framed structures

Section 3. An alternative and promising numerical are given in [7].

solution scheme is that of stochastic approximation 6. Closure
[6] which may be regarded as a stochastic gradient
algorithm. The problem of the probabilistic optimal design of

structures is one of an order of magnitude greaterFor a control u(k) to minimize (2b) while satisfying difficulty than the deterministic problem. However,
(1), an iterative algorithm is sought such that as deterministic control theory has demonstrated its

ui+l ui - K 
i  (13) usefulness and applicability to deterministic struct-
u 

i  
ural optimization, so too is stochastic control theory
applicable to and useable for the probabilistic struct-

where the superscript i is the iteration step, K is ural problem.u
a 'gain' term and H is the Hamiltonian of the problem It is seen that the general nonlinear stochastic
defined by (1) and (2b) with the random variablestaking some value in their sample spaces. iConvergence problem requires a numerical solution usually involv-
of the solution cain beho to occur if K is chosen ing approximations of some form. Several methods andu philosophies of solution were outlined in this regard.
to satisfy certain requirements such as However there is one stochastic problem, namely the

linear-quadratic problem, which does admit a closed

lim K 0 Ku (K form solution and may be used as a guide or benchmark
K u = 0 = , (K)2 (14) solution to related problems.1=1 i=l

When employing stochastic control theory, all struct-
A suitable Ki value is c/i, where c is a constant, ural variables retain their physical significance

u whether they be behaviour or geometry/material type

but the convergence rate of the solution may te variables. Similarly the design problem components
improved by alternative or mixed choices of K . retain their distinction and meaning.

u

Example Consider the design of a column, assumed for References
illustration purposes to be pinned at each end and
axially loaded. The relevant system equations are 1. Carmichael, D.C., Structural Modelling and

x1 (k+1) - x1 (k) + AX2(k) (a) Optimization, Ellis Horwood (Wiley), Chichester,xl~kl) =Xl~k + A2(k) (a) 1981.

x2 (k+l) = x2 (k) - APxj(k)/9u(k) k - 0, 1, .., N-I
2. Aoki, M., Optimization of Stochastic Systems,with p[xlt0)] and P[Xl(N)] known. Here the states

are deflection and slope, P is the applied axial load Academic Press, New York, 1967.

(assumed random with a known probability law), E is 3. Bar-Shalom, Y. and Tse, E., Concepts and Methods
the material modulus of elasticity and the control u in Stochastic Control, in Control and Dynamic
is the column moment of inertia. Take t~e optimality Systems (ed. C.T. Leondes), V.12, pp. 99-172, 1976.
criterion as one of area (- constant x I S

N-1 u (k) (b) 4. Gelb, A. (ed.), Applied Optimal Estimation, M.I.T.Press, Massachusetts, 1974.
k-0

The solution process starts ly sampling the distribu- 5. Sage, A.P. and White, C.C., Optimum Systems
tion for P to give a value P and sampling the distrib- Control, Prentice-Hall, New Jersey, 2nd ed. 1977.

iutions for xj(0) and x,(N) to give values x,(O) and 6. Sage, A.P. and Melsa, J.L., System Identification,
Ix(N). The Hamiltonian for this situation is Academic Press, New York, 1971.

H - u.(kc) + Al(k+l) [ xl(k) + Ax2 (k)] 7. Carmichael, D.C., Probabilistic Optimal Design of
Framed Structures, Computer Aided Design, Sept.,

2 (k+1) [ x2(k) - APi x((k))u(k)j 1981.

where Al and A2 are costate variables.

The costate equations and costate boundary conditionsfollow, - "
lA(k) - AI(k+l) - AX2 (k+l) P /Eu(k)

A2(k) - AX1 (k+1) + A2 (k+l) (d)

with A2 (O) - A2(N) - 0.
The control is chosen to minimize the Hamiltonian.

For a stationary value
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- STRUCTURES

N .V.Banichuk

Institute for Problems of Mechanics, USSR Academy of

Sciences, Moscow, U.S.S.R.

SMWARY tabulation and storage of the obtained opti-

-e paper presento results concerned with the mal solutions of multiparameter problems.

use of perturbation method in optimal design Therefore the tools which are given by ana-

ot structures. An essential attention is lytical methods should not be forgotten. To

given to optimization problems described by obtain more powerfull methods for optimal

non-homogenuous boundary value problems for structural design it is natural to combine

ordinary and partial differential equations. numerical calculation with analytical tech-

Different schemes for application of pertur- niques.

bation method in eigenvalue problems and in The perturbation methods are proved to be

two dimensional optimization problems with very efficient for analytical researhes of

unknown boundaries are described. Some as- nonoptimal problems. These methods are the

pects of obtaining successive approximations most powerful tools of applied mathematics.

to optimal solution are given. The efficien- Application of perturbation methods permi-s

cy of perturbation technique application is to obtain the approximate analytical repre-

illustrated by solving some particular prob- sentation of solutions of very complicated

lems. Some conclusions concerning practical linear and non-linear boundary value prob-

application of the method and accuracy of lems both for ordinary and for partial dif-
used two-term expansions are drawn.' ferential equations. Perturbation methods

are widely used for obtaining the asympto-
INTRODUCTION tics and analysis of singular points, for

determination of analytical solution of the
Optimal structural design problems are very test problems. It should be noted that in
complicated. Thus, in some cases optimal some cases the perturbation techniques are
design is reduced to solving variational the foundation for development of computing
problems with unknown boundaries and diffe- methods. Essentially these techniques are
rent types of singularities. The essential the foundation for all methods of succesive

difficulties arise from the non-linear natu- approximations (Ref. 2).
re of the structural optimization problems. The application of perturbation methods in
Even optimization problems for linear elas- optimization theory and, in particularly
tic structures are non-linear. The non- in optimal structural design were started
linearity of these problems are explained by comparatively recently and at present these
non-linear nature of optimality conditions. methods are not widely recognized and rou-
Complexity of the structural optimization is tinely employed. Only a few papers have
the ain reason why today the uasic attenti- appeared in the literature, concerning app-
on is given to development of numerical lication of perturbation techniques to op-
methods and use of coputers. Application timal structural design. Apparently a paper
of techniques based on numerical optimiza- (Ref. 2) was the one of the first, where the
tion methods (linear and non-linear prog- perturbation method was used for determining
raming) and simulation on computer give us the optimal solution. Note a paper (Ref.3)
the possibility to obtain the optimal so- where the perturbation method was applied
lution for actual structures. At Present to optimization of weakly controlled mecha-
our hopes are connected with development of iical system, described by ordinary diffe-
numerical optimization methods and computers rential equations. Applications of perturba-
Undoubtedly thatin sequal the high-speed tion technique to the optimization problems
Computers will also play a basic part in with partial derivatives and unknown bounda-
optimal design of structures, ries were given in papers (Refs.L, 5). Per-
However, it should not be supposed that the turbation methods were used in (Refs.6-10)
application of the numerical optimisation for solving optimal problems of hydro and
methods is always effective. For a wide aeroelastisity. Another examples of applica-
class of problems numerical approaches don't tion of these methods to structural optimi-
pexsit to establish general properties and zation are contained in book (Ref. 8). Note
to study the typical singularities of the also a recent paper (Ref. 11) in which the
optimal structures. These approaches are optimal problem on reinforcement of the hole
proved to be non effective to show the contouv in plate was solved by the pertur-
principal features, determining the shape bation method.
of the optimal structure, and to investigate
the solution on basls prareleser. As an Note some mthodical aspects of perturbation

example we shall indicate the sultiparameter technique application to the structural
optimal design problems. In this case for optimization rble . Lot state vector-
investigation of optimal structure and ana- function u(x and control vectqr-function

ysis of it's sensitivity to disturbances h(x) be defined on the do-ain 2. in s-
it is n ssary to lotuofacmpu- dimensional space. Let J denote the oti-I in necessary to prform a lot of opu ixed performance criteria and l(h, u,
tations. It is worth whille mntioning,that hiudeoracri te ane 1 hal
the essential difficulties arise from the J2 be the intepal
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functionals depending on h and u Dimension of v is equal to dimension of u.

J = F(iJ 2, o'.r )  System of relations (2) - (5) represent the
Ji= i(h,u,Ux)dx  (1) closed problem for determining h,uv,AX .

Suppose that the solution of the optimiza-Equality t'pe constraints are imposed on the tion problem exists for any _ 4 1 , the
values of i  differential equations and boundary conditi-

ons depend analytically on F and that the
F(JJ,°°°,J) = 0 solution of the problem with t = 0 is

l92=k (2) known or can be obtained by means of simple
1, 2,.o. k analytical or numerical technique. Then the

solution can be represented in the form of
where F, , g are given functions of the power series with respect to & for

e small & . Since the differential equationstheir ar Mdnthe Function u satisfies the and boundary conditions depend analyticallyequalon andtheboundary conditions of the
boundary value problem on parameter f_ and the solution is deter-

mined through analytical procedures, then
L(h, )u =f ) it is naturally to suppose that the soluti-on is analytic function of E and that the

Here L(h, F) is the operator of differenti- application of perturbation technique is
ation with respect to space coordinates, f correct.
is vector-function describing, for example, The values h, u, v, . and J will be
the external forces applied to the structure.
Further we shall consider only the =all sought in the fo of series expansions with
deformations of elastic structures and so L respect to the small parameterE,
will be a linear operator. Coefficients of l(x) + e h2(x)
the operator depend on control function h =h
and small parameter F . Let us write also 1 -2 2
the equation for small variations L(h,f)Su+ u = 1OW(x) + &u (x) + _ u2(x) ..
+ U(h,u,E ) Sh = 0 corresponding to the v vo(x) + Lv(x) + &v 2 (x) +.. (6)
equation (3). Here Mhu is operator= +
applied to the vector h = 0 oear

The optimization problem consists in finding 1 ,jo + l + 2  
..

h(x) amond the functions that satisfy the + J+
constraints (2), (3) such that the funct-re vales don'tonal J is minimized ere and ho, u 0 , o J , 0o-te

For cptimization problem (1) - (3) let depend on ; ahe opiito problem for
us write the necessa-y optimality conditions slto fteotmzto rbe o(see, r eeRe solution ofTO T ta the basic relations forhswri t t the series (6) mist beV eample, (Ref N 8)) substituted into the equations (2) - (5).

, (h,u, ) = 0 (4) The next step is to expand (2) - (5) for

small f and to arrange into groups the
coefficients for each power of e . Since

athese equations must be satisfied for arbi-
. 1 f trary'values of F and the sequence of po-

wers ofea linearly independent, then the
coefficients at any power of L are equal

where D= P + NF, +.+ F and to zero. Usually we obtain comparatively
k  simple equations for desired functions.

*(hu, ) - operator which is conjugate to These equations must be successively solved.M(h,u, ) Optimality condition ( ) connects Original optimization problem is reduced tothe values of state function ( control varia- a set of more simple problems. Solving theseble h , Laran multapleers f t , to v...i problems permits to deCtsine the optimale and conjugatae liale v . JA .ange solutionwith any desired accuracy. So the

muliipliers correspond to conditions (2) and zeroth order approximation pb the solution
are determined through these conditions. of the problem
Conjugate vector-function v(x) is determi-
ned as a solution of the boundary value prob- L(h° , O)u° = f , (7)
lem for equation L*(O,)v + YWhu 0, A0 ) =0

LCh, E )V fh'uA) =0 (5) t(hou0
9 0)v + (hO,u, A0)= 0

__ hiuo' 4 JO-.). 0hu o0

4.,-- 3 x, J = J (ho, uo)

with a ropriate boundary conditions (see and for deotining the first approximation
(Ref. U). Here the operator L(h,f ) is we have
conjugat* to L(h,t ) and s is the dimen- L(ho,O)ul + X(houoO)hl + E(h°,u 0 ).O (8) K
sion of a vector of space coordinates.
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L*(J&O)vl + y OU ,,' )hl+4hOOf)uak to be directly proportional to the value of
(I(h-,v-) =0 the beam deflection w with the proportio-

S(hou)X nality coefficient C . Let the beau have
rectangular cross-section of constant widthMe(hO,uO,O)vl + 0(hO,uO,v o , e )hl + b and variable height h = h(x)(-l x 6l).The lenght 21 and the volume V of the

+ fh,u ,v , )U +1 h0 ) + beam are assumed to be given. It gives riseJ to the isoperimetric condition imposed on
+ k$(h°,u°,v ° ) = 0 the cross-section area distribution S(x) =

-' = bh(x).

1When the beam shape (i.e., the function
2' Jo) h(x)) is varied, the value of the integral

stiffness will change. The optimization
A(ho oh , u /O . problem consists in finding the functionBy means of 0u I X )h h(x) , satisfying the isoperimetric conditi-

y&hOu o, f )l - Xq9  t.. on and maximizing the integral stiffness
0 0) . O £ we denote the function with respect to h . In the casey u ;k . (u u we denote the nder consideration the maximization of the

expressions, obtained as a result of expan- integral stiffness functional means the
ding of the equations (L), (5) and separati- maximization of force value P which indu-
on of the me mers1 which are linear with ce the given deflection wo at the point
respect to ru and31

ra of load application. Let us write the basic
There is also another approach to solving relations of the problem
optimization problems by perturbation met- t
hods. In the frame of this approach the j 1 S 2 + cw2

next operation are carried out. Desired =
variables h , u, J, J, of the problem
(1) - (3) are expanded:in power series with
respect to small parameter F_ . Optimality (Dwxx)xx + ow = q , D = EI =A- Ebh 3

condition and the equations for the conjuga-
te variables are not considered at the
first stage. The expansions for h, u, J, (w)x= 1 = (Dw,,),= 1 = 0 w(O) = wOJ are substituted into the relationships
()-(3) and the coefficients of like power
in F_ are summed and equate to zero. Then
the optimization problems for the zeroth, 8Sdx = V , 8= bh
first, second sad more higher order appro- A
ximations are formulated. Zhe problems con-
sist of otimization of the functional where 3 is the Young's modules of the
Jo, Jl J ..* with respect to ho, hI, h2 , beam material; I is the moment of inertia
.... It this stage Lagrange multipliers of the beam cross-section; w , w are
and the conjugate variables are introduced respectively, the first and ts segad de-
and the necessary optimality conditions are rivatives of deflection function w with
derived for every problems to be solved. respect to the variable x . The first re-
This approach &s completely equivalent to lation (7) is the equality of the work pro-
the approach 8iscussed above. There are only auced by the force on the displacement wo""oogical distinctions between these to the potential energy accumulated by the
two approaches, beam and the elastic foundation in the de-

APPLICATION OF PERTURBATION METHOD TO formation process. Note that the problem
OPTIMAL DESIGN PRo1LT WITH ORDINARY of weight volume) inimization for given

value of integral stiffness and the problemDIFFERMTIAL EQUATIONS (9) are dual. The solutions of these prob-
lems can be obtained one from another byConsider the problem of optimal design simple scaling. Optimality condition forof the beam lying on elastic foundation the problem (9) and dual optimization prob-(Fig. 1). lem can be obtained by usual variation tech-

nique and has the form

Here _ _ dentes the Lagrange multiplier
-" ". " X corresponding to the isoperimetric condition.

Using the optimality condition (10) let us
obtain the solution of the formulated prob-

pig. I lem in the case of small C . Apply the
perturbation technicue for determination ofThe bea is sepl supported at the points unknown variables* With this purpose let

x- of the x axis andis loaded us represent h, w, ;k, P in the form of
at the midpoint by the concentrated load series expansions with respect to parameter c

- (x, whre 5(x) is Dire func-
on.TiO o4ndaton oacGion is supposed
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1 2

h = h°(x) + ch x) + ch ) . perturbation methods is in a good agreement
,+ cv(x) + c 2 w2 () + with the exact solution found numerically

w°(X) l 2 (Ref. 8) with application of the Euccessive
optimization algorithm. Note, that the re-

+ + C ... sults of calculations for finite c are
S+also presented in (Ref. 8).

APPLICATION OF PETURBATION U6THOD TO
Substitute these expansion into the basic
relations and equate the coefficients of like THE EIG VALUE PROBL2
power in C . For detraining the unknown
functions of zeroth order, corresponding The perturbation technique is very effecti-
to the case of absence of foundation reac- ve for the optimization problems governedtion (c = 0). we obtain the system of equ- by non-linear eigenvalue problems, for which
ation, which solution has the form (the closed solutions cannot be expected. As an
solution is written for tefr(h example of the perturbation technique ap-

plication to design of structures, described
by the eigenvalue problems, let us consider

- the opti-al problem of a wing of minimum
weight under aeroelastic constraint on ai-

(ii) leron efficiency (Ref. 10). It should be
2noted, that the decrease of elastic effici-

PC = 6 ency of aileron is one of the basic aeroe-
lastic phenomenon, that make worse the ma-
neuverability characteristics. The purpose

wO= w(l - x)(3- 2T- i),- o_2 of the problem consists in an investigation1 8bl of this constraint influence on optimal dis-
tribution of structural material along the

Taking into account the properties of the wing span. Suppose that the wing has a large
zeroth order approximation irt us write the aspect ratio (Fig. 2) and for determining
boundary value problem for detrmining the wing deformation let us use the beam model
firsr order approximation of the wing structure.

I-Cho)[h W h ] + =0

Wl(O) = W (O) = wi(C) - 0

(wX(h°)- + ow2l(h°)) x=l- 0

h.i + how' S hldx =0+hxx =

wo1  1 0C 1 EgV + S(wo) 2dx)
0

Detrmine the functions w1  and h1  using Fig. 2
the equations described in the first and
fourth line. The constants of Integration The aileron in supposed to be rigid. Aere-
and the value ;4 are detrained through dinamic strip theory is used and the doai-
boundary conditions and isoperimetric con- nating contribution to the torsional stif-
dition. As a result we obtain the correctio- fness comes from the skin, the thickness of
ns to the thickness distribution and the which is assumed to vary along the span.
value of the force (in the first approxima- Thickness distribution h = h(x) along the
tion) span is considered as the "control" functi-

on. In terms of no-eimensional variables
hl 2bl 6  (l -x2 (see (Ref. I0))th. -quilibrium equation for

= - wing with aileron in gas flow and the boun-9sv2  1 dary conditions have the form

-* T) El P 1 -wo (12) (he E) + me. d

Prom the obtained formulas (11) (12) it G(O) - (hex)xl = 0
follows that the thickness of the beam at
the middle part increases, but the beam where e is the angle of twist of the wing
thickness at the ends decreases (beam ends relative to elastic axis ; is nondiaen-
become pointed) when the parameter C inc- sional pressure head play1Ag the eigenvalue
reases* role in the problem under consideration; X

is the basic parameter depending on aileron
The first approximation determined by the efficiency and aerodynamic coefficients.
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The dependence of a on these variables is 1 ') o
presented in (Ref. 1O)where it is also shown = o d - (h )
that the parameter X is small for cases 0
whica are interesting in practice. 0
Optimization problem consists in seeking the X() = (hl9 o hX + x=l -

thickness function that minimizes the weight
functional eo(),d = 0, o,

J h dx - mnh L 0 1 0

and is such that the minimum positive eigen-
value yA is equal or greater than given From the expressions for e o end thelimit value JA.0 ( fo)' 0) for fixed value ofe rlast equality (17) it follows t at

Necessary optimality condition has the form (1 + Y; = .. As far as e'(0) -

ex Y X (15) = (i(o) = 0 , then L'+ ' = x .et us
multiply both sides of this equation by eo

where the conjugate function satisfies and integrate with respect to x from 0 tothe following equation and boundary conditi- I. Using the (17) and the boundary conditi-

onsons for function i ,we obtain = 0.

(h (16) From the boundary conditions for and
+ = d (16) at point x = 1 it follows that hl(1) o.

0 Let us sum the equation for 6 , and use
f() = (h (?X)x=l = 0 the relation G = - d. and the properties

of zero order approxim tion. Integrating the
resulting equation and taking into account

For the stated optimization problem the next the boundary condition h(l) = 0 , we obta-
normalization conditions are used in

4cd hl
2' *( -~ = 42" - 3X2)

S Deterine the function 19 (x) To this endowe use the (1?), (19) and transorm the
equation (18) (f rst line) for to theTaking into account that the parameter form 1/2((1 - e)ti ) , 1 = / , where

is small let us use the perturbation tech-
nique and represent the solution of the op- #m (4 - 6x)/2, x -(0, 1). Note that
timal problem in the form of series expansi- the equation ((l - X2)eX) + e = 0 ,ens with respect to small parameter &Z1s 2 r (-1,1) represents the Legendre equation

h = h°(x) + Yhl(x) + ah2(x) + ... The Legendre polyno ials and the quantities
= i(l1 + ), i = 0, 1, 2,o.. are respec-

(.) " (x) .. tively the eigenfunctions and eigenvalues
0of this equation. The Legendre polynomials

= °(x) + ae (x) + 2e(x) + ... with odd indexes satisfy the conditions

P 2i+l(O) 0 . i = 0 1 2,.... Let us de-
= + + .+ + ... fine the funcion i9(x5  for xf-1, 0].

Using the odd extenion of a definition of
Substituting the expansion into the relati- functign 4/ for X - C -1, 0 J we represent it
ons (13)-(16) and normalization conditions and e2(x) in the form of series expansions
-and equating the coefficient of like power with respect to Leagendre polynomials. Per-
in ; we obtain the relations for determi- forming the standart calculation we obtain
ning the zeroth, first, second ... order
approximations. In particular, for the zero- 0_
th order approximation we obtain the same % (-l+il(1 3 )l 30... (2i-l)
relations as for the optimal problem with e . 61(2i+)(i) 21H P2+(x)
divergence constraint (Ref. 12). The solu- - i
tion has the form It is possible to prove that this series ando  . .the series composed from the derivatives are
h=--o-9 1 r- (17) absolutely and uniformly convergent. Conse-

quently ()L(X) is continuously differen-
For determining the unkn wn function of the tiable function.first order approximation we have Similarly, the solution of the boundary va-

1 lue problem of the second ordeE approximati-
(h ) e _oLe o 0, - (h'L (18) on furnishes the quantities h . e .o Y J2 (Ref.10). For the sake of br:ty

e(hl + ho0 G )x 0 we present only the final result for nondi-
elo) M1  h mensional weight, calculated to within the
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the second order terms Therefore the following conditions for the
zeroth first and second order approximations

j = + XJ+ e- aries nrom the equality (u, r a 0 nd

S( the expansion (22)x,y )  0 1

Comparison of the solution obtained by means uo(y O)-u(xty )y

of perturbation technique with the direct U2Cx,yo) o o 2 -1 o0 0 1 2-
numerical solution of the optimal problem u :( (X,y - (X,y)( ))
shows a good agreement between analytical
and numerical results, contribution of the 1
second order approximation to the functional (lY°Xy
being negligible. Thus, with a high accurasy
we can take the first order approximation It should be noted, that in applications of

this method to shape optimization different
h 1 JA(1-i) I 1 + x -

4  (7 + 3x)J degenerations are possible. Investigation of
20 these cases lead to certain purely mathema-

as the solution of the optimal problem of tical problems which havn't been solved. We
aileron efficiency, shall not consider singular cases and pre-

sent here general mathematical comments and
APPLICATION OF THE PERTURBATION TECHNIQUZ proofs. We confine this discussion only to

illustration of perturbation method possibi-
TO THE OPTIMIZATION PROBLEMS WITH PARTIAL lities for the example of a well-posed prob-

DERIVATIVES AND UNKNOWN BOUNDARIES lem of cross-sectional shape optimization of
a twisted bar.

An effective approach to solving two-dimen- Consider a homogeneous isotropic bar with a
sional optimization problems with uknown doubly-connected cross-section subjected to
boundaries is a perturbation method. Appli- the twisting (Fig.3).
cation of this method implies expansion in
power series both state variables (displace- rments strains, stresses, etc.) and control
functions describing the shape of the body.
A shape optimization is reduced to the set
of more simple problems and the solutions of
these problems permits to determine the best
shape with any desired accuracy.

In the problems with unknown boundaries
these expansions are similar to the expansi-
ons in the problems with unknown coeffici-
ents of equations. Peculiarity of the prob- Fig. 3
lems with unklnown boundaries consists in
expansion of boundary conditions and optima- Let ro and F denote, respectively, the
lity condition on the unknown boundaries, inner and the outer boundaries of the region
For these problem not only the state variab- a . By means of 4 and K we shall denote
les, defined at the points of the boundaries a stress function and torsional rigidity. In
but also the functions giving the position the sequel it is convenient to employ a cu-
of the boundary itself, must to be expanded. rvilinear coordinate system a , t related
Thus, we must use the double expansions. Let to the contour r. . The coordinate t of
us explain this on example. Let the condi- a point P ( 'is the distance along the
tion u(x, y) = 0 is given on the unknown normal OP from the point P to the con-
boundary r, described by the equation tour r, , while s is the distance along
y = y(x) . Aere u = u(x,y) is the unknown the cogtour measured from a certain fixed

state function. Let us represent the functi- point 01 to the point 02 . Let h = h(s)
ons u and y in the form of series exa-
nsions with respect to the small parameter is the equation of the contour r and R

= R(s) the radius of curvature of the con-
tour r, and 1. its length. It will be

u( ) u(x,y) + u2 ) U .+assume that ti bar is thin-malled and that
(21) the minima radius of curvature is of the

y = Y°(x) + E y3(x) + 2( + • order of the contour length 10 (considera-
tion is limited to only weaklj curved con-

Taking into account that the functions ui tours), i.e. maxsh(s) = HQ( o
argument y is also represent in the form min2R(s) ev 1 Consequently Fa H/l o is a
of series (21) we shall write the following small parameer ( <Kl).
full expansion for u The inner contour r0 is considered to be
u - u°(z,y 0 ) 0LC ul(x0yO) 1 (xyO y1]  given, but the outher boundary is to be de-

U Z~)+ IUX,0 5x 7 )% termined. The optimization problem solved
^ o + (+2 below consists of seeking a function h(x)e[ u2(x,yO) (x,y°>y¢ u+(

S satisfying the isoperimeric condition of con
stant cross-seotional area of the bar and

+ 0 4,(xO )(Yi)2] + .•• *maximizing the torsional rigidity I
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The optimality condition for this problem is
obtained in (Refs. 4, 5, 13). It means that (9 , h

the derivative of stress fucin( ln hld o 2
the normal is constant along the odntour r * (s,O)ds = 0 , 2h ds = do

Y 0 a
In terms of the dimensionless variables equa- and the second approximation that of tae
tion for stress function ( , boundary con- problem
ditions for W onr 0 ard r , Bredt
condition ,optimality condition for unknown ',.. - [ t + 2t]
boundary r isoperinstric condition of con- t-T
stant cross-sectional area of the bar and (27)
foriula for torsional rigidity take the form (s,0) = c2 , k2(,ho) . l + 0 h2
(ref. 4) ? f/

(T(t)t + (T- 1  -2kT (24) (2 -0)h1 -

(so)=C, ((s,,) o = h2d
p (sh) 2  T 1 + - t  hI s =

0 0

h2 ohl d
\.Ds,0)ds s-2So $(h + )do S Fro th _d

0 1 A From the zeroth, first and the second order

K = 2 (F T dtda + CSo ) approximate solutions we can define the
= ' torsional rigidity of the bar

where S is the area of domain So, SO  +FKl+e K 2 + 2COS+
is the area of the domain bounded by the 0
contour r , C is the unknown constant de- o oC
termined With the help of Bredt condition, + 2F( 55 (fdtds+ CS80 ) + 2 ( dtds+
is the unknown Lagrange multiplier corres- 0 0 0 0
ponding to the isoperimetric condition. + c2So) + O(E)

The solution of this problem w ll be sought
in the form of series expansions with res- Let us proceed with the solution of the
pect to the small parameter e- above boundary-value problems. We start

"P~t' ,~4 2,.,2with the zeroth order terms. From equation
T, = Y(Sst) + V.. (5st) + eT(st) + and boundary condition (25) (the first

line) we find the function.Using the obta-
h(s) + F hl(s) + eh2(s) + ined expression for (0o and the optimality

oonditi8n (25) (the decon line) e deter-
aC + F° F.C1  min.Z 2 +,. Le h . Thus we h=ave h" = CO°/1X I

'0 = Co(l - t/h o ) . Substituting the
A += E+ * *as obtained functions into the isoperinetric

equalities (25) (the third line) and per-

£ + 'E Il + +forming elementary travnformation we find
K the constants )' and C . Finally, the

Fhszeroth order solution takes the formS For finding the zeroth, first and second
order approximate solution it is sufficient o t 2
to substitute these expansions into the re- h S 2SSo(I ) t K° . 4SS
lation (24) take into account (2j)-(23),

tsandt equa. the coefficients of like power 0 C° = 2 s (O
in he resltng boundary value problems -2S C=28S

serve to determine the unknown functions.
Thum, for determining the unknown functions Thus, in the zeroth order approximation for
of zeroth order we have hollow bars with fairly shallow (large ra-

0 (9 0 O) dius of curvature), inner contours the
.0 ,  ) ot(s, h°) • 0 optimal bar will be of constant thickness.

(25) Determine the values of the first order ap-
YP(s, ho) - proxiatioa. To do t iis we integrate the
t equation (26) forwo and determine the

constants of into eation from boundary con-
( ' O) n  -o 5 d  . 8 ditions. Then using the optimality conditi-

00 on and the isopprimetrio conditions we find
Similarl the first approximation is the tie function hL and the constants ;k,
solution of the boundiy-value problem C . As a result we obtain the following

expressions for the unknown values of the

-2., 0 ) * L(s,0) *C" (26) first order approximation

____l ll._i__. ._, L___II. ...____- -ii. h -- 1. ..3. . - -



I 2rameter. By the same token the domain of
Z1t2 ( . + (29) applicability of obtained solutions is found

essentially more wide, that enhance the efficciency of the method and permit to use it

+ $2 2So82 under the constructing quasioptimal soluti-
Sons for finite values of the parameter also.

h K = oS2(1 S o his paper is concerned with optimizationM 0 T problems with distributed parameters, for
1 2 which the state variables are described by

C S2(1 - 2So ) , = 2S(1 - S O  ) the differential or integro-differential
0 0 equations. However the perturbation tech-

nique is applicable to the optimization prob
The influence of the internal contour curva- les with difference or difference-differen-
ture on the optimal form of the external bo- tial equation, arised under the use of the
undary is described by the formula (29) incremental approach.
for h . Thus, to within the terms of the
order f , we have The possibilities of a perturbation techni-

que are not exhausted by the optimization
h = ho + F h1 = S(1 -f- ) (30) problem considered here. Likewise, the per-

turbation technique may be used to solve the
From the formula (30) for h it is evident probldms of optimizing the thickness distri-
that the wall thickness of the optimal bar butions of a thinwalled structures. Various
decreases as we move along the inner contour other constraints can be accounted for wit-
in the direction of increasing curvature. hin the framework of the technique used.

In order to determine the terms of order El In this paper attention is focused on appli-
it is necessary to integrate the equation cations of dhe perturbation technique to the
(27) and to find the arbitrary conatants of optimization of structural elements. Note
integration from the the boundary and the that the use this method for optimal design
isoperimetric conditions. Finally, we get of complex structures is also perspective.

Really, we can often conventionally devide
£I the real complex structure on parts, weakly

2 - ' R- R 25d _4 2 (. R2 interacting with each other. Then by means
h = 2(°9 R ) (31) of perturbation technique the original prob-

2R 0 0 0lem is reduced to a set of more simple opti-
mization problems for separate parts and to

Then we determine the value 2 . Using the synthesis of the structure from these parts.
obtained expressions for KO, K , K and Detection of "weak" relations for complex
returning to the original dimensioned quan- structure and splitting c itcompose the impor
tities, we get the following expression for tant problem of decomposition. The problem
the torsional rigidity of the optimal bar of decomposition is one of the most actial

modern problems in structural optimization.
So ~ 2 ~ At present approaches to the optimal design

So + 4 2. of complex structures, based on decomposition
1 2 0 0 and application of perturbation technique,0 a (32) are only started to develop. However their

t(2) efficiency is doubtless.
( 5i)2 e Sl - o o + 1' The perturbatio" methods applications are not

0 0 restricted to such cases, when the basic re-0 0lation of the problems are contained the
SOME NOTES AND CONCLUSIONS small parameter in eilicit form. There are

a lot of methods permitting to introduce the
The efficiency of the perturbation methods small parameter into the problem artifici-
was illustrated above on example of solving ally. One general method of introducing the
of concrete problems. Considerations, which small parameter into the problem was discus-
were carried out, and also the results of sod in (Ref.l). An affective schemes of the
other works show that the one terms of expan small parameter method, intended for the
sions (the zeroth and first order approxima- nimerical solution on computers, are also
tions), determined by the perturbation tech- given in (Rf.1).
nique, give us a good approximation to the
exact solution. Thus, for practical solution One of the basic part of optimal structural
of the problems it is possible to restrict design is the sensitivity analysis. The tra-
our calculations to first order approximatio- ditional method of design sensitivity analy-
no tJW highaccurasy being achieved as a sis is to simply change the design, and
ase bireanalyze the structure. Analytical and

numerical aspects of design sensitivity ana-
Another important property discovered under lysis are developing at present. Important
the perturbation technique application con- results have been obtained recently and are

isti in that although the expansions a treated in the modern engineering literature
constructed under the assumption that the (see, for example, (Ref. 14 15)) .Design sen-
parameter is mall, the obtained appzoximati- sitiitY analysis gives us the tools for in-
one prove to be in a asreement with exact vestigation of the influence of the initial
solutions not for only the small values of pa perturbation on the optimal solution and
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shows how to regularize the optimal problem. 7. Banichuk N.V. and ironov A.A., Optimi-
Note that even an optimum design exists, nup- zation problems for plates that vibrate
merical methods for its solution are often in an ideal fluid. Prikl. Mat. Mekh.
quite sensitive to initial disturbances and (USSR), vol. 40, N 3, 1976.
for such cases it is very diffucult to de-
termine the optimal design. Prior to deve- 8. Banicruk N.V., Optimization of shape of

loping a numerical algorithm it is necessary elastic bodies, Nauka, Moscow, 1980.
to determine the effect of perturbation in 9. Seiranyan A.P., The problem of weight
design on the functionals and to regularize minimization of swept wing with the
the optimal problem. In this relation note constraint on divergence speed. Uch.-zap
that design sensitivity analysis rests im- TsAGI, N 6, 1979.
plicitly on a foundation of perturbation lO.seimanyan A.P. An optimal problem of
techniques and that a convenient basis for aileron efficiency. Izvestija of Arm.

it. development is provided by these tech- SSR Academy of Sciences. Mech., vol. 33,
niques. N 1, 1980.

In the paper the attention is focused on the ll.Kurshin L.M. and Rastorguev G.I., On
optimal solutions fully based on perturba- reinforcing of hole contour in plate.
tion techniques. It is worthwhile mentioning Izvestija of USSR Academy of Sciences.
however, that there are several papers, Mech of Solids., N 6, 1979.
where the perturbation techniques are exp- 12.Ashley H. and McIntosh S.C., JR, Appli-
loited particularly (in combination with cation of aeroelastic constraints in
another methods, for separated parts of the structural optimization. Proc. 12 th
problems, at the final stages of solving). Internat. Congress of Theoret. and Appl.

Mech., Stanford, Berlin, Springer-Verlag
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ABSTRACT bodies is presented by Chun and Haug [9,10], using
design sensitivity analysis methods similar to those

This paper investigates a relatively new class of presented by Rousselet and Haug [11] and a gradient
structural optimization problems that are expected to projection optimization method. The design objective
be important in future applications. Instead of in this work is weight minimization, with constraints
selecting explicit design parameters or functions on Von Mises yield stress and shear stress distribution
defining dimensions of a distributed parameter struc- on the boundary. Dems and Mroz [12] present a related,
ture over one or two space dimensions, as is normally but more general approach to shape optimal design.
done in structural optimization, the shape of the They use a boundary perturbation analysis to derive
elastic solid under consideration plays the role of the optimality criteria and a finite element numerical
design variable. The shape design formulation, for method to determine optimum boundaries.
two and three dimensional elastic structures, is
essential when load and support conditions lead to Banichuk [13,14] formulates a general problem of
fully planar or three dimensional displacement fields selecting the optimum shape of the cross-section of a
that can not adequately be modeled by assumptions nonhomogeneous shaft, to maximize torsional stiffness,
arising in beam, plate, or shell theory., with a given amount of material available. He uses the

fact that the functional minimized by the warping
One of the first treatments of a g~neral problem potential in a variational formulation of the boundary-

of selection of shape of a structure as the design value problem is proportional to the torsional stiffness
variable is presented by Zienkiewicz and Campbell [1]. of the shaft to obtain an optimality criteria. He
They formulate the shape optimal design problem using treats both simply-connected and multiply-connected
a finite element model of the structure and treat the cross-sections. Kurshin and Onoprienko [15] treat the
location of nodal points of the finite element model same problem of maximum torsional stiffness of a shaft
as design variables. They employ sequential linear with doubly-connected cross-section, using a complex
programming for numerical solution, presenting examples variable method to determine the optimum boundary.
associated with dams and rotating turbine machinery. Banichuk [16) subsequently presents an extension of the
Ramakrishnan and Francavilla [2] employ a similar torsional stiffness maximization problem for rods,
finite element formulation, but use a penalty function using optimal distribution of a given amount of
method for numerical optimization. Francavilla, stiffening material around the boundary. Gurvitch [17]
Ramakrishnan, and Zlenkiewicz [3] employ the finite presents an alternate analytical technique for optimi-
element method of Refs. 2 and 3 for fillet optimization zing the shape of an interior boundary that is
to minimize stress concentration. Schnack [4] and associated with inhomogeneity in material, using a
Oda [5] use a finite element formulation for stress coordinate system associated with the warping function
calculation in the neighborhood of a stress concentra- and obteining necessary and sufficient conditions of
tion and iteratively modify the contour to minimize the optimality. Quite recently, Dems [18) uses the method
peak stress. of Ref. 12 to formulate and numerically solve a variety

of problems of shaft cross section shape optimization
More basic approaches for surface contouring to for torsional stiffness. While there is related litera-

minimize stress concentration are presented by ture on specialized shape optimization problems, the
Tvergaard [6] and Kristensen and Madsen [7] in above noted literature contains most of the basic
selecting the optimum shape of a fillet [6]. He methods used to date.
employs a stress field model of the fillet, with a
finite dimensional family of orthogonal polynomials In the formulation presented here, the dorrin o of
defining the boundary shape, and a sequential linear the elastic body under consideration is taken as the
programing method to construct an optimum design. design variable, with the cost function to be minimized

written in the form
Bhavikatti and Ramakrlshnan [8] present a refine-

ment of the formulation of Refs. 1, 2, and 3 for To fo(Z) do (1)
optimum design of fillets in flat and round tension
bars. They also use a polynomial, with coefficients
taken as the design variables to characterize the subject to functional inequality constraints written in
shape of the fillet, and a finite element model to sbe o fc
calculate stress with the body. They investigate the form
minimization of stress concentration factor, minimum
volume design, and design for uniform stress distribu- i= f-f fi(z) do 0 0, 1 - 1, ... m (2)
tion along the fillet boundary as optimality criterion.
Derivatives of response measures with respect to design
parameters are calculated using a finite element model, and the state variable z is determined as the solution
Sequential linear programming is employed for numerical of a boundary-value problem of the form
solution.

A function space gradient projection method for Kz - Q , x e o (3)

optimal design of the shape of two-dimensional elastic Bz - q , x e r (4
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where z is a displacement in the elastic system, Q are of elliptic differential equations. This class of
body forces acting, K is the elasticity differential problems is shown to be extremely difficult to solve.
operator, q are boundary tractions, and B is a dif- An iterative optimization method, based on function
differential operator prescribing boundary conditions space and finite dimensional gradient projection
on the boundary r of the body. The objective is to methods, is presented and computational algorithms
select the domain n (or its boundary r) to minimize summarized. These algorithms are compared with non-
TO I subject to constraints of Eqs. 2-4. linear programming methods based on discrete finite

element models of the structure, with nodal coordinate
This problem is complicated by the fact that the variables as design. It is suggested that substantial

effect of a domain (or shape) change enters into the computational advantages are gained using the distribu-
functionals of Eqs. I and 2 in two different ways. ted parameter domain optimization algorithm, ratner
First, since the functionals are integrals, a domain than the variable nodal coordinate finite element
variation will directly influence the value of the formulation.
integral. More subtly, and more complex, the state z
of the system is the solution of Eqs. 3 and 4, which An elementary problem of shape optimization of
change when the domain is varied, hence the state the cross-section of a shaft in torsion is first
z = z(x;Q) must be viewed as depending upon the treated, using the methods discussed previously in the
domain Q. paper, as a means of studying the methods and their

application. A general two and three dimensional
The effect of domain variation may be defined by elasticity formulation of shape optimal design, with

using the idea of a velocity field V(X) with X c Q constraints on boundary location, stress, and deflec-
being the reference variable in the undeformed domain. tion is presented. The computational algorithm
The position coordinate in the deformed domain may then obtained is illustrated through solution of two planar
be written as structural optimization problems.

x = X + tV(X) , X E Q , x E 0t (5) REFERENCES
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respect to t), much as in derivation of the material
derivative of continuum mechanics, one obtains the 2. Ramakrishnan, C.V. and Francavilla, A. "Structural
following expression for the variation of a typical Shape Optimization Using Penalty Functions,"
functional vi: Journal of Structural Mechanics, Vol. 3, No. 4.funtol i 175, pp. 403-432.

i = J 6z d+ ff(z) Vn ds (6) 3. Francavilla, A., Ramakrishnan, C.V. and
r Kienkiewicz, O.C. "Optimization of Shapte to

Minimize Stress Concentration" Journal of Strain
where 6z is the change in state due to the domain Analysis, Vol. 10, 1975, pp. 63-70.
change and n is the outward unit normal to the boundary
r. Denoting the normal movement of the boundary as 4. Schnack, E. "An Optimization Procedure for Stress
6D = V'n and using an adjoint variable method of design Concentrations by the Finite Element Technique"
sensitivity analysis, the following simplification of International Journal for Numerical Methods in
Eq. 6 is obtained: Engineering, Vol. 14, 1979, pp. 115-124.

5. Oda, J. "On A Technique to Obtain an Optimumwi = [f Q c(zx')] 6D ds (7) Strength Shape by the Finite Element Method"
r Bulletin of the JSME, Vol. 20, 1977, pp. 160-167.

where c(zd ) is the strain energy bilinear form of the 6. Tvergaard, V. "On the Optimum Shape of a Fillet
particular system under investigation and Xi is an in a Flat Bar with Restrictions" Optimization in
adjoint variable satisfying the boundary-value problem Structural Design (Ed. A. Sawczuk and Z. Mroz),

=fi  } Sprlnger-Verlag, New York, 1975, pp. 181-195.
= (8) 7. Kristensen, E.S. and Madsen, N.F. "On the Optimum

8 XShape of Fillets in Plates Subjected to MultipleIn-Plane Loading Cases" International Journal of
Numerical Methods in Engineering, Vol. 10, 1976,

Noting that the boundary-value problem of Eq. 8 is pp. 1007-1019.
of exactly the same form as the boundary-value problem
of Eqs. 3 and 4, one may use the finite element method 8. Bhavikatti, S.S. and Ramakrishnan, C.V. "Optimum
with the same stiffness matrix for solution of both Design of Fillets in Flat and Round Tension Bars"
the state and adjoint equations, leading to essential Des g of Fl a nr
numerical efficiencies. Having calculated the solution ASIE Paper, 77-DET-45, 1977.
of the state and adjoint equations, the design sensi- 9. Chun, Y.W. and Haug, E.J. "Two Dimensional Shape
tivity coefficient in the integral of Eq. 7 may b Optimal Design" International Journal of Numerical
defined on r. This provides a design sensitivity Methods in Eng ineerilng, Vol. 13, 1978, pp. 311-336.
result that is needed for optimization.

10. Chun, Y.W. and Haug, E.J. "Shape Optimal Design of
Optimality criterion and direct numerical methods Elastic Body of Revolution" Preprnt No. 3526,

for structural shape optimization are developed using ASCE Annual Meeting, Boston, April 1979.

the design sensitivity result of Eq. 7. Optimality
criterion are shown to lead to free boundary problems

4-2



11. Rousselet, B. and Haug, E.J. "Design Sensitivity
Analysis of Shape Variation" Optimization of Dis-
Distributed Parameter Structures Ed. .J. Haug
and J. Cea) Sijthoff & Noordhoff, Alphen aan den
Rijn, Netherlands, 1981, pp. 1415-1460.

12. Dems, K. and Mroz, Z. "Multiparameter Structural
Shape Optimization by the Finite Element Method,"
International Journal of Numerical Methods in
Engineering, Vol. 13, 1978, pp. 247-263.

13. Banichuk, N.V. "Optimization of Elastic Bars in
Torsion,"International Journal of Solids and
Structures, Vol. 12, 1976, pp. 275-286.

14. Banichuk, N.V. "On a Variational Problem with
Unknown Boundaries and the Determination of
Optimal Shapes of Elastic Bodies" PMM, Vol. 39,
No. 6, 1975, pp. 1037-1047.

15. Kurshin, L.M. and Onoprienko, P.N. "Determination
of the Shapes of Doubly Connected Bar Sections
of Maximum Torsional Stiffness" PMM, Vol. 40,
No. 6, 1976, pp. 1020-1026.

16. Banichuk, N.V. "On a Two Dimensional Optimization
Problem in Elastic Bar Torsion Theory" Soviet
Applied Mechanics, Vol. 11, No. 5, 1976,
pp. 38-44.

17. Gurvitch, E.L. "On Isoparametric Problems for
Domains with Partly Known Boundaries" Journal of
Optimization Theor and Applications,Vol. 20,
No. 1, 1976, pp. 65-79.

18. Dems, K. "Multiparameter Shape Optimization of
Elastic Bars in Torsion," International Journal /
for Numerical Methods in Engineering, Vol. 15,
1980, pp. 1517-1539.

4-3

. . . Jil I "l. . . ' o - - - . . . , . . .. : . . . ..V 6__ _



MAXWELL'S THEOREM FOR FRAMES

by Ovadia E. Lev
Merritt CASES, Inc., P.O. Box 1206 Redlands, California 92373

Abstract

>.Maxwell's Theorem (1890) for trusses length vector L (N = V L), where the differentiation is
P- - Q-. &- C is extended to rigid framesQ

i- i s d carried out with respect to the nodal coordinates .

through an extended definition of the length L and the
coordinates Q. An expression L = NQ for the length in Lev, in Reference 5, expressed the length L as a
terms of Q and the geometry/topology matrix N is de- product of N and Q
rived in the process. Simple examples are presented.
The extension facilitates uniform numerical manipulation [N Qa
and processing. Implications on optimum material rol- L - NQ = NaN r (4)
ume and topology of frames remain to be investigated r

Introduction where N and Nr are partitions of N corresponding to

The following theorem by Maxwell (Reference 1) regular nodes and supports respectively. For example,
the equilibrium condition using this notation may be

m 2n expressed as N F = P .
LiFi = Q1Pj = C (1)

i=1 JC
+ f.

is well known to students of structural optimization. F m /1

In this theorem, F, and Li are the respective force ( f I

and length of the i-th member of the truss. Q and P F,= F,] F. = m+

are the respective geometrical coordinate and load com-
ponent, corresponding to the J-th degree of freedom of L i m i
the truss joints. The truss is assumed to be two-
dimensional and pin-jointed with m members and n nodes.

C is a constant independent of the truss configuration P
(geometry and topology) provided that the member force 

H F

vector F is in equilibrium with a constant external / i f I
load vector P. By definition P includes no applied MEMBER i MEMBER i

load components, P., as well as nr reaction components,

Pr uhta n n.I sprttoe nojy -'Y x1
coordinates of joints which may be loaded by Pa = Jy] P ij =.IQijXI ?'

P~~~~~~~~~ ,j suc tha n n fQi attindit P~ c Pi
Q (n x1), and support coordinates Q (no 1), then L jx jy jx

Equation (1) may be written as r i L [
NODE j NODE i

P r 1 E P. Q + 1= F -C (2)a r] r r (a) PLANE TRUSS (b) PLANE FRAME

In this paper, the extension of this theorem to Fig. 1 Notation
frames with rigidly joined members is presented. For
simplicity, only two dimesional frames will be consid-
ered. Before doing so, a convenient expression for the
length of the truss member L will be derived.

Frames
Trusses

To the plane frame member i shown in Figure Ib,

Consider the plane member shown in Figure Ia. For there corresponds a member force vector Fi which has

every member, i, of the truss define a corresponding three components: Fi, m and m The force vector
row in an (m x 2r) matrix, N, which contains (I x 2) ti+
matrices, Ni+ and Ni_, defined below, at the row P at node J also has three components: PJx' Pjy and Hi:

corresponding to the i-th truss member and at the col-
umns corresponding to node (+) and node (-), respect-

Ni+ey [to 
- jx1

N i- [coo olsin a]; Ni = [-cos al-sin a] (3) Fi Ij iJ

All other elements of row I, corresponding to nodes

not incident on member i, are zero. Thus, the matrix N
incorporates the geometry as well as the topology of
the truss. Using this notation, which was introduced

by Spillers (References 2 and 3), Friedland (Reference

4) showed that N ay be derived as the gradient of the
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Using the node method notation (References 4 and 5),
the non-zero entries of row (member) i of N are, in
analogy to trusses: (a) y' pi

S=[l F = m P=f -- Q = --

0 01 cosaa sin a 0 1 _. -,-Q

0 -/L 1 -sin a cos a I pl - 0
N0 0 -_x 0

and -(6) t_. Ll* Fit [ m 2 2

=[I 0L cos a sin ot 0 P2 ' 7  1 P2~
Nx 0 I / L 0 ] s n a c o s a 0 2 P I 2 ) /o~ ~~~~ -/, 1 o o".F/PI -m

The advantages of this notation is that identical L-(2 -i)

equations may be used to describe equilibrium, compat-
ibility and constitutive relations in trusses as well FL = PQ I(+ p2)i = C
as frames. For example, the equilibrium equation for

frames is, again, NaF = Pa. Fig. 2 A Numerical Example

Extensions
Figure 3 also illustrates that Equation 1, which

To extend axwell's Theorem (Equation ) to frames, holds for trusses, can be extended through Equation 9
the definitions of L and Q are extended through the to frames. The structures shown in this figure are

(3m x 1) vector L and the (3n x 1) vector Q such that characterized by the same constant C.
for a member i and a node j

i = Qj _ Q . (7)

Thus, for frames the relation analagous to Equation 4 is (a) (b) (c)

L NQ* (8) Fig. 3 Frames With Same Constant C

where N is defined by Equation 6.

Maxwell's Theorem for frames can now be expressed Conclusions
as

, ,Maxwell's Theorem has its applications, most of
QP - LF = C (9) them theoretical, in structural optimization and in par-

ticular in conjunction with Michell-type structures, and
particularly trusses. Some implications of the theoremThe proof of this theorem involves straightforward on optimal volume and topology of certain trusses were

algebraic manipulations. Cunceptually, the result discussed by Lev (Reference 5). The extension of the
follows directly from the equilibrium requirement that theorem to rigid frames, presented in the paper, facil-
when all the free-body-diagrams of the structure mem- itates uniform numerical manipulstions and processing.
bers are assembled, the sum of all moments must vanish. The implications of this extension on optimum material
A simple example is given in the following section. volume and topology remains to be investigated.

Examples References

Figure 2 shows two statically determinate plane 1. Maxwel, J.C., The Scientific Papers of James Clerk
frames with identical loads and reactions applied at Maxwell, 1890, Dover Publications, Inc., New York,
the same coordinates. The quantities of Equation 9 are N.Y., 192, pp. 175-177.
calculated and the equation is shown to hold. It is
quite easy to make up examples of determinate frames 2. Spillers, W.R., "Network Analogy for the Truss
which illustrate the theorem. It is more difficult, Problem," Journal of the Engineering Mechanics
however, to make up such examples of indeterminate
frames unless they are externally determinate, since Division, ASCE, Dec. 1962, pp. 33-40.
both loads and reactions must be respectively equal. 3. Spillers, W.R., Automated Structural Analysis: An

Introduction, Pergamon Press, New York, N.Y., 1972.
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4. Friedland, L.R., "-.eomp'ric Structural Behavior,"

Thesis presented to 'olumbia University, New York,

in 1971, in partial fulfillment of the requirements

of Doctor of Philosophy.

5. Lev, O.E., "Topology and Optimality of Certain

Trusses," Journal of the Structural Division, ASCE,-......

Vol. 107, No. ST2, Proceedings Paper 16054, February

1981, pp. 383-393.
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DEVELOPMENTS IN MICHELL THEORY

/ by
Jean-Marie LAGACHE

Centre Experimental du Bitiment & des Travaux Publics
Service Etudes & Recherches Thioriques

12 , rue BRANCION 75015 PARIS (FRANCE)

The design of -..usses of minimum volume is consi- Practical Implications Before the Theoritical Proof
dered, subject to the conditions that members are
included in some feasible region and safely carry a
given system of loads to a rigid foundation; Because Preliminaries
there is no difficulty to extend the result to dissy- Feasible displacements. As a cor.iequence of the
metrical tensile and compressive allowable $tresses, feasible displacementsn
one will consider, for the sake of brevityj that the Principle of Virtual Work, feasible displacements na-

two yield stresses have the same value- . turally introduce themselves in Layout Theory because
of the inequality

-Michell Theory (LIso -9) then relates upon virtual
feasible displacementswhich are shrinking on the foun- (I) ,
dation and meet with the additional requirement that between the external work , , in any feasible displa-
the overall strain for any segment in the feasible cement and the volume, V , of any admissible truss.
region, lies bptween two opposite infinitesimalregin, ies ~twen wo oposte nfintesmalWhen an admissible truss and a feasible displace-
constants. One will assume, by linearity, that these hen an a trs nd a faie d i e
constantsare of unit magnitude. ment exist, such that ties undergo the aximum positive

.feasible strain and struts the negative one, the truss
-T~hree theorems about feasible displacements are is optimal because inequality (1) is satisfied as ar

given in the present paper equality ( ktichet Ctitetion ; I to 9 ). At the same

I. There exi6t6 at teaut one extemat AeatiLbte time, the external work attains its maximum feasible

diptacement, which maka the w&ok oJ extenaL toads a value.

maximum upon the ct.&z o6 aU 4abibte dizptacements. Because earlier treatments have only prooved

2. Should an optimat t'uLs exLt ok not, th Michell Criterion to be a sufficient condition of opti-

mntimum votume jo't tnusee V7' and the maximum Jea- mality, the problem is reconsidered from the last

ibte wolk , f , 6ati4u : L"variationil" standpoint. Results of the theoritical
ma: x Vm . investigation are summarized by the preceding three

3. The computation o6 only one ex~ttema di.6pta- theorems.
cemen t attows att optimum 6arme to be 6yntheX.ized by
a conneie apptcation o4 4icheU C&te'don. Specay, Practical feasibilit conditions. In spite of a
thete ih no optimum 4rtame at a t when the C&itZeron i rather chaotic prior definition, feasible displacements

ruppticabte. constitute a family of hotdeAian applications (11).
Piecewise differentiabilitytherefore appears as a quite

From a theoritical standpoint, the three theorems natural assumption which only involves a slight loss
carry the implication that maximizing the teasible work of generality. In fact, density of analytical feasible
is actually the very principle for Optimal Synthesis displacements into the set of all feasible displace
(3) . In addition, optimal trusses, should such structu- ments has been obtained in ref.(ll) from standard re-
res exist, are necessarily Michell Trusses. gularization techniques.

Prior to the theoritical proof,- which was already Apart from the nuliity on the support, feasibility
given in (11) ,- practical implications of the theo- of a differentiable displacement equivaults to the
rems are discussed on three examples : condition that the principal strains lie within the

Example I relates to single loads and convex range -1 , + 1 . The later condition is perfectly

polygonal foundations. Optimal Synthesis is performed suited to the systems of curvilinear coordinates of

by local methods related to Michell Optimality Criterion the standard Michell Approach (2 to 9). For the purpose

(t to 10). A possible application to Nearly Optimal however, -yf naximizing the external work without any

Design (8,9) is shortly described. A proof that there any information about principal strain lines, the

cannot be any other solution to the problem than the following conditions are preferrable. Given the strain
devised cantilevers, is gies. Except for the very invariants, I , I , I , the principal strains aredevisedntilhevderos rtis onie Exp fo th e very .the roots the characteristic poly omial
beginning, the demonstration follows that of Th. 3 . P) - X3 + x 1, - x I + I and

Example 2 relates to a single load which, this it results from a mere algebraic discussion that they
time is inside a concave square foundation. Since local ax comprised between -1 et + I iff
methods reveal inapplicable, Optimal Synthesis is I * I ' *
achieved through a direct maximization of the feasible (2) +

work, which is followed by an application of Th. 3 . 1 , 
14 3 +

A special Graphical Procedure involving geometrical 1. I g 3
inversions is recalled from (13).

In Example 3 , a load is to be carried to a In two dimensions, t'e feasibility conditions reduce
straight support inside a bounded trapezoidal area. An to
exact synthesis seems out of reach and Th. 2 is used (3) 1 +
to check the accuracy of some admissible trusses by
resolution of finite dimensional variational problems.
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Example I

Content. One considers the problem of the optimum synthetizing Nearly Optimum Frames with a finite number
Eantilever supported on a fixed convex polygon. A stan- of joints upon a smooth convex foundation (8,9), on
dard Michell approach is briefly described. Moreover, approximation, by mean cf the preceding procedure, of
such structures also ensure optimal transmission to a the strain field related to a close polygonal contour
finite number of points; possibilities of applicatibn may be preferred to tteapproximation of the true
in the field of Nearly Optimal Design (8,9) are dis- Michell Field. The 10-bar truss of Fig. 2 is based on
cussed. The following corollary of theorem ? will an hexagon and carry a load to a circular core. The
he directly prooved with the only basic notions of relative increasement in the volume is only about 5Z
Michell Theory : oven one Aichett True4 TR , the
a6ociated AficheU dizptacement w o and an optimuml
tu T ; then, (o* is also a Richet di.6ptacement

ot the t'ws T . This brings a rapid answer to the
question of unicity : because the Michell Strain Field
for a Cantilever problem only yields but one Michell FIG. I
Truss, any other optimum frame coincides necessarily
with this Michell Truss. Whbt is prooved is not that OPTIMUM CAYTILEVERS
the particular method of Synthesis yields a sole solu-
tion (5) but that quite different and unformulated SUPPORTED ON
methods cannot yield other optimum frames than the
devised solution... P/LMONS

Optimum Synthesis. Regardless of the statical
conditions of Michell Criterion, a Michell Strain Field
with maximum opposite principal strains is synthetized
(Fig. 1). d

1. Rectangular networks expand in the vicinity
of the foundation (5) .

2. Because b c and b d , by exampleare not
orthogonal, the construction could not be continued,
unless circles and radii(1O) expand in the fans b C e
and b d 6 , with the first condition that b e and
b 4 must be orthogonal. In addition, rotations at b
of these lines must coincide, in order the displacement 2-
to be computable in the fan e b J . A precise kinema-
tical analysis shows the later condition to be fulfil-
led when angles c b e and d b J are equal.

3. There is no difficulty, at this stage to com-
plete the network by successive resolutions of ttan-
dard boundary problems of Slip-Line Theory (10 : two
orthogonal principal lines given.

Examples of Michell Trusses are given on the Fi-
gure. Optimum frames for loads which are not consistent
with the preceding field may be obtained from auxilia- hte
ry "unrolled foundations.

Application to Nearly Optimal Design. The main
elements in the networks of Fig. I are bundles of
straight lines which, according to Hencky's first theo-
rem, have a constant magnitude and obey to the follo-
wing rule of mutual deviation : when a bundle o4 the
magnitude aL meelt with a bundle 0A the magnLtude ,
tne4 in the 4oA.wA aAe deviated by an amount o4 P
and tinez in Vie tate4 by an amount oA O . The prece-
ding rule is sufficient for the drawing of bundles of
small magnitude, because the deviation is almost pun- 2<>/
ctual. This explains the following graphical procedure:

1. Fair of equal bundles are first drawn from the
wedges, according to the theoritical study.

2. Each bundle is eventually divided into elemen-
tary bundles of small magnitude.

3. Elementary bundles being provisorily assimila-
ted with their mean lines, a first approximate network -b

my be drawn by application of the rule of mutual de-
viation.

4. To complete the network, one may assume that
the successive deviations of any other line occur

at the intersections with the mean lines.

A mere application of Michell Criterion shows
that the considered network also carry the loads to
a finite number of points. Thus, for the purpose of
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Direct Proof of Unicity. Undoubtless, a single 8. The optimal truss, T , is fully-strained
s-nplicftion of Michell Procedure for the Cantilever ( k 1) . Moreover, it verifies
Problem yields a single Michell displacement W* ( Uni-
city theorem of ref.5). The corresponding strain field e I / ut Si N 0
being statically determinated, the Michell displacement
Penerates a sinvle Michell Truss T. Nevertheless, the e

*  - ' / 6i N 0
question of unicicity is entire because it is not proo-
ved that another method than Michell Procedure cannot 9. The oreceding conditions show that the consi-
yield another optimum structure T . dered optimum truss is a Michell Truss associated with

]. Because the main steps of the calculation the Michell displacement W * . Because there cannot

will be reproduced in the demonstration of Th. 3 with be two dtstinct states of tension in the considered

symetrical allowable stresses, let us suppose in this network

paragraph that the two stresses have distinct values T =

at and O-cr F
The Droof is complete.

2. One introduces the following notations for
the optimum struceure T . Let be

L ,the length of a bar ;
N , the actual effort inside the bar
e* , the overall strain of the bar in the Michell

displacement wIK.

8 , the cross-sectional area ;FG.2 NEARLY OPTIM CANTILEVER5
k the safety ratio, defined by

t = k I NI j4 N> 0

40C~ B =k JNJ i~Al N 0

3. The conventional allowable range for feasible
strains being taken as [-1/crc , 1I-t] , one knows
that the external work in the Michell displacement
is equal to. the volume of the Michell truss and, thus,
to the volume of the optimum truss T .

4. Mere calculations and an -pplication of the
Principle of Virtual Work then yields

fk IN I L /lOt kIN I L /ac

5. The right hand sommation splits in two parts
to yield :

L " - a /0"t - Z L N ( e- /zr)

> 0 N < 0 polygon

6. Because W * is feasible and because k is
greater than I , terms in the left hand summation foundation
are positive while terms in the right hand sumnation
are negative. Obviously, every term in the preceding
equation is null. Thus

e l .k t i4 N >O

e A l /Uk(c i4 N-_0

1. The only admissible value of the safety ra-
tio which is compatible with the preceding conditions -
and with the definition of a feasible displacement
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Example 2

Content. Imagine that an inextensible sheet pre- Because the networks of Fig. 3 do not show any
sents a perfectly smooth aspect when submitted to a other possibility of statiLal decompositions of the
given system of loads. If one bends the support, a new loads, theorem 3 shows that the list of solutions
kind of equilibrium position appears : stability is is complete.
now insured by a finite number of isolated folds and
the sheet hangs loosely everywhere else. Determination Practcal Drawin . A rapid graphical procedure,-

of the equilibrium position demands a simultaneous which is suited to the transmission of a single load

knowledge of the whole support and loading system, and to any concave support,- has been deduced in ref. (13)
from the preceding analysis. The procedure involveswould scarcely result from the analysis and matching thfolwnsep(oerdaamonFg6

of possible local kinematical regimes of the sheet... the following steps (lower diagrams on Fig. 6

There is a quite similar change in the nature of opti- 1. Take inverse of the support about the loading
mal frames and computations methods when )ne considers point.
concave foundations instead of convex ones. 2. Construct the convex equilibrated envelope of

The transmission of a single load from the inside the inverse support.
to the outside of a square cavity is considered on
Fig. 3 . Optimal trusses now have a finite number of 3. fie armdifiespn
bars whose position is found by a direct maximization
of the feasible work, but not by the method of pro- 4. Comparing the initial with the modified sup-

gressive synthesis of Example I . Because of the prac- port, one can observe a general removal of settlement

tical impossibility of takipg into account all possi- points towards the loading point. Select the points
ble feasible displacements, the first question lies in which did not move inwards and adjoin to the corres-

the reduction of the problem to some suitable feasi- ponding set its reflection about the loading point.
ble subclass. Maximization of the external work is According to notations of (13) , the result is called

then performed on that special subclass, which yields Equilibrated Zone of Coincidence : E Z C .
optimum frames by application of Th. 3 . A practical 5. It is prooved in ref.(13) that the E Z C is
method of drawing is described, the intersection of the support with the shaded zone

Feasible Subclass Consider feasible displacements of Fig. 6 . Single bars are therefore optimal when

of the square region, with a linear variation along the action line intersects with the E Z C ; other-

any segment joining the loading point to the rigid ways, optimal frames are based upon the nearest points

support. These are piecewise linear continuous displa- on the E Z C

rements which are fully determinated by the value When applied to non-concave foundations the
w x ( 'ol , Wa ) which is taken at the loading point. method yields nearly optimum frames consisting of

Formulae (3) and a mere computation of the strain - bars from the loading point to the boundary. Step 3

invariants yield the following feasibility conditions of the procedure defines a curve whose radius vector

(4) W, - A ot . - 4 o< 0 is proportional in any direction to the volume of

W Z! + 4 aw 1  a L
1 

<0 cthe associated nearly optimal truss.

Indeed, maximizing the external work upon the pre- When applied to a convex set included in the
ceding subclass is not the true maximization problem feasible region, the first three steps yield a curve
which should be considered for a strict application of whose radius vector provides a lower bound to the true
theorems I to 3 . Because of the piecewise lineari- minimum volume. Efficiency may thus be checked by pure-

ty of the considered displacements, however, it my be ly graphical procedures.
thought that the st of fully-strained segments in any
solution of the partial maximization problem will ne-
cessarily include segments issued from the loading 

Example 3

point which will allow Michell Criterion to be applied. Content. One considers the transmission of a

A rigourous proof is given in ref. (I1) for a cubic vertical load to a straight support, with the addition-
support is generalized in ref. (12) to any
concave support. The considered subclass therefore nal requirement that admissible trusses are included
suffcesuptorptil nTheosids, tin the trapezoidal area of Fig. 4 . Because of the

later condition, it is now almost impossible to ima-

optimal Synthesis. Maximization of the external gins convenient kinematical regimes for a Michell dis-

work upon the region r which is delineated by inequs- placement to be synthetized. On the other hand, an

lities (4) is performed by a graphical technique. exart maximization of the external work is presently

Two basic optimal configurations are obtained :

I. When the action line is (nide the shaded C

area on the second diagram of Fig. 3 , the maximum work
is attained at a current point on the boundary. Fully
strained segments are parallel to the action line and
Michell Criterion is fulfilled by two single-bar and
the family of statically indeterminated frames which
results from convex interpolation. H eitP

2. When the action line is outside the shaded I
area, the maximum work is attained at a vertex. It my
be seen by continuity with the preceding case, that
fully-strained segmnts now arrange parallely to two 2H

independent directions. Michell Criterion is fulfilled
by four statically admissible trusses and the family a b
which results from convex interpolation. FIr.4 TrAPEZO1AL AREA
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out of reach because there are no particular characte-
ristics in the data which would allow, as before, any FIG.5 4UAIFPlTAL C011PUTATIOY
reduction of the general maximization problem to a
practically suitable one.

A numerical maximization of the feasible work is
however described, whose purpose is no longer the de-
finition of some ideal geometry but,- according to
theorem 2 ,- the computation of significative lower
bounds to the minimum structural volume. The proce-
dure involves finite-dimensional variational problems
with a linear objective and algebric inequality
constraints of the second degree which may be lineari-
zed for the numerical treatment. Results are finally
compared with the volume of particular admissible
trusses, which brings a practical answer to the consi-
dered problem.

Finite Element Computation of the Minimum Volume.

I. The admissible region is shared into triangu- Z
lar elements, as shown on Fig. 5 .

2. For the numerical computation of the maximum
work, one only considers feasible displacements with QUADRATIC INEOLIAL ES
a linear variation inside any triangle.

3. One then formulates a finite-dimensional 
va- A E

riational problem. Because feasible displacements are X /i.
continuous, the only variables are the nodal compo- 0O
nents of the displacement. The objective,- i. e. the
external work,- is linear with respect to the vas ia- - *
bles. Conditions (3) show that four inequalities hold ,C
on each triangle. A graphical interpretation is given
on Fig. 5 , in terms of the strain tensor components

il . Formulation of the constraints in terms of
the nodal displacements is a tedious but quite simple
task which is left to the reader's attention. It's
worth noting that in spite of the convexity of the
problem, half the constraints are non convex quadratic
inequalities of the hyperbolic type.

4. Constraints of the preceding approximate pro- 4 4.e.
blem are linearized, as indicated on the figure. Signi-
ficative lower bounds to the maximum feasible work,-
and thus to the minimum volume,- then deduce from the
resolution of a Linear Programming Problem.

5. It is shown in ref. (11) that convergence LINEARIZED INEOUALITIES
towards the true minimum volume may be obtained from
a progressive refinement of the mesh, provided trian-
gles do not degenerate into segments.

Application of the method to the rather coarse
network of Fig. 5 yields the following estimation

6.123 P H < Cr. Vmi
It is important to note that an inequality holds

because a special care has been brought in the defini- __

tions of both approximate and linearized problems so
as not to violate the feasibility conditions. PIG.6 AIMTRS$RLE 4 - 8AR TRUSS

Measurement of Truss Efficiency. Consider one or
other of the admissible trusses. The previous analysis a
yields an overestimation of the fraction of the volu-
me which could be saved if an exact resolution was
performed : 114

dV / V V - 6.1tS P / V

By example, the preceding fraction is less than 1/4
for the 4-bar truss of the volume 8 P H / o which
is drawn on Fig. 6

4-14
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A more efficient 20-bar truss, which is partial- Remark 2 Three-dimensional problems involve so
ly based upon a Michell Strain Field is displayed on many possibilities of local kinematical regimes that

Fig. 7 . Getting provisorily rid of the geometrical the standard Michell Approach is almost unpracticable.
constraints related to sepent b c , one first syn- iRy contrast, the only difficulty in the present method
thetises the Michell Strain Field inside the strip de- is that conditions (2) involve inequality constraints
lineated by lines a b and c d . A rectangular of the third degree. Several analytical examples have

network, a e d , expands in the vicinity of the foun- been given in ref.(11) ; numerical examples are on
dation, while circular networks inoccupy fans e d g preparation.
and 4 a . Central networks,- e j 9 h and the
following,- are based upon two orthogonal principal
lines. Networks along the boundary,- i 4 h , j g h
and the following,- are singular networks based upon Theoritical Part
a principal line and a tangent straight line (6,10).
The graphical method of Example I is suited to the
practical drawing, with the additional rule that the
inteuec~ton oj any etentaxuy bundte with the 4tee "roof of theorems I and 2
Uinea a b ot c d gene.atte,6 a "tUUVee" bundte
o4 the 6as.ut idth aton the conideAed Ute (once Bounded regions.
again, it is a consequence of Hencky's first theorem 1. One considers, as in the practical method which
and of the decomposition in small bundles). The syn- was first described by Hemp (16) and Dorn, Gomory and
thetized Michell truss lies partially outside the Greenberg (17), a nested sequence of feasible ground

given trapeze. Nevertheless, a mere comparison bet- structures submitted to the conditions that
wean the theoritical network and the 20-bar truss

shows that this later is almost a Michell truss. i) every ground structure includes, for a given

Maxwell diagram shows that the material consumption is number of nodes, as many feasible connections
about 7.5 P H /Cr, . Inequality (5) then shows as possible ;
that the efficiency ratio 6 V / V is less than 1/5. ii) the union, N , of the nodes and the union,

Because simplicity in the layout is most of the of the supports of all considered ground struc-

tim preferrable to a strict decreasement in the tures are respectively dense into the feasible

weight, one may consider that the practical solution region and the support.
is attained. 2. Unuseful connexions in the k-th ground struc-

Anyway, more accurate underestimations of the mi- ture are eliminated by Linear Programning (16,17) ; at
nimua volume would result from a more refined discreti- the same time, convenient cross-sections are allocated
zation of the feasible area. At the same time, Nearly to the remaining connections. This defines a sequence
Optimal Design Procedures could be used either to of admissible trusses of the decreasing volume Vk .
improve efficiency (14,15) or to define trusses which 3. Finite-dimensional Duality Theorems show that
are likely close to the optimum (16,17). theorems I and 2 hold for any ground structure.

Remark I . The choice of pieceise linear displa- Thus :

cements-= rhe computation cf the maximum feasible (6) = ff f/ ,
work is not essential. Several examples in ref.(10) where Wk denotes the external work which is develo-
show that one may take advantage of particular charac- ped in some kinematically admissible displacement, Wk
teristics of the considered problems (tymmetries,...) of the k-th ground structure, which fulfills the
to obtain rapid analytical evaluations of the maximum overall strain feasibility condition along any connec-
work. That kind of approach gcn-erally involves ordi- tion of the ground structure.
nary differential inequlidies instead of algebraic
ones. 4. Because ground structures are highly redundant

(maximum connection hypothesis), the sequence WA may
FIG.7 20 - MR CANTILEVER be seen to be bounded at any point of N . Since the

1/5 later set is countable, it is possible to extract a
15 convergent "Diagonal Subsequence". The limit, W

which is defined at any point of the dense set
shrinks on the dense support A and satisfies the
overall strain feasibility conditions on a dense
lattice of feasible connections (maxilmu connection

0. p . hypothesis). From (6), the corresponding external work
W meets with :

(7) * tij j , Vk

5. Provided the considered bounded region is suf-
d ficiently regular, displacements of the preceding type

are uniformly continuous (1I). Therefore, W admits
a continuous extension, W * which is defined on the
whole feasible region. it is easily seen that W is
afeasible displacement. According to equatior (7).

the corresponding work, W , meets with

0" - tii"- Vk

6. Remember inequality 41), at the beginning of
the paper. The preceding equality holds iff tim Vk
coincides with the minimum volume and 0) *t the
maximum feasible work. Displacement W is an extre-
meal displacement, which prooves theorem I . At the
same time, tim ae VA is simultaneously equal to
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C Vn and UP , which prooves th. 2 . Concloding Remark.

Remark. There is no proof in ref.(16,17) that Consider the transmission of a torque from an in-

under the sole assumptions of Maximal Connection and finite rigid plane to another parallel one (ref. II ):

Density, the sequence of volumes converges to the 1. A mere statical analysis shows that there exists

absolute minimum volume, a sequence of admissible trusses whose volumes tend to

Unbounded Regions. An extension of the theorems zero :
to unbounded regions is given in ref.(I1). The proce-
dure is quite similar, except that finite ground struc- 2. A mere kinematical analysis shows the rotation
tures are replaced by a nested sequence of regular 2. A mer e kinerat o be nuow tn rota-

bounded regions. Extraction of a subsequence at Step 4 of one plane about the other to be null in every fea-

is still valid because a generalized compacity theorem sible displacement :

for feasible displacements of a regular bounded Wmax = 0

region (11) substitutes to the finite-dimensional 3.nbviously, there cannot exist any Hichell truss

boundedness property. for such a problem.

4. Nevertheless, Th. I holds since the null displa-

Proof of theorem 3 cement is obviously an extremal feasible displacement.

5. Th. 2 holds since

I. Given one extremal displacement, W , and
some truss of minimum volume, if any, denote Wra, = , n (= 0)

6. Th. 3 holds in a negative form : because

t , the overall strain of any memler of the truss Michell Criterion cannot apply to the empty network
in the considered displacement ; associated with the null displacement, Th.3 stipulates

that there is no optimum frame at all, which is perfect-

L , the length of the member ;ly well the case.

N , the actual positive or negative effort insi-
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--The geometry of slip lines is a beautiful part of [ox T1

the theory of plasticity. Parallel to it, and equally a = Y (2)
remarkable, is the Michell-Prager theory of optimal T a
design. In plane strain both problems lead to Hencky-
Prandtl nets, which define orthogonal curvilinear and its eigenvalues (the principal stresses) are
coordinaLes with a special property- -if the co- 1 22
ordinates are q and B, and the curv a - constant 1,i2 (x+0y-±((ax-y)2+ 4

T2)) (3)
makes an angle 0 = O(a) with the _Laxis, then
,/a8 = 0. Wlne goal of this note is to suggest a We imagine that the bars of a truss, or truss-like
problem in which we anticipate that Hencky-Prandtl nets continuum, are placed in the directions of principal
of both kinds wiZ appear in the soZution. Part of the stress -- which come from the orthogonal eigenvectors
region should be cov qd by a Michell truss, and part of a. These bars are made from a perfectly plastic
by slip lines -- if laZkonjecture is correct. Since material with tensile and compressive yield limits
it is a problem of shape optimization, a third part of ± 0. Therefore, the required cross-sectional areas
the original cross-section may carry no stress in the at any point are proportional to I1I and I121. The
optimal design and be completely removed, total volume of the truss is thus proportional to

our plan inI his note-46:Ze outline~the proposed 0(o) 1(IX l(a)l + I 2(a)I)dx dy (4)
design problem an-a to describelboth its mathematical

framework and a possible approach to the computations..
The work is by no means completed, and we add a dis-
cussion of a related but simpler problem in order to Michell's optimal design minimizes this volume. In
see the analogies with known optimal designs. It seems other words, the shape and thickness of the Michell

possible that the anticipated combination of Hencky- truss can be determined from the solution to the
Prandtl nets is new, and we hope that this preliminary optimization problem
report will be admissible and useful. It is organized
as follows: (P) Minimize f(a) subject to div a - 0, a:n = f.

1. Statement of the Michell problem and the pro- To express this in a way that suggests a com-
posed redesign problem putational algorithm, we introduce a stress function

p(x,y). For any divergence-free stress tensor o
2. Formulation of the dual problems (in dis- there is a function t such that

placement) and the conditions for a pair a,u
to be optimal

3. Analogies with the optimal redesign of plastic y xx
rods in antiplane shear.

Here the subscripts indicate partial derivatives, and
We adopt the term redesign to suggest the con- it is immediate that div a - 0. In the first column,

straints that are imposed on strength and shape in the for example,
final design. It has to lie within a prescribed region
S1, and the stress is bounded by II oil :S 0; we use a L + 7y- 8 - - = 0.
either a direct condition on the principal stresses, x x ay xy ax y y yyx xyy
or the von Mises yield condition on the stress deviator.
The implication is that there is an upper bound to the Clearly * is determined only up to a linear functim,
width of truss members, like the thickness bound in for which all second derivatives are zero. The
plate design, which could come from having started with boundary conditions o:n = f lead to conditions on
a given structure and allowing only its substructures t,, if we start at an arbitrary boundary point P0 and
as possible designs. In other words, we are only integrate around r. We are given the unit normal
permitted to remove material. There are also other n = (n ,n ), the unit tangent t - (-n ,nx), and the
sources for these constraints; what is significant is conditton yx
the way in which they are reflected in the variational
statement of the problem and in the optimal design. axnx + XYny fl, Txy nx + ayny - f2"

We will take the external loads to be surface The first translates into
tractions f distributed along the boundary F of the
given simply connected cross-section $. For body y n - " fl' or (grad y)"t f
forces and for displacement boundary conditions the yy X xyny
modifications are familiar and can be introduced Therefore, the tangential derivative of * y is
directly into the variational problem .

~ *f 1 l or Y~P) .4 f, da. (6)I I1. Variational Form of the Streps Problem,. at0

40
We give a very brief derivation of the Michell Similarly Jx comes from the indefinite integral

problem, in which the stress constraints come from the '-f2ds. Assuaing that the integrals of fi and f2[ equilibrium equations: around the closed curve r are zero -- a necessary

condition for the constraints (1) to be compatible
diva O0 in 0, o:n - f on r (1) the boundary values * and vy are well defined.

The stress tensor Is .represented by the symmetric mtrk
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This determines Pn and pt, the normal and straint. It acts on the stress deviator a
D  

instead
tangential derivatives. We can continue the same of o, and therefore ignores the hydrostatic component
process one more step to determine itself, and of the force. We could imagine working with a com-
write the final result as 0 - g, In = h. posite material, in which the matrix can withstand pure

pressure but nothing else, and the design material is
Now we can restate the minimization of 4'(o) as to withstand the remaining stress at each point and

a problem in the scalar stress function p. The have minimum volume. In this case, the constraint is
integrand IAli + IA21 is a convex function, and its of von Mises type:
value depends on whether the two eigenvalues have the a -G 2 2 2
same or opposite signs. If the signs are the same 2 + - - xy < k .(9)

then
The left lide is the square of :he eigenvalues of[1 11 + IX21 = 1A1+A21 I xx+ yyj (7) CD : o - 2 (ox+oy)I, as we see directly from (3).

since the sum of eigenvalues is the sum of the dia- The matrix o
D 

has trace zero, and its eigenvalues
gonal entries (the trace of the matrix). If A, has are of equal magnitude and opposite sign. Therefore,
opposite sign to A2, then we find from (3) that the plane strain redesign problem becomes:

[ 'A 2 -2 + 4 2). (8) (Pk) Minimlz (aD)I + JX2(aD) subject to
11 +I21 =1A11121 = ((Xy XY k iiiefl 1 c5 2XD

Combining these two cases, IX1f + IX21 is the larger (1) and (9)
of (7) and (8). Therefore, Michell's problem becomes:

2 2 )d These are the formulations in terms of stresses.
Q) inimiz +4tP )dxdy They include inequality constraints, and in general

- 1such a constraint will be active in one part of 02
al (where equality holds) and inactive in the complement.

subject to iP - g, jn h on r. In this latter part the constraint plays no direct
role, and we have a Michell truss as before. The

With distributed surface tractions and no body forces, active part corresponds to stresses on the yield
this seems to provide one approach to the computation surface, exactly like a plastic region in Prandtl-
of optimal designs. It is certainly not the only Reuss flow. In case the Ai are of equal magnitude
approach, and probably not the most efficient. It and opposite sign (a typical situation), the velocity
differs from the numerical construction of a Hencky- field should correspond to a net of slip lines. This
Prandtl net, which is suggested by the equivalent dis- part must fit smoothly into the Michell part, giving
placement problem (the dual of (P)) that we derive continuity of the principal stress directions. As
in the next section. We understand that Collins has A and k increase, the solutions of (PA) and (Pk)
developed an algorithm of that kind in Manchester; will approach the solution of the unconstrained
we do not know its capabilities. Here one can problem (P).
represent by finite elements,tand the integral is
computed by numerical quadrature. A standard We emphasize the coincidence between the quantity
minimization algorithm gives the iterations leading in the constraint (9) and the quantity in the integral
to the optimum. If it is expected that one family to be minimized. It is the reappearance of this
of bars is in tension and the other in compression, same expression that leads us to anticipate two Hencky-
we can suppress ixx+ v 1; then we confirm at the Prandtl nets at once; in one region the stress
end that it is smaller R~an the square root term, so achieves its maximum, and in the other region (as we
that there are no "hydrostatic" regions in that will see in the dual) it is the strain. We rewrite
optimal design. In general, however, the external this expression in terms of the stress function i,
loads can produce such a region, and denote it by IIil:

This form of the optimal design problem allowed )2 2
Q to be specified, but it imposed no constraint on I xy (10)
the cross-sectionsl areas in the truss. Now we add
such a constraint. In its simplest form, it places
an upper bound on the principal stresses Al and 12. With this notation, the constrained problem (Pk) takes
The implication is that the bars of the truss cannot the special form
be arbitrarily strong -- and in particular, singular
members that can carry a concentrated load will be (Qk) MinimizeJJ 211*11dx dy with I1111 :S k in S,
excluded. If we denote by A the upper bound on the gafho
stresses, the design problem for a constrained g and h on r.
Michell trus is

After discretization, this is a finite-dimensional
(PA) Minimize !AIl(a)I+I1 2 (o)l subject to J1iJ :S A optimization with a quadratic inequality constraint. a

anddivo-0inoc:n-fon r. We call attention to a new possibility that

accompanies both constraints lxii < A and 11*11 < k.

This can be restated, and analyzed numerically, in If k is too small, there may be no statically

terms of P. admissible 0. In other words, the constraints on s
may be incompatible, and the same is true of conditions

There is also a second possibility for the con- (1) and (9) on o; the material may be too weak to
withstand the load. This is exactly the problem of
limit analysis, and it suggests that in the

A C
0 
quadratic element is admissible, if we include computational algorithm we may increment the load f

the contributions from derivative discontinuities (equivalently, g and b) and solve a design problem
between elements. The square root in (8) makes at each stage prior to collapse.
thee contributions finite, and the element is
" on0ring" .
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2. The Dual Problems and Optimality Conditions I i , I 21 1 i, our expression is always
nonnegative and its minimum value is zero. This

This section begins with an informal derivation is attained by the diagonal matrix o', provided
of the dual problem (P*), based on the minimax theorem, that
The dual is a maximization over displacements
u - (ul(x,y), u2 (x,y)), and no boundary conditions if cit < 1 then oi7. 0
are imposed -- since o:n = f was prescribed on all (14)
of r. For every admissible a and u, the quantity if I il = I then Oi= Kci, K > 0
to be maximized is less than or equal to the i
quantity ffl~ll + IA2 1 which was minimized; this is Now if we return to the variational form (11), and
"weak duality", and it will be a direct consequence substitute the minimum just computed (zero for
of Green's formula. To achieve full duality the t.i1 < 1, - otherwise), we are left with only the
difference between these quantities must vanish, boundary term:
and this yields the condition which connects an
optimal a in (P) to an optimal u in (P*). (P*) Maximizef (Ulfl+u2f2)ds subject to lei(u)F < 1.

This section is inevitably more concerned with

formulation of the dual design problems than with This is the dual problem. We expect its maximum value
explicit solutions, since the framework seems to be to equal the minimum in (P), corresponding to the
new. Therefore we include some optimal designs in minimum volume of the truss. The integrand u.f is
the next section, for a problem that also has con- simpler than the quantity IA1 + IX2 1 in the stress
straints on the stresses, formulation, but there the constraints were linear

and here they are not. Nevertheless, the extreme
The Michell problem minimized ffIA 1j + IX21 case Jeil = 1 can be interpreted, and that is the key

over divergence-free stresses satisfying o:n - f. We to the whole design.
introduce a Lagrange multiplier for the constraint
div a - 0; this is a system of two equations, The interpretation is classical: el = 1 and

£2 = - 1 arises from a Hencky-Prandtl net. The
ao aT aT ao principal strains are of equal aid constant magnitude,
x +___ . 0, yx + Y = 0 and opposite sign. This can happen only for a special

a- ay ax +y ' class of displacement fields u, and their geometry
has been studied in great detail [1-4]. The con-

and we denote the multipliers by uI and u2. Then dition a2e/aaaa _ 0 on the angle e between the
horizontal and the direction of the strain cl  1

mi-nff was mentioned in the introduction; here we note also
div i-o 1Al1+1A 21 - min maxJP A1+IX2 1 + u.div a the secondary property

a:n-f o:n-f u
auI  au2if€ 2 - ----- -o0

- max min I A1 I+1A 21 - < (u), a >1 + 2 a ay

u a We emphasize again that the geometrical problem is
identical with that of slip lines in plain strain,

( where it is the eigenvalues of the stress that equal
+ u.f ds. (11) ± a0. And in the case of equal strains, C1 - E2 = 1

(pure stretching) or Ei - E2 = - 1, there is a
similar correspondence with pure hydrostatic pressure

Here E is the usual deformation tensor that arises in the stress case.
in Green's formula, with components 2c = (uij +ui);1 We need to return to the optimality conditions.
the inner product <,o> is EZe iji tra

l
e(c). They can be expressed very concisely: an adniasible

pair o,u i. optimal if and only if the last integrand
over 0 in (11) is zero. This integral is always
nonnegative, so that for every admissible a and u

The next step is a minimization, for each fixed (
matrix c, over all matrices a: J(I1(0)' + Ix2 (a)I) dx ly .Ju.f ds

minA 1 (O)I + A2 (o) - <to> (12) 0 r

For this we first diagonalize c by a principal axis Thus the minimum in (P) cannot be less than the maximum
transformation c - RE' R

-
1, with R

- 1 
- RT; the in (P*), and the two are equal (directly from (11)) if

eigenvalues cl and C2  (the principal strains) the optimality condition is satisfied. With a more
appear in the diagonal matrix E'. The inner product precise description of the admissible spaces, given
<n,o> and the eigenvalues X(o) are invariant if this below, the existence of an optimal pair can be proved.
transformation is applied at the same time to o:

The admissible spaces will include functions which
<E,o> = trace (Eo) - trace(R-lc'RR-lo'R) - are not smooth, or even piecewise smooth. Nevertheless

the optimal design normally decomposes into distinct
trace(Coa) - <E',o'>. regions, in each of which one of the possibilities

identified by (14) is fulfilled. We can restate those
Therefore the minimization (12) simplifies to possibilities as follows:

Inlxz 1(O4)l + IA2(0')l - o - 2 Y 2. (13) if Ai(o) - 0 then IJi(U)1 < 1

In case Ieil > 1, the minimum is - "; we just take (15)
oi Kcl, so that our expression becomes KlEl[ - if li(O) 0 0 then Ei(u) = sgn Ai
KiE1 I < 0, and then let K -'-. Similarly the
minimum is - if Jc2l > 1. In the remaining case These conditions already appear in the book by
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Rozvany [5], which is a valuable contribution to In this case the quantity denoted earlier by
structural optimization. The region of special representing the difference 1/2(Ai-A2), has the con-
interest is the one combining tension and compression; stant value A -- and this is the yield surface in
the Xi have opposite signs and ElE 2 = - I. Prager plane strain. The other net occurs when both strains

L2, p. 53] gives the optimal design for a point load are governed by the second alternative:
transmitted to a foundation arc, partly by a truss-
like continuum of this kind (two dense orthogonal El = 1, E i XI 

> 
0, X ' 0

families of bars), partly by a region in which A2 = 0 2 2

and the members go in only one direction, and partly This is the Michell situation, already discussed. And
by a region in which X) - X2 - 0 and there are no we now see the possibility of transition regions, in
interior members. It does involve concentrated loads, which one principal stress and the other principal
and will therefore not remain optimal (or admissible) strain are constant, say c - 1, X2 = - A. We do not
when constraints are imposed. know the geometrical implications of such a pairing.

We come to the dual of the problem (P), with Perhaps it would be reasonable not to work through
bounds LXij < A. The steps that led to (li) are the dual to the other constrained problem (Pk)". We
essentially unchanged, but the subsequent minimization mention only that because the constraint acts on the
over o is now constrained; it becomes deviator, and ignores the trace of o, the condition

aul/DX+iu 2/Dy = 0 will appear in the dual. And
min IA,(o)I + 112(o)1 - <to> • (16) symmetrically, since the rotation au!/ay-3u 2/3x is
lix A ignored in the strain tensor e, there must have been

an equation constraining the stress tensor. It was
The same transformation to principal axes leads to 012 = 021, assumed from the beginning but only now

justified.
mMin IX11(a-)1 + iX2 - 'oll - '2 oA 2  . k17)
Iil<A We do want to describe the space of admissible

functions in each of the variational problems given
We no longer reach - in the cases .l > I, since above. For the original Michell problem in stresses,
A, cannot be arbitrarily large. Instead, for each of the equivalent form (Q) suggests the right space: the
the pairs Ai,oi, there are three alternatives rather integrand involves second derivatives of the stress
than two: function p, and we take the largest space in which

the integral to be minimized is finite. This allows
if 1I1I > 1 then X, - A sgn €i  all * whose second derivatives (the stress

components) are bounded measures; singularities are
if [cit = 1 then X- ilXIsgn ti,o < jkil < A (18) permitted. The boundary values for o:n are

expected to be integrable, so that fi e LI(r). (In
if ~it < I then A, - 0. a proper theory the boundary conditions need to be

put in a relaxed form, as in [6].) The dual problem
The minimum value in (16) and (17) is still zero in (P*) includes the constraint IciA 1, and therefore
the second and third cases; we are back to a region the components ci = 1/2(uii+uj ,i should be in
of Michell type. But in the first case, with cil > 1, L"(1). This does not imply that each of the partial
the minimum is no longer - . Instead we have, when derivatives ui j = Dui/axj is bounded; as in [7],
o is diagonal with o' X, - A sgn ti, where Korn's inequality was shown to fail in the L

I

norm, it is only the symmetric combinations that go
- t%0jl - A(l- Li) . into tij that must be bounded. The rotation

Therfor, w ca wrte he inium n (6) nd 17) U1, 2 - U2,1 can be unbounded because it is ignored.
Therefore, we can write the minimum in (16) and (17)- , cabeuonddeaseiisgor.

as We call u a function of bounded strain if

IFijl _constant, in order that (by popular demand) we
MA - A min(0,l-Ie l)+A in(0,1-1E21) (19) can denote the admissible space by BS(Q). We intend

to study it elsewhere in more detail. It is analogous
Returning to (11), and substituting this result for to the space BD(Q) introduced in [7], where the
the inner minimization over a, we find the dual to combinations lij are measures and fflcijl < =. In
(PAY! fact, BD is the admissible space for the dual (P*) of

our constrained problem. It allows the strains io be
(P*) Maximize MA dx dy + (Ulf +u 2 f 2 )ds . unbounded (the restriction cIi< 1 has been lifted)

ff but it maintains the condition 7f1cl < - which
Simplies fMA < . Finally, the admissible space for

the new problem (PA) is composed of bounded and
MA penalizes the strain at any point where IJiE > 1, divergence-free stresses. These come from functions

* and as A - - we recover the Michell constraint @ in the space W
2
,"(Q), with second derivatives in

ciI 
< 
1. L. And for (Pk),it is only the combinations

-- y and 
4
xy that must be bounded -- leading to

It is the three alternatives in the a space that can survive for the present without a
optimality conditions (18) that lead us to anticipate name.
a combination of Hencky-Prandtl nets, one coming from
slip lines and the other from Michell trusses. There
may also be regions of other types; in case both 3. Optimal Design in Antiplane Shear
i~tl < 1, for example, we are completely controlled by
the third alternative and the stress is zero. This We conclude by describing the solution of a
appears as a hole In the optimal design. But the simpler problem. It begins in the same way, with an
cases of greatest interest arise when one family of infinite cylinder of cross-section Q, but the surface
bars is in tension and the other in compression,
A112 < 0. The slip line net will occur when both f

strains are governed by the first alternative: It comes out more neatly, in terms of a strain
function and a stress function, than (P).

eI 
> 
1, 2 

< 
-1, A 1 " A, A2 A - .4 I
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forces now act against the plane of the cross-section. on which ' = t, then
Earlier fj and f2 were parallel to the plane; now rc
the force is f = f3(x,y), in the axial direction, and JJ IVV1dx dy =J IYtdt (22)
it produces antipiane shear. It is still true that
all stresses and displacements are independent of z, -

but a completely different subs't of their components Therefore the curves y are as short as possible for
will be nonzero. For stress it is the shear com- the minimizing 0; they are straight lines. The two
ponents Oz and aOz which enter, and the equilibrium boundary points at angles ±8 share the same value of
equation 'without bdy forces) is g, and 'P takes this value along the line x =

constant connecting the two points:

div a = x )

There is still a stress function 'p that yields the The same holds on the left side of the circle, con-
general solution to (20), but now the relation is necting the points at angles 7 ± 6. At the top of

the circle, beyond the angle 8 = n/4, there is a
change. In this case the most efficient way to

a a (21) connect the four points on the circle that share a
y' yz ax common value of g is by horizontal lines -- between

the upper pair of points at 8 and w - 8, and the
Thus a = (a xz'a ) is a rotation of the gradient VV lower pair at -6 and i + 8. In these regions,
through -7/2, ang the magnitudes are equal: is a function only of y.

la12 = 2 + 2 - v 12. The displacement is in 1 2 1) with = 1(2 20_) = g on r
the z irect"on, u = u3(x,y). 'P(x,y) = -i(2y 2

The design problem is to find the lightest Thus the circle is cut into five regions by the in-
structure that can withstand the boundary load scribed square whose vertices are at e - ± w/4,±3w/4.
oan - f. This leads to a minimization of the stress To the right and left of the square, the stress
volume: trajectories are vertical:

(P) Minimizeff oldx dy subject to div a = 0 in o, ' 
1
(l-2x

2
) and a = (p,-,px) - (0,2x)JJ 2 y x

2 -n-f on P Above and below the square, o acts horizontally:

a = (2y,0). Inside the square 'p is zero and so is
Problem (P) is the analogue for antiplane shear of a; no stress trajectories enter, and it is left un-
Michell's problem for trusses. Its equivalent, used in the optimal design. The stress magnitude
written in terms of the stress function ', is reaches [oj = 2 where x = i 1 and where y = ± 1.

(Q, Minimize/f 1VOpdx dy subject to ' = g on r. Now we introduce a constrained design problem,
J. with the restriction laj < A. Its variational form

is analogous to the constrained Michell truss:

The boundary value g comes from f exactly as in (PA) Minimizeff lol subject to al A,
equation (6), by integrating along r. We are not fJ
far from the minimal surface problem, which has the div a 0, o.n - f.
square root of 1 + 1Vu1 2 

in the integrand; the dis-
appearance of the constant brings a major In our example with f = sin2e, the design is not
simplification. These design problems (P) and (Q) affected if the yield stress A exceeds 2. But as
are derived more properly in (8]; we are concerned A decreases beyond that point, the stress
here only with their solution, and their relationship trajectories must begin to curve toward the center of
to the original (P) and (Q) in the first section. the circle. At A = 1 they are completely curved,

and their form is computed in [8]. For A < 1 the
The differences are clear; o reduces to a constraints become incompatible (we could not have

vector instead of a matrix, and therefore it has one o.n - f - 1 at 8 - 4/4) and limit analysis intervenes;
distinguished direction instead of two. In place of the structure cannot support the load without violating
a truss, with bars in both directions of principal the yield condition lol < A, and it must collapse.
stress, there is now a single family of stress
trajectories across Q. And the special properties The dual problems will take a familiar form:
of a Hencky-Prandtl net are replaced by an even
simpler geometry: the trajectories are straight lines. (P*) Maximize uf ds subject to IVul < 1
The optimal design of the cross-section is composed
of fibers that connect one boundary point to
another, possibly leaving holes within 0 where the (P*) Maximize mun(0,A(l-lvul)) + uf da.

optimal a vanishes and no material is needed.
a r

We give an example that starts from a circular They are linked to (P) and (PA) by optimality con-
cylinder; Q is the unit circle. The boundary ditions, and we write out the three alternatives in the
force oan is distributed according to f - sin20, constrained case:
pushing up in the first and third quadrants and
down in the second and fourth. (The net force is if iVul > 1 then a = A Vu/[VuI
/ f da = 0, as required by the equilibrium equation
div a - 0). The integral of f is g = - cos2e/2, if nVul - 1 then a - IolVu, 0 < lol A A (23)
and the optimal function * is the one that agrees
with g on the boundary and has the smallest if Ivul 1 then o - 0.

possible value of 1f I9*. By the "coares formula",
this integral can be computed from the lengths lytl The parallels with (18) are clear, and for (P*) the
of the level curves of ' [8-9]; if Yt is the set first alternative disappears (A - -) and the others
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correspond completely to (15). In the dual problem
(P*) on the circle, the optimal u is equal to y

and -y on the right an.! left of the square, and to
x and -x above and below. The second alternative
holds, and the minimum in (P) equals 4V2/3, which is
the maximum in (P*).

We have to refer to [8] for a more detailed
(and more leisurely) discussion, and to [9] for a
second example. rhere is a similar theory when the
cylinder is twisted rather than sheared; the
torsional rigidity is maximized and the dual variable
u is the warping function [10]. But the one point
still to be made in this note is the analogy, in the
antiplane context, to the conjectured coexistence of
two Hencky-Prandtl nets. We close with a brief
explanation of that analogy.

The optimality conditions (23) for antiplane
shear make Vu parallel to a, so that the curves
u = constant are orthogonal to the stress
trajectories. The latter can be described by
= constant, so that u and * are orthogonal

curvilinear coordinates. It can be proved that in a
region wheie one family of coordinate curves is
straight, the other must have constant gradient --
and conversely. In polar coordinates, for example,
0 = constant is straight and IVrl = 1. In our con-
strained problems we expect regions of both kinds:
VuI = 1 when the second alternative holds, and
a =IV I = A for the first alternative. Each of

the orthogonal families is straight in one part and
curved in the other, and smooth everywhere. It is a
mixture of this kind, which can be illustrated by
examples in antiplane shear and in torsion, that we
look for also in plane strain.

References

(1) M!-hell, A. G. M., The Limits of Economy of
Material in Frame-Structures, Phil. Ma. 8 , 1904,
589-597.

(2) Prager, W. Introduction to Structural
Optimization, Udine Lecture Notes, Springer-
Verlag, 1974.

(3) Prager, W. Transactions, Royal Institute of
Technology, Stockholm (1953), no. 65.

(4) Hill, R. The Mathematical Theory of Plasticity,
Oxford University Press, 1950.

(5) Rozvany, G. I. N., Optimal Design of Flexural

Systems, Pergamon, 1976.

(6) Temam, R. and Strang, G., Duality and Relaxation
in the Variational Problems of Plasticity, J. de
MKcanique 19, 1980, 493-528.

(7) Matthies, H., Strang, G. and Christiansen, E.,
The Saddle Point of a Differential Program,
Energy Methods in Finite Element Analysis,
R. Glowinaki, E. Rodin, 0. Zienkiewicz, eds.
John Wiley, 1979.

(8) Kohn, R. and Strang, G. Optimal Design and
Convex Analysis, in preparation.

(9) Strang, G. and Kohn, R. Optimal Design of
Cylinders in Shear, Proc. MAFELAP Confer-nce
Brunel University, J. Whiteman, Ed., 1981.

(ID)Kohn, R. and Strang, G., Optimal Design for
Torsional Rigidity, Proc. Conf. on Mixed and
Hybrid Finite Element Methods, S. Atluri, ed.,
Atlanta, 1981.

4-22

• * !Iq



OPTIMUM GEOMETRY OF STEPPED-TAPER BEAMS

Leonard Spunt*
Department of Mechanics, Civil & Industrial Engineering
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Summary

'An application of the parametric load index W = Total beam weight for stepped-taper with
approach is presented which yields a general least s equal interval lengths
weight formulation for stepped taper beams optimized
for any prescribed number of stepped segments. The Wu  = Weight of the uniform beam
method provides for treating all cross-sectional dimen-
sions dependent on the step lengths as the only inde- x = Longitudinal coordinate axis
pendent variables. Results for both cantilevered and
simply supported uniform loading demonstrate that only a = Nondimensional step length variables
a two or three segment stepped beam can realize about
one half of the maximum weight reduction obtainable P = Material weight density
through a continuous taper. For example, a two segment
cantilever is shown to yield a 30% weight reduction
with the continuous taper representing a maximum of 57% Introduction
weight reduction, both being compared to a uniform
cross section. The least weight cross-sectional properties of

practical beams such as the I-shape was given by Cox
Stepped-taper configurations of up to 10 variable (l). The present writer employed such results to

length segments are optimized for both simply supported evaluate the weight savings realized through continu-
and cantilever examples. These numerical results are ous taper (2). It was shown that continuous taper
presented in nondimensional form and are shown to be offers great potential for reducing weight as compared
independent of the numerical value of load environment to a uniform cross-section (from a minimum of 24% for
parameters or type of cross section. simply supported/uniformly loaded, to a maximum of 57%

for cantilevered/uniformly loaded). Although such
AFor each prescribed nuner of steps, comparisons weight savings would be desirable, the application of

are made between optimized step lengths as opposed to continuous beam taper is often not cost effective, and
equal length divisions. For the cases considered, it is especially so in light of the continuously varying
found that optimizing individual step lengths realizes thickness required.
only small benefit compared to equal length steps

Nomeclatre Oe practical alternative is to employ a stepped
Nomenclature taper whereby the beam is considered a comination of

segments, each of which has a set of uniform dimen-
A = Cross-sectional area sions. In the present reporting the stepped-h, m op-

lem is formulated with the nuner of steps as a
CB = Material and configurational coefficient in prescribed parameter, N, where step lengths may be

beam component optimum design equation equal (fixed geometry), as well as an N variable
th problem treating each of N step lengths as subject to

Subscript which defines the ith interval In a optimization. In both types of evaluations, para-
stepped beam metric load index results (2) provide for linking all

2 cross-sectional dimensions as dependent on the step
kI  = M /(qL2), a parameter which nondimensionalizes variables, thus reducinq the problem to an uncon-

te maximum bending moment for the ith inter- strained search in a greax'y reduced design space.
val.

General Formulation for Stepped-Taper
L = Total beam length

The analysis is applied to the case of pure
L = Length of the ith interval in a stepped-taper symmetric bending. It is further assumed that under

beam the suppression of local plate buckling and yield
stresses, the cross-section can be proportioned so as

M(x) = Bending moment function for 0 < x < L to justify elimination of the lateral buckling mode
th from consideration. This can be readily done since,

M = Maximum bending moment in the i interval under these conditions, the weight merit function is
relatively insensitive to the width to depth ratio for

Mmax = Maximum bending moment over total beam span thin wall cross-sections such as the I or box. For
example, in the weight optimization of an I-beam,

N = Nuner of stepped intervals ignoring lateral buckling, the flange width can be
sized at 50% of the section depth with only a 2% weight

opt = Subscript defining an optimum condition penalty over least weight (2). At this width to depth
ratio it is unlikely that lateral buckling would occur

Wc = Weight of the continuous taper beam under general loading conditions.

WI = Weight of the ith interval in a stepped-taper Based on these conditions it has been shown that
beam the weight optimum cross-section may be expressed as (2)

Ws  = Total beam weight for stepped-taper 3opt B /3
________(pA)op = CB M(x) (1)

*Professor of Engineering
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where CB is a coefficient which depends on cross- the only independent design variables.

sectional type and material. Through Eq. (1) the Equal Step Lengths
least weight cross-section is defined continuously as
a function of the bending moment. To proportion the For the stipulation of equal step lengths each
beam on a step taper basis, as illustrated in Fig. 1,

the ith step, Ai, must be evaluated for the maximum reduces to I/N and Eq. (6) becomes

bending moment in the corresponding interval, Mi. To ' 2/3 2/3

insure an index formulation, it will be convenient to S = B (7)
define the peak bending moments in terms of dimension- 7N
less parameters, ki, as shown

Mi = kiqL 2  (2) Eq. (7) is valid for fixed geometry, i.e., each L.
L/N.

-- - Continuous Taper Comparator

The evaluation of the continuous taper ideal mav be
obtained by specifying a given bending moment function,

+. M(x), and integrating Eq. (1) over the beam length.4 • • Whereby

L 2/3Wc = f C. [M(x)) dx (8)A 01L+ai+.L+a 2L-"
0

M (XUniform Beam Comparator

To obtain an expression for the least weight of a'Mi "IM " 2 uniform beam, M(x), in Eq. (1), is replaced with the
O 1maximum bending moment obtained throughout the beam

length, M max, which, upon multiplication by the beam

beam length, yields

Fig. 1 - Variable Description of the Stepped-Taper Beam 2/3Wu  = CB Mmax L(9

-where q is the transverse loading function in units of

force per unit length and L is the total beam length.

Defining the step length variables nondimensionally as Cantilever Beam/Uniform Loading
ai = Li/L, the step length for the ith interval can be

written as Variable Step Lengths - Fig. 2 shows the para-
metric descriptions for an N step cantilever subjected

Li = aiL (3) to uniform loading. Treating the ai's as variables,

the ki's are evaluated in these terms from the moment
Since uniform conditions exist over each step interval diagram of Fig. 2. Noting from Eq. (2) that ki 

=

length, the weight of the ith step can be expressed as Mi/qL 2 it follows from the moment diagram of Fig. 2

Wi = (oA)optiLi (4) that 2

Now combining Eqs. (1) through (4) and summing over N ki = 1/2 i ] (lO)
prescribed steps we obtain L

N

2/3 7/3 2/3 (5) Eq. (lO) can be shown to result from the cantilever

1 ment equation M(x) = l/2q x2 . Substitution of

where division by L3 yields the index result xi = > Lp and employing Eq. (3) yields the required
= N (k 2 i)  (6) 2

maxium bending moment for the ith interval, Mi-

i=l Lastly, one applies the defining equation for the

Eq. 6 represents a general index expression in which ki's, Eq. (2).
N-1 of the prescribed number, N, of step variables,
0i, may be optimized subject to some defined load state
expressed intermsof the k., Eq. (2). Note from Fig. 1

that In addition to the external load state, the ki's

will depend on the ai's. Thus the ci's are seen to be
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,q Simply Supported Beam/Uniform Loading

SVariable Step Lengths - Fig. 3 shows the para-
metric description tor an N step simply supported beam
subjected to uniform loading. For this symmetrical

-F . -case the ki's need to be evaluated for i = 1,
(N + 1)/2, where i = (N + 1)/2 corresponds to the

C L ( k  Lg  
-  -center section. It is only necessary to apply the

a L summation in Eq. (6) for i = 1, (N - 1)12. Accordingly,
N1 aN for any symmetric loading the number of independent

__ variables may be reduced from N to (N -1)/2, where the
L center section step length variable may be expressed

as

M(X) X

2 2

Fig. 2 - Stepped-Taper Cantilever Beam Subjected to
Uniform Loading E E _3

Substituting into Eq. (6) yields . (I L a 1 L - Ia1L -

W C 2/3 N 4/MOO

i:= 

B

i=l p=l

Equal Step Lengths - Noting that for equal step
lengths i I/N, Eq. (10) becomes 0 X

k. = 1/2 ( i (12)
k = / Fig. 3 - Stepped-Taper Simply Supported Beam Subjected'ff to Uniform Loading

whence from Eq. (7) N Therefore, for the symmetric loading case Eq. (6) may

, 2/3 i. (13) be rewritten as

LS ) (2)213 N 4 /3  N-1

Uniiform Beam - F roip Fig. 2 the maximum bending Ws C(/3 2 (t k 2/3 +

mas -CB CB13

moment, M 112 (q Lz). Substituting this into B ( ) i

Eq. (9) and dividing by L
3 yields k2/3

2/3 N+I N l  (17)

w 8 q) (14)

L Eq. (17) will apply to any synnmetric loading case.

Continuous Taper - For the loading function of From the moment diagram of Fig. 3 the ki's for the

Fig. 2,M(x) = 1/2 (q x
2 ). Therefore, from Eq. (8) and present loading case are found to be*

division by Lwe obtain 12[ \p 2]/1823k i  =12 p a pp at8

Wc CB q 2 /3  L 4/3 2/3 = P I (1W B2 q f x dx= 0.270Csq) (15)
LL 0 Equal Step Len th - With the equal step length

For purposes of cowarslon, the weight merit function 
requirement of ati I/N, Eq. (18) becomes

in Eqs. (11), (13), (14) and (15) can be taken as the ki = 1/2 2 (19)

nondimensional factor of C8 (q/L)
2 /3 . Thus the N

optimum values of the ai's are seen to be independent with the exception of k N+l = 1/8, since maximum bending

of beam cross-sectional type and material, CB, and load 7-

index, (q/L). moment occurs at the midpoint of this segment.
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Modifying the equal step length weight formation, TABLE 2 - OPTIMIZED STEP LENGTHS
Eq. (7), for the symmetric loading case we obtain FOR CANTILEVER/UNIFORM LOADING (FIG. 2)

N-i OPTIMUM

2 C 223 2/3 N i VALUE OF
N = B  { ) 2 k2 + kN2/ (20) i

Continuous Taper - For the loading function of 2 0.52968

Fig. 3, M(x) = 1/2 (q Lx - qx2 ). Therefore from 3 0.3677

Eq. (8) and division by L3 we obtain 0.3265
a2

SCB 2/3 L (Lx -2)2/3 (21) 4 al 0.2346f L (2 0.2526
L 0 a3 0.2366

Integrating by Simpson's Rule yields 5 al 0.2333

W 2/3 a20.2074Wc = 0.1864 C 2/3 ()2 0.(24L)2 OL3 0.1942
L a4  0.1858

Uniform Beam - From Fig. 3, Mmax = q L2 /8. 6 a~ 0.1989

Whence from Eq. (9) with division by L. a2 0.1764

W 1/42/3 a3 0.1653
u Ca/ 2/3 (23)

0.1581

a5  0.1527
Once again the form of the merit function can be taken

2/3 70.1736
as the nondimensional factor of CB (q/L)2 3. 0.1

Tables 1 through 4 lists results for various speci- *2 0.1541
fications of the nunber of stepped segments, N, with a3 0.1444
Figs. (4) and (5) showing plots of merit function in 0.1380
terms of N. The data was obtained by use of a
Random Vector search algorith on a CDC 3170 (3). a5  0.1334

a6  0.1290

TABLE I - MERIT FUNCTIONS FOR
CANTILEVER/UNIFORM LOADING (FIG. 2) .6

N MERIT FUNCTIONS PERCENT ""-UNIFORM BEAM
DIFFERENCE .60

OPTIMIZED EQUAL
LENGTH LENGTH

SECTIONS SECTIONS z ,5
0

1 0.63 --. 50-

2 0.4393 0.4400 .16 z

3 0.3801 0.3808 .18 IL. 57%
4 0.3514 0.3521 .20 1- 40

5 0.3346 0.3352 .18 W

6 0.3235 0.3240 .15 • " a'

7 0.3156 0.3161 .16 .30 pt --

8 0.3098 0.3103 .16 .25 CONTINUOUS TAPER- 'f

g 0.3053 0.3057 .13 .a

10 0.3017 0.3021 .13 2 3 4 6 7 8 9
- 0. 2699 - N

Fig. 4 - Weight Merit Function Versus Number of Steps
for Cantilever/Uniform Loading
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TABLE 3 - MERIT FUNCTIONS FOR
SIMPLY SUPPORTED/UNIFORM LOADING (FIG. 3)

N MrRIT FUNCTIONS PERCENT
DIFFERENCE

OPTIMIZED EQUALLENGTH LENGTH..,
SECTIONS SECTIONS UNIFORM BEAM--f

1 0.25 .24--
3 0.2229 0.2374 6.51 Z .

0n
5 0.2119 0.2216 4.58 I.

7 0.2060 0.2129 3.35 z .22

9 0.2022 0.2076 2.67 I. .21.
11 0.1995 0.2040 2.26

13 0.1976 0.2013 1.87 w. 20 1

15 0.1961 0.1993 1.63 .19

17 0.1950 0.1978 1.44

19 0.1940 0.1965 1.29 .. CONTINUOUS TAPER-

- 0.1864 0.1864

3 5 7 9 II 13 15
N

TABLE 4 - OPTIMIZED STEP LENGTHS FOR
SIMPLY SUPPORTED/UNIFORM LOADING (FIG. 3) Fig. 5 - Weight Merit Function Versus Number of Steps

OPTIMUM for Simply Supported/Unform Loading
N =i VALUE OF

0i

3 a1 0.1538

5 01 0.0955

02 0.1292

71 0.06864 "- I 0 .6 9 2 L

02 0.08713

903 0.11154 0.154 L
01 0.05319 .
a2 0.06566

03 0.07878

04 0.09872

11 1 0.04316 0.53L+O.47L
02 0.05245 /

03 0.06117

04 0.07185 Fig. 6 - Optimum Geometry at the Lowest Step Number

25 0.08901
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Discussion of Results References

The decision to employ a step taper in the 1. Cox, H. L., The Design of Structures of Least

practical design of beams entails considerations other Weight, Pergamon Press, London, 1965.

than the theoretical weight variation with respect to
number and relative size of the stepped segments. 2. Spunt, ., O Structural Design, Prentice-
Primary amongst these would be the inclusion of fasten- Hall, New Jersey,171
ing weight and the adjustment of the local dimensions
to account for the stress concentrations that would 3. Absher, G. W., Weight Optimization of Stepped

accompany a stepped geometry. The ignoring of such Beams, M.S. Thesis, California State University at

considerations in this study in no way minimizes their lo-r-thridge, 1977.
importance, rather it reflects the fundamental method-
ology that these matters are best incorporated by way 4. Spunt, L., A Programming Approach to Optimal
of specific modification of generalized results. In Structural Design Using Structural Indices. AIA

this way, least weight formulations such as presented Jr. of Air., Vol. 12, No. 6, June 1974.
herein may be obtained for whole classes of problems.
Certainly when such results are applied to an actual
numerical design, one can at that time include the Acknowledgements
weight increments associated with, and based on, the
specific attachment schemes such as mechanical fasten- Thanks to George Absher for running the computer

ers, weldment, or slip joints. Realizing that the evaluations for the examples and to Patti Neighbors

following observations must in this way be tempered in for her skillful typing of this manuscript.
the arena of real world detail design, it can be
concluded from the analysis presented that:

Cantilever Example (Fig. 2)

1) Even at the lowest step number, N=2, a sub-
stantial weight reduction of 30% is obtained. This is
fully one half of the maximum possible (57%) at the
continuous taper, N = - (Fig. 4).

2) Negligible differences in weight merit are
found between optimized and equal stepped lengths,
being less than 0.2% for all N (Table 1). It can be
seen from Fig. 6 that the optimized step lengths for
the cantilever are very nearly equal, explaining the
small difference.

Simply Supported Example (Fig. 3)

1) For this case, the lowest step number, N=3,
yields an 11% reduction in weight at optimized step
lengths compared to the uniform beam. This corresponds
to just under one half of the maximum possible (24%) at
the continuous taper (Fig. 5).

2) Some small differences are found between
optimized and equal stepped lengths, being at most
6.5% at N=3. This is reflected in substantially
different optimized interval lengths as shown in Fig. 6.

As to the benefit of employing larger values of N,
Figs. 4 and 5 indicate a relative flattening of the
merit function beyond N=4 for the cantilever and beyond
N=7 for the simply supported case. When proper account
is taken of attachment weight increments, undoubtedly
these values would be near the practical limit for step
number.

It may be observed that the continuity of the
merit function in Figs. 4 and 5 lends a level of
confidence to the globality of the found minimums.
Other examples of this can be found in Ref. (4).
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PATTERN TRANSFORMATION METHOD FOR SHAPE OPTIMIZATIQN

AND ITS APPLICATION TO SPOKED ROTARY DISKS

Juhachi Oda and Kouetsu Yamazaki

Department of Mechanical Engineering
Kanazawa University,

Kodatsuno, Kanazawa, 920, Japan

Summary in advance, the optimum shape satisfying these design
constraints will be the nearest one to the uniformly

A technique to determine effectively an uniformly stressed shape. Then, when boundaries S c of a design
str~ssed shape of two-dimensional design bodies under body Q, on which the external loads are applied or the
body force, which has been suggested already by the displacements are specified, are given as illustrated
authors and is so-called 'Pattern Transformation Meth- in Fig.l, our design object is to determine the uni-
od' will be explained plainly. This technique is one formly stressed shape of 9 by changing the free bound-
of the stress -ratio methods and based on an iterative aries SF. For instance, if the volume of Q is speci-
method consisting of the following steps. In the first fied, we must minimize the ratio of the maximum stress
step, the deviation of a given shape from the design to the minimum stress on the boundaries. On the con-
object is judged by the comparison with the stress at trary, if the allowable stress is specified, the vol-
each point on the boundary and the design objective ume of Q has to be minimized under the stress con-
stress. In the next step, the given shape is modified straint.
to approach that to an optimum shape by the propor- Now, an iterative method to obtain optimum shapes
tional transformation of the finite elements consti- for two dimensional bodies and its application to the
tiiting the boundary. body force problem have been previously proposed by the

By applying this technique the optimum strength authors (1-3). Figure 2 plainly shows the design pro-
shapes of the rotating disks with some spokes such as cedure for the body force problem. That is, the opti-
the flywheel, the belt wheel and the gear of large di- mizing steps for body force problem are as follows :
ameter are obtained. Furthermore the validity of the ( i ) At-the first step an original shape which satis-
obtained shape is examined experimentally by the spin- fies the given design conditions is assumed.
ning fracture test. (ii) The original shape is subdivided into the finite

elements. The stresses {oWj and an equivalent
Introduction stress - in each element are calculated by the

finite element method considering the body force.
Up to this day, optimum design field has made a (i) A standard stress oa is set according to the de-

remarkable progress with the developement of apace en- sign constraints, that is, when the volume V of 0
gineering. But optimum design of continuum has not has to be kept constant, aa is determined approx-
been studied so much as that of structure such as imately from the mean value of Ff in the element
framed or truss structure, because of the difficulties region 0F constituting the design boundaries Sp.
involved in representing mathematically the geometrical On the other hand, when the allowable stress is
shape of continuum and the fact that the problem is specified, a is set equal to the specified value.
generally a large-scale nonlinear one. (iv) The superiority or inferiority of the given shape

But in recent yearls, some techniques to obtain an is judged by a deviation from the stress provided
optimum shape of elastic continuum have been developed with the design object, that is, the deviation is
by applying the finite element method. The technique calculated by comparison with the design stress
transforming the shape of element near the boundary oa and the equivalent stress in each element.
surface, i.e., "Pattern Transformation Method", is sug- (v) The pattern transforming values considering the
est'd and applied to two dimensional and axisymmetric effect of body force for each element in QF are

problems by Oda and Yamazaki (1-3). Furthermore, the determined by applying a proportional transforma-
growing-reforming technique (4) and the technique ap- tion method of element shape. The values are
plying the inverse variational principle (5) are also transformed into the shifting vectors to move the
developed in Japan. These techniques consist of rela- nodes on the boundaries SF and the shape of them
tively simple processes and are essentially equal to are modified.
one another because the shape modification is carried (vi' At the final step, the new shape of the design
out by comparison with the local stress or strain en-
ergy distribution and the standard value. On the other
hand, Francavilla et &l. (6) and others (7 ,8) devel- P/,
oped the techniques of applying mathematical program-
ming me hod. Experimental techniques for reducing the
stress loncentration are also suggested (9-11).

In this paper'. the Pattern Transformation MethodAD
for body force problems suggested in Ref. (3) is ex-
plained plainly and applied to the practical engineer-

ing problems such as the design ofspoked rotary disks.
Moreover the validity of the obtained shape is exam- SF
ined experimentally by spinning fracture test of the
specimens made from resin mortar. 

n

Optimization technique C

Design procedure

In the optimum design of a continuous body under
arbitrary loading and supporting conditions, if a vol- Fig.1 Continuous body 9] under arbitrary loading and
ume of design body or an allowable stress is specified displacement conditions.
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boundaries SF should be faired up by the continu- will be proportional to the volume of the plate.
ous curves. The modified.shape is adopted as a Therefore the components of body force after transfor-
new original shape in the next optimization cycle. mation are given as

By the iteration of the above mentioned steps the Fme = &n FX , Fy" = Cny (4)

optimum shape can be obtained finally. The pattern where the values marked with an asterisk denote that
transformation method and the determination of the after transformation. Then the stress components are
shifting vectors are most important in this technique changed as follows :
and described in detail in the next section. x*--= +( n )/nbt

Pattern transformation method ay*
= 

(Py+ EnFy )/ at (5)

If a shape Qn-l at the cycle n-1 changes to a By using the condition that these new coordinate
shape Sin at the cycle n under an arbitrary dynamical stresses are in accordance with the standard stress qa,
condition, the following relation will be held between the parameters C and n must be determined. From Eqs.
these shapes. (2) and (5), the equations to determine & and q are

Qn = lnQ n-l (1)
in which i is called as transforming function and (1+ )n = Ox (l+ftc n)
must be determined from the dynamical law between n-l( (6)
and Qin. Moreover 4"n should be selected according to + my)& = Sy (I+ ay n)

the design object. where m and a represent the ratios FX/Px and F IPY
Now, let's consider to determine a concrete form respectively, moreover OX and r e denote the ratios of

of n by using the following simple example and esti- etiey more o th and d the r s
mate an effective pattern transformation method in the the stress components to the standard stress. There-
two-dimensional stress field. Figure 3(a) shows a rec- fore, it should be noted that a pair of e and r can be
tangular plate of a xb in size and t in thickness. The determined from Eq.(6) and the coordinate stresses can
plate is loaded uniformly with Px and Py in two direc- be changed to be equal to the standard stress by exe-tions of coordinate axes, respectively. If Fm and Fy cuting the pattern transformation.

denote the equivalent components of body force in this teIn general, c and y are not equal to zero. Thend e no e t e e ui v l e nt c o m o n e t s f b o y f rc e i n h i s th e par am et er C an d ri ar e g iv en b y so lv in g Eq . (6 ) as

plate, the stress components of oyx and 
0
y are given as follows

follows :
cx= CPx + Fx)/bt , ay = (Py + ry)/,at (2) (ax- 1) (ay -1) + (q -ay) Oxa -A

Then, maintaining the loading conditions of P, Py and =

thickness t constant, we can modify the shape of the 
2
c (% -1) 8

plate so as to bring the coordinate stresses closer to (ow)
the object stress by using the proportional transfor- (0-1)C( -1) + (ay-.) Bin -A
mation given as 2 

= (ax1)Uy y
1= (z x, Y - ny) (3)

The parameter C and n of transformation can be deter- in which
mined from the equation of equilibrium for forces. f ( -1
Figure 3(b) shows a new shape of the plate transformed A 1)2 (a 1)2 - 2(ctx -1) (ay -)ot Ox Oy
by Eq.(3). + (Owy)2 x d

2 
1/2

If body force distributes uniformly, the force

ntraution ot oriinal shape n n-F |
n n t 1- I'll

I LiVon to i;n,te element Fairina of desln boundary SF 1

Calculation sf element Shape modification (a)

Stress lii un6e body N
force Conersion of shape transfomn values

"~ ~ I eemnt inlto rodlat shiftinj vectorsF

rDetermination of stanrd no ------ -

t ycuLation of the deviation of

, I I

dj from da P

Yes L ------------

jFig.2 Flow chart to determine an optimum shape for Fig.3 Example of shape transformation in rectangular
body force problem. 4-0 plate.
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In a special case, if body force distributes Just in a will be produced from each element j that surrounds
single coordinate direction, for example FXO(F #O), the node i. Then we assume that the shifting vector
i.e. W *0 , and n are determined from Eq.( 6?) as 6Xt of the node i is given by the mean value of b j.
follows If the node i is surrounded by q elements, 6X will be

ay given as follows :

= , O (8) q
3+ (1-S -)q. bji (9)

Now, in the above mentioned cases the coordinate Then, the locations of each node on Sp in *%-l are
stresses ox and Oy only are considered and the shear changed by 6Zi formulated in Eq.(9), a new shape i n
stress is omitted. If the influence of the shear stress t sis ake ino cnsieraio, te pramterCan ~the stresses in which must be closed to the requiredis taken into consideration, the parameter C and Tj will

be more complicated. When the principal stresses a,
and aa ( CF I 02 ) are considered, however, the pattern
transformation described above is applicable to that
in the principal directions. Furthermore, if we select
linear triangular elements with three nodes for the
finite element analysis, the pattern transformation /
can be applied to each element in the design region QF" / S
The validity of the application can be proved by the
mean described in Ref (3). //

Shifting vector of node Let us consider to for-
mulate shifting vector of node from the pattern trans- 84 noes
forming value of element. Figure 4 shows a vector il- 1
lustration of the pattern transformation of element j,
the origin of which situates at the center of gravity
of the element. It is recognized that the pattern S F
transformation of the element is to shift the nodes
according to the nodal vectors kji shown in the figure.
When the pattern transformation is executed for each
element in QF at the same time, the nodal vectors b* .- . - . ..

(a) n=0-3

y

//

2/ 3 3 nodes
2 ITT etemnts

S

1'X

0U

Fig.4 Vector illustration of propotional transforma- (b) n=41l1
tion of element.

Sc

Q / I6O etements

(cW n-12-13

Fig.5 Original shape of four spoked disk. Fig.6 Element subdivisions of four spoked disk.
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stress value, will be produced.

Application to spoked rotary disks /

Numerical results

Pattern transformation method described previous- /
ly is applied to determine optimum shapes of rotary /
disks with some spokes such as the flywheels, the belt
wheels and the gears of large diameter. For the anal-

ysis plane stress field is assumed because that the /
outer diameter is much greater than the thickness of /
the disk.

First, we select the rotary disk with four spokes

for the original shape of design model as shown in Fig.

5. As for the sizes of this shape, the inner and outer"./ 2 n-0

radii of the rim are a and b , respectively,and those 3
of the hub are d/2 and C. The width of the spokes are 4

equal to the inner diameter of the hub and wider than
one by the general rule of design for the spoked disks.

As the design constraints, the sizes of the outer ra- /

dius of rim and inner radius of hub are specified in 0.2 0.4 0.6 0.8 10
advance, and the volume of disk is kept constant. That r/5

is, we try to determine an equally stressed shape of (a) n=O~.

disk by modifying the shapes of inner peripheral sur-

face of rim, spokes and outer peripheral surface of
hub. The material of disk is assumed resin mortar and

the mechanical properties are shown in Table 1 . By

using the material the spinning fracture test is per-
formed later. Furthermore, the well - known maximum
stress theory is adopted as an elastic failure crite-
rion of the brittleness of the material.

The computer implementation is carried out for
one-eighth region of the design model because of the /
symmetry. Figure 6 (a) shows the finite element subdi- /
vision at the first cycle, which is relatively coarse /
to promote the fast change of shape. In the figure a /
dotted area is defined as the design region nF- The
pattern transformation is performed in this area, in
which the standard stress aa is decided from the mean /
value of the equivalent stresses in the region SF, /
that is,

aa .Z Aj/EAJ (10) ./" 1 E A

where Aj is the area of the triangular element j in Qp.
Figure 7(a) shows the shape changing processes until /

fourth cycle. At fourth cycle, the element idealiza-
tion of Q is changed from (a) to (b) of Fig.6 because 0.2 04 0.6 0.8 r/b 10

each area of element in QF does not satisfy the con-
straint condition for keeping the precision of analy- (b) n.'=412

sis (1). At the same time, the shape at the junction
part between the spoke and the rim is smoothed to put
away an unfavorable shape changing alike saw wave at

the stress concentrated parts. This processing is car-
ried out also at 12th cycle. Figure 6(c) shows the el-
ement idealization adopted after 12th cycle. Figures
7 (b) and (a) show the shape changing processea at n=
4 - 12 and n = 12 -14, respectively. From theae figures
it is recognized that the width of spoke has decreased

near the root of the rim, but that of the rim has in-
creased near the root of spoke. Furthermore, the junc-
tion parts between the spoke and the rim or the hub /
have rounded, and at n = 14 the radii of curvature are
r, - 0.33d and r 2 - 1.18d as shown later in Fig. 15.
That is, the width of the spoke has changed to 1/10
tapered shape.

Figure 8 shows the variations of the maximum /
stress O2x, minimum stress Oimin and their ratio . 4
at /ia min (omeans the maximum principal stress at / 14

eX-- point in the region 11 and F, respectively ), in
which p and w are amaterial density and angle velocity
of rotation. From this figure, the stress ratio in 1IF  0 0.2 a4 0.6 0.8 / 0

has decreased extremely at the earlier cycles and r/b

changed from 10.09 to 1.68 . The stress distributions (c) n*12l4

on the boundary SF at the initial and final-cycle are
shown in Fig.9, in which the distributionof the orig- Fig.7 Shr, changing processes of four spoked disk.
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inal shape is obtained by using another fine subdivi- straints that has adopted for the disk with four
sion of elements. The stress a, concentrates at the spokes. Figure 11 shows the shape changing processes.
junction part between the spoke and the rim in the The optimum shape obtained finally is illustrated in
original shape, but distributes uniformly in the final Fig.12 in detail, in which r, = 0.43d and r 2 = 0.64d,
shape. The volume change is less than one percent dur- and the stress distribution on Sp of the optimum shape
ing optimization. From these results we may call the is also shown in Fig.13. From these results it is rec-
shape obtained finally as "optimum shape ". ognized that the radii rz and r 2 of curvature differ

Next, we also try to determine the optimum shape from that of disk with four spokes, but the taper of
of rotary disk with six spokes. Figure 10 shows the the spoke width is nearly equal.
original shape and its subdivision, which has the same
volume and the same ratio dfb that the disk with four Spinning fracture test
spokes has and is determined by taking the results
mentioned above into consideration. The shape opti- The validity of the numerical results described
mization has implemented under the same design con- in the previous section is examined experimentally.

That is, the original and optimum shapes of the rotary
15 -disks with four spokes are fractured by the spinning

test and the results are compared with each other.

Specimens The test specimens of disk are made of
resin mo.tar, which is one of the brittle materials
and behaves elastically until fracture. The resin mor-

i|O (,,.tar consists of 80 weight -percent fine- grained (0.21 ~ 0.5 mm) sand and 20 weight -percent epoxy resin with

(d,"M-

00 -O*'.

Ok ( s i a
Iteratin number n

Fig.8 Variations of am=z, oimin and its ratio. 0

Fig.l0 Original shape and finite element subdivision
of six spoked disk.

?i ~ ~ 2 4 6 8/ 10+ .0)

0 02 Q4 t~6 ,/b to

Fig.ll Shape changing processes of six spoked disk.
(a) Original modal

/ / 4t

(b) Optima ,, el
?ig.9, Strasa ai triblitioas on 8,. Pig.l12 Optim shape of suispoked disk.
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Table 1 Mechanical properties of resin mortar.

Mean value Standard deviation

Tensile strength• oB  ~~MPa 129O.7

/ 0, Young's modulus 12.53 1.30
E OOPa 12 .5 .30

Poisson's ratio 0.279 0.031JV

0' Density i. 98xI0

Fig.13 Stress distribution on SF in optimum shape. P kg/l 1

14

weight composition of Epicoat 828 : Thiokol L.1-3 : Di- a
ethylentriamine = 100 : 15 : 8. The mechanical proper-

ties of resin mortar shown in Tablel are obtained from -

tensile tests and the stress- strain relation is shown
_n Fig.i4 .1.0 -

Now, the configulations of the original and opti-

mum models are shown in Figs.5 and 15, in which prac-
tical sLzes are determined as 2b=130mm and thickness a8
t=l 0mm. The specimens are casted and provided for
the test after twenty days to make the strength stable. 06

Equipment Figure 16 shows an equipment for the
spinning fracture test. A specimen is attached direct- 04
ly to the main spindle of a heigh frequency motor , 0

which is lubricated forcibly by the oil mist apparatus.
An enameled wire of 0.mm in diameter is stretched as 02 --

a trigger around the position I -2mm apart from the
outer peripheral surface of the disk. If the wire is
cut, the number of revolutions is memorized by the
digital counter. At the same time, a stroboscope is 0 4 8 12 x 10- '
synchronized and a momentary photograph of the cracked
specimen is taken by the camera. Fig.14 Stress-strain relation of resin mortar.

Experimental results Ten specimens of each model
are fractured by the spinning test and the results are
shown in Table 2 . From this table, it is recognized
that the bursting speed of the optimum model is 27
percent greater than that of the original model. Fur-
thermore, in this table the values of the bursting
speed estimated by using .:e maximum stress theory and
the mean stress theory are also indicated. The esti-
mated values by the mean stress theory are obtained by
averaging the normal stress at the cracked section and
by using tensile strength aB . From these results,
neither criterions estimate exactly the actual burst-
ing speed of spoked disk.

From the photographs at fracturing moment as shown
in Fig.17, it is obvious that the actual cracks in the
original model initiate near the junction part between
the rim and the spoke and propagate in the radial di-
rection. On the contrary, the cracks in the optimum
model initiate and propagate near each minimum section Fig.15 Optimum shape of four spoked disk.
of rim, spoke and hub. These results are predictable
from the stress distribution illustrated in Fig.9.

From these results it is concluded that the uni-
formly stressed rotary disk with some spokes has fs HihHjfeutn
higher -trength. pwrsuc

Conclusions cat;on motor tn)er

In this paper, Pattern Tramsformation Method to OMbo
obtain the optimum strength shape of elastic continuumunder body force is summrized and applied to the de- Testspeime

sign of spoked rotary disks. From the numerical re-sults it is concluded that the optimum shape of sp~1ed Str \t- e j oetn

disk under centrifugal force has about 1/10 tapered
spokes, the parts near hub of which is wider than that
near rim, and the rounded Junction parts of a large se

radius of curvature. Furthermore, the validity of the
optimum shape of spoked rotary disks has been con- Fig.1 6 Equipment of spinning fracture test
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Table 2 Experimental results and simulated values
of fracture spinning test.

Bursting speed Experimental results Simulated values
Standard Maximum Mean stress
deviation stress theory theory

Original disk 11908 239 8401 13690
Noriginal rpm

Optimum disk 15120 789 12535 14451

Noptimum rpm , I

Noptimum/Noriginal 1.270 - 1.492 1.056

(a) Original model (b) Optimum model

Fig.17 Photographs at fracturing moment.

firmed experimentally by ,he spinning fracture test. tion Problem of Structure by the Inverce Varia-

Therefore it is also concluded that Pattern Transfor- tional Principle, Transactions of Japan Society

mation Method is avairable for the practical use of of Mechanical Engineers, Vol.44, 1469, 1978.

mechanical design procedure. (6) Francavilla, 4. , Ramakrishnan, C. V. and

Zienkiewicz, 0. C., Optimization of Shape to
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7 A GENERAL THEORY OF OPTIMAL STRUCTURAL LAYOUTS

by G.I.N. Rozvany.
Department of Civil Engineering, Monash University,

Clayton, Victoria 3168, Australia.

Summary: A general theory of optimal structural some parts of the system with a view to restoring
layouts, based on static-kinematic optimality criteria elastic compatibility.
and the concept of structural "universe", is outlined
and then illustrated with two simple examples. 2.1 The Prager-Shield Condition.
Finally, the application of this theory to various
types of configuration problems is reviewed, giving a Using Prager's terminology [4, 5], the generalised
state of the art report on analytical solutions for stresses Q, strains %, displacements u and loads p are
various classes of optimal structural layouts. defined on the structural domain D which is the union
Particular attention is devoted to a new class of of all points of potential centroidal axes or middle
optimal structures termed 4Prager structures" which surfaces and is referred to the coordinates x. The
consists of archgrids or cable networks of optimized specific cost *(x) (i.e. cost per unit length, area or
member layout, volume) can be represented as a function (termed

specific cost function) *[Q2(x)] of the generalised
stress vector, and then the problem of optimal plastic

1. Introduction design can be stated as

The problem of optimal structural layouts or configu- min 0 J *(0s) dx, (1)
rations has formed the central theme of W. Prager's D
research work during the last years of his creative where the superscript "s" denotes statical admissi-
life. The degree of complexity of layout problems was bility and 0 is the total "cost" which is to be mini-
summed up in the following remark by Prager [1]1- "Most mized. A condition of minimum total cost then becomes
of the literature on structural optimization is concer- [4, 5]
ned with the optimal choice of cross-sectional dimen- k
sions. When the layout as well as the cross-sectional (on D) q = G[I(QS)], (2)
dimensions are at the choice of the designer,
structural optimization becomes a much more challenging where the superscript "k" denotes kinematic admissi-
problem." bility and G is the generalised gradient operator

(5, 9] which reduces to the usual gradient
The theory of optimal structural layouts is based on
two fundamental concepts: static-kinematic optimality G =rad = (3/3QI, ... , /Q )  

(3)
criteria and the concep. of "basic structures" [2] or
"structural universe" [3]. The first such optimality for differentiable specific cost functionr. Con-
criterion was proposed by Prager and Shield (4] ; later sidering now piecewise differentiable cost functions,
it was expressed in terms of the generalised gradient let #(2) be differentiable on the interior of subsets
operator and extended to a comprehensive set of design of the stress space termed "stress regimes". Then (3)
criteria by the author [3, 51. By applying these still holds on the interior of the stress regimes but
criteria to a basic structure (or universe) consisting along boundaries contained by more than one stress
of all potential (feasible) members, the optimal layout regime the generalised gradient is given by any convex
can be determined systematically and directly for any combination of the limiting gradients for the adjacent
structural system. stress regimes ([5, 91, s ee examples in Section 3).

Moreover, if I(2) is discontinuous at a stress value r
In this paper, first the theory of optimal layouts is then G[*(*)] becomes an impulse (Dirac distribution),
outlined briefly and then it is illustrated with two 5, 9]. Criterion (2) is a necesaary and sufficient
simple examples. Finally, the present state of know- condition if #(9) is convex and the equilibrium
ledge is reviewed, considering various classes of lay- equations are linearl and It is a necessary condition
out problems, namely least weight trusses (Michell if the above restrictions rre nut fulfilled.
structures), beam grids (grillages), Archgrids and
cable networks (Prager-structures), frameworks subject Expressing (2) in words, the Prager-Shield condition
to combined bending and axial forces, membrane shells requires a statically admissible stress field and a
and cellular continua consisting of a dense system of kinematically admissilbl strain field in which at all
intersecting shells. Finally it is explained that the points of the domain the utrains equal the generalised
optimal design of solid plates and shells subject to a gradients of the specific cost function with respect to
maximum thickness constraint reduces to a layout prob- such stresses. Static-kinematic optimality criteria
lem in which the configuration of densely spaced stif- convert, in effect, the problem of optimization into a
fener-like formations must be optimized. problem of analysis in which the stress-strain relation

is furnished by (2).

2. Basic Theory 2.2 The Concept of Basic Structure or Universe.

The problem of layout optimization will be discussed in By applying the Prager-Shield condition (2) to the
the context of optimal plastic design in which, by vir- basic structure or universe, that is, to a system
tue of the lower bound theorem of plastic analysis and consisting of all potential (feasible) members, the
design (61, only statical admissibility is required. Prager-Shield condition (2) furnishes the optimal
The resulting design (e.g. Michell structures, optimal strain requirements for members of non-zero cross-
grillages), however, often satisfies kinematic admissi- sectional area (is. specific cost). Moreover, it also
bility of the elastic strains and constitutes also an yields different (and usually less restrictive) strain
optimal elastic design for a given permissible stress, requirements for members having a zero specific cost
given compliance or given fundamental frequency [5, (i.e. non-optimal members). If condition (2) is satis-
7). Moreover, static-kinematic optimality criteria can fied along all optimal and non-optimal members and #(2)
be readily extended (7, 81 to any elastic system with is convex then a globally optimal layout has been
permissible stress criteria by optimally understressing established. This is an important feature of the
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theory discussed, because the problem is nearly always valid, but a can take on any arbitrary value within the

non-convex when it is formulated in terms of the range (0 < a s 1/2). The correspondinq displacement
geometry of the optimal members (i.e. location and field u is therefore defined for the entire domain
orientation of centrelines). ABCD in which for 0 < a ( 1/2 K = - u" < k and hence

the only optimal beam direction is EP with a - 0.

3. Two Simple Examples (c) Structural universe consisting of any beam
system over the domain ABCD. One feasible but obvi-

3.1 Optimal Beam Layout for a Single Point Load over a ously non-optimal beam system is shown in Fig. Id. For
Simply Supported Strip, this problem, the optimal displacement field is

We consider a horizontal domain (ABCD in Fig. la) with (on D), u = k(L
2
/8 - x

2
/2) (5)

a centrally placed vertical point load P and two paral-
lel simple line supports. The optimal beam layout for which is independent of the coordinate y. This means
transmitting the load to the supports is to be deter- that for any beam running at right angles to the sup-
mined, if the specific cost function for the beams ports, K = - u" = k and hence from a kinematic point of
is = kIMI where k is a given constant and M is view all such beams could consitute an optimal system.
the bending moment. However, the Prager-Shield condition (2) requires also

static admissibility and hence only the beam EF can
form Part of an optimal beam layout. For beams with

El' G/ EIj F G H a * 0, the curvature K < k and hence by Eq. (4) M must
%--- l _ 4 41 -_v " be zero.

MO_ Two Supporting Lines.C . F1D

CN) In this problem, two vertical point loads P1 = P2 whose

k(1
2
18.x2/2) k(L2/8.v2C¢o 2a/2) elevation can be chosen arbitrarily, are to be trans-

mitted to two horizontal supporting lines (double lines

kIMI b) in Fig. 2a). Moreover, the structural universe shall
consist of all possible centroidal axes contained in

__ three vertical planes (AS, CD and EF in Fig. 2a). In
-M ' Prager-structures, all members are required to be in

K compression and the specific cost function representing
k the weight per unit length of a member is 4t - kF where

K F is the member force (with F > 0) and k is a given
M constant. The specific cost function and the corres-

k ponding strain furnished by the Prager-Shield condition
(C) d) is shown in Fig. 2b, the latter being equivalent to the

following conditions:

Fig. I. First example: a beam layout problem. e = k (for F > 0), - - < , < k (for F - 0), (6)

The purpose of this example is only to illustrate the where £ is the axial strain in a member. The fact that
method described in Section 2. The solution itself is the elevation of the point loads can be freely chosen
intuitively obvious and consists of a single beam EF is equivalent to having costless (weightless) ties
normal to the simple supports. The solution will be along the vertical lines at P1 and P2. For these lines
discussed at three different levels, by increasing the therefore * = 0 and hence (2) implies c = 0. It fol-
feasible design space progressively, lows that the optimal layout is furnished by a strain

field in which along end in the direction of members of
(a) Structural universe consisting of two beams, non-zero cross-section the strain is e = k and at all

Let the only two potential centroidal axes be EF and HG other points and in all other directions contained in
in Fig. Ia. The optimal solution satisfying the the vertical planes AB, CD and EF,
Prager-Shield condition (2) is shown in Fig. lb. For
this particular problem, the generalised strain is the
curvature K - - u" where u is the beam deflection,
primes denote derivation with respect to the distance A D E
along the beam axis and the generalised stress is the %'1
bending moment M. Thus the Prager-Shield condition I - Pi

(2) furnishes b I L

K - k (for M > 0), K - - k (for K < 0), F F

I'd 4 k (for M - 0). (4) AW (a)

In the beam 9F, M > 0 and hence the optimality cri- ()
terion (4) for this beam yields K - k. From Fig. ib,
- u" - K = k and hence this condition is satisfied. P Pi Y p 2
Moreover, in the beam GH M 2 0 and for the same beam d
- u" = K - k cos

2 
a < k (for 0< a < w/2) which satis-

fies the condition (4). Hence optimality is estab- _A ¢ B--v
flished. In this subproblem, the only compatibility a- b

(b) Structural universe consisting of all beams

whose centroidal axis contain the point P. For this
extended problem, the proof under Section (a) is still Fig. 2. Second example: a Prager structur.
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the strain must be - - 4 4 £ k. I- addition, the dis. In addition, the inequality icd < l-b, together with
placements must be zero at the supporting points A, B, (12) and (13) imply k2 < kI - k for this case and hence
C, r, E and F and the strain along the lines of appli- the strains throughout the plane ABPIP 2 fulfill the
cation of the point loads mat be zero. It will be condition -- 4 £ 4 k. Compatability of the vertical
shown subsequently that the optimal solution may take displacements along intersections of the considered
two different forms: for lab < dc the optimal eleva- planes is ensured by (12), (15) and (16).
tion of the point loads is h = lab (Fig. 2a) and the
optimal frame consists oftwo members in both planes CD It can be shown similarly that in the case lcd l Vab
and EF (Fig. 2c); for lab > lcd, the optimal elevation Eqns. () - (13) furnish a maximal strain of C = k
of the point loads is h = lcd and the optimal frame along the polygon APIP2B in Fig. 2d and the condition
consists of three members in the plane AB (Fig. 2d.). -- ( C • k is fulfilled along all non-optimal

Moreover, it shall be demonstrated that the total (vanishing) members of t. considered planes.
weight of the system is always

Note; The horizontal deflections in (15) and (16)
0 = 2(Pi+ P2)kh. (7) introduce displacement components normal to the planes

forming the structural universe in this problem. This
The displacement fields (u x , Uy) and (uv, uy) associ- indicates that larger principal strains than c = k may
ated with the optimal solution are the following: occur in directions outside the considered planes, if

the strain fields along these planes were extended to a

Planes CDP1 and EFP2 (Fig. 2c). three-dimensional strain field. However, the kinematic
conditions in (6) are only required to be satisfied
along potential members of the structural universe and

(for x• 0) Ux k1(a+x)(b-a)/a, hence the above proof is sufficient in establishing the

uy . - 2k1 (a+x)vb/a, (8) optimality of the proposed layout. The following argu-
ment may also be used for showing that only in-plane

(for x > 0) Ux - k1(x-b)(a-b)/b' strains need to be considered in the current problems.
U= 2k1(x-b)l-lb. (9)

An additional feature of the Prager-Shield condition

Plane ABP 1P2 (Fig. 2d). implies [5] for the considered class of problems that
the sum of the products of the external loads and the

(10) corresponding optimal displacements furnishes the total
(for jvj(d-c)] uV = -k 21v1 u. - 2k2Vcd (0 structural weight of the system. The considered prob-
(for Ivl-(d-c)] uv = k2 (d-c)(Ivl-d)sgn v/c, lem may, therefore, be split into two subproblems. In

one of these, it is assumed that the two point loads P1
Uy = 2k2(lvI-d)Vd/c, (11) And P2 are carried fully by members in the planes CP1D

with k2T - kl/;b, (12) and EP2F and then the layout along these planes is
and kI = k (for cd V /), optimized. In the second subproblem, the entire exter-

nal load is carried by the optimized layout in the

k2 - k (for lcd Vb l). (13) plane APIP 2B. In both problems the optimal weight is

given by the sum mentioned above. Hence (15) and (16)
Then considering the plane CDP1 with x 4 0 for example, with k2 - k furnish the following optimal weights for
the usual expressions for strains, cx= 3u x/x, the two subproblems:
C y u / a7 , Y x y= u / 37 + u / x , C - ( c + e ) / 2 ± -
{[( y y - a a ) +u x 2) 2 1/2 y 1,2 x y - l= 2k(Pl+ P 2 )lab, 02- 2k(P 1+ p2)lcd. (17)
([(C - £ )/2]2 +(y, /2)

2  e = y /2Cr - C ) furnish
x y xy= xy Me V 2k )/as Both weight functions being linear with respect to the

kx k1Ca-b)/a, s= 0, Y" - 2kVb/a,* external load (PI+ P2 ), in the optimal solution either

el - k1l £2 = - bkl/a, tan 8 la-b. (14) the entire load is carriedby members in the planes
CPiD and EP 2 F (if lab < lcd) or the entire load is

This, together with (13) implies that for the case of carried by members in the plane APIP 2 B (if lab > lcd).
/ ; lab the principal strain C, along the member OP1  If lab l Vcd then an 'nfinite number of optimal solu-
in Fig. 2c takes on a value e l = k and the strain in tions exist in which ;he load can be distributed arbi-
all other directtons satisfies the requirement trarily between the two systems. In this latter case,
- 4 c r k in (6). Similarly, it can be shown readily kI = k2 - k and C = k along each of the polygons CPID,
that along the member CP I in Fig. 2c the principal EP2F and APIP 2 B, thus satisfying the requirements of
strain C, takes on the value k and the strain in all (6). It is obvious from this alternative formulation
other directions has'a smaller value. In addition, the that in the current problem only in-plane strains along
strain fields in (8) and (9) furnish compatible and the strLctural universe need to be considered.
constant vertical and horizontal displacements along
their common boundary (vertical line through Pi): 4. Applications: Various Classes of Layout Problems

Av - 2kab, Ah k-b-a). (15) 4.1 Least Weight Trusses or Michell Frames.

The above strain fields therefore satisfy all kinematic This class of optimal layouts was pioneered around the
optimality conditions stated previously. Since for turn of the century by an Australian scientist,
lcd > V' the members in the plane ABPIP 2 (Fig. 2d) R.G.M. Michell 10]. The specific cost function in the
take on a zero cross-sectional area, it is still neces- considered class of problems is
sary to show that - 4 C 4 k throughout that plane.
The general strain formulae quoted above together with 4,- kINNI C18)
(10) and (11) imply that along PlP2, AP1 and BP 2 in
Fig. 2d the principal strain he the value el= k2 and where 4 is the member weight per unit length, N is
in all other directions in all three strain fields in the member force and k is a given constant. Then (2)
Fig. 2d the relation - < C ( k2 is satisfied. More- furnishes the following optimality criteria:

over, along the vertical lines passing through P1 and

P2 the displacements are constant and compatible: c = k (for N > 0), e - - k (for N < 0), (19)

* - 2Ic2icd, Ab. (d-c kc2. (16) Il 4k (for N 0).
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Considering now a structural universe consisting of grillages of least weight was only developed during the
members running in all possible directions at all last decade. Despite its late start, this theory has
interior points of the domain, the maximum and minimum advanced farther than that of optimal trusses. In
strain at any loaded point (with a member in at least fact, grillages of least weight constitute the first
one direction) is k and -k, respectively. Since class of plane structural systems for which the problem
such directional extremum of the strain is known to of optimal layout can be solved for almost all loadings
correspond to principal directions, Michell frames and boundary conditions."
consist of the following type of regions:

Since in both Michell frames and optimal beam layouts
R+: Eq= k, IC21 < k, NI > 0, N2 = 0 the solution often consists of an infinity of densely

spaced members, Prager (2) has termed these systems
R-: cl= - k, I£21 < k, Ni < 0, N2 = 0 "truss-like continua" and "grillage-like continua". It

S+: El = £2 = k, N1 > 0, N2 > 0 (20) has been shown E5, 16, 18] that the same grillage lay-
out is optimal in plastic limit design and in elastic

S- El = E2 
= 
-k, N < 0, N2 < 0 design for given permissible stress, or given comp-

T : £j= - £2 = k, Ni > 0, N2 < 0 liance or given fundamental frequency. For grillages
(2) and (21) furnish the following optimality criteria:

where the subscripts "1" and "2" denote principal
strains or forces. K = k (for M > 0), K = - k (for M <0),

£1J e k (for M = 0). (22)

where K = - u" is the beam curvature, u is the beam

deflection and primes denote differentiation with
~ ~ respect to the distance along the beam axis.

P R Using a structural universe consisting of beams running
Sin all directions at all interior points of the domain,

(22) yields the following optimal regions:

R+: cl= k. I£21 < k, Mi > 0, M2 = 0

R - : £i
= 

- k, IK21 < k, M < 0, M2 = 0

S+: £j= K2= k, M > 0, M 2 > 0 (23)

S : £1= K2 = - k, Ml < 0, M2 < 0

T: Kl= - K2= k, M 1 > 0, M2 < 0

where the direction and sign of principal curvatures
having the absolute value k must match the direction

Fig. 3. A Michell Fig. 4. Optimal regions and sign of the corresponding principal moments. The
Frame. for grillages. above regions are shown graphically in Fig. 4.

In spite of a prolonged international research effort, It will be seen that the proposed layout theory has
Michell layouts have only been determined for a few converted a rather complicated layout problem into a
simple loading conditions, most of which are summarised simple geometrical problem. In the latter, the struc-
in a perspicuous review by Hemp [11]. In contrast to tural domain D must be covered with the type of
Prager-structures, the Michell layout is not even known regions given in (23) and Fig. 4 such that along region
for a simple vertical point load of asymmetric location boundaries the deflection and slope are matched and
and two point supports. Hemp (12] has attempted a along simple supports the deflection is zero, whilst
solution for uniformly distributed load in between two along clamped edges the deflection and slope are zero.
point supports, but his associate Chan [13] has shown
that the considered solution is only valid for a cer- Since the present state of the theory of optimal
tain range of non-uniformly distributed load. More grillage layouts was reviewed at a NATO ASI last
recently, the author and Hill [14] have found that cer- year (3], it is sufficient to mention here that the
tain superposition principles enable us to derive the approach described herein enables us to derive analyti-
optimal Michell layout for four alternate load con- cally by a direct and systematic procedure the optimal
ditions. The geometrical properties of Michell frames
and optimal grillages have been compared by Prager and (D
the author (1]. A Michell frame consisting of a single
T-region (cf. Eqn (20)] is shown in Fig. 3, in which
a >sw4. CD

4.2 Least Weight Beam Systems or Grillages.

The specific cost function for this class of problems b)
is

* = KIMI, (21) G

where *is the beam weight par unit length, N is the
bending moment and k is a given constant. The theory
of optimal beam layout has been explored by the author
and his associates [3, 5, 15, 16] and later discussed
extensively by Prager and the author 1, 2, 17]. The W
progress in this field is summarised most appropriately - = + e
by Prager himself in the following passage (17]:
"Although the literature on Michell trusses is quite
extensive, the mathematically similar theory of Fig. 5. Some optimal simply supported rillages.
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beam layout for all loading conditions and any boundary 4.3a. General Theory of Plane Prager-Structures

segments consisting of straight lines or quadratic for a Vertical Loading Consider a finite number of
curves. More recently, a computer algorithm was dave- vertical point loads in between two point supports.
loped for determining analytically and plotting optimal Since in a Prager-structure all members must be in pure
beam layouts [19]. Examples of optimal beam layouts compression (or all members must be in pure tension),
are given in Fig. 5. the centroidal axes of the system must form a funicular

polygon, i.e. it must satisfy the equilibrium condi-
4.3 Optimal Archgrids and Cable Networks or Prager- tions at each joint in between two straight segments.
Structures. However, equilibrium still admits an infinite number of

solutions, each of which correspond to a different
The optimal design of long-span archgrids (and shell- value of the horizontal reaction H (Fig. 6a). It was
grids) was first investigated by the author and Prager explained in Example 3.2 (Fig. 2b) that the strain
under a government-sponsored research contract in field in the current problem must fulfill conditions
Stuttgart, West Germany in 1978 (20]. In the original (6), that is, the strain must take on a value of C1= k
project, the directions of the arches were prescribed along all optimal members and it must be equal or less
and only the middle surface of the archgrid was opti- than k along all members of vanishing cross-section.
mized. Because in the case of long-span roof struc- In addition, the strain must take on a zero value along
tures the selfweight is a significant load component, lines of the vertical loads. Considering the shaded
the above project was later extended by H. Nakamura and segment in between two point loads in Fig. 6a, let the
the author to allow for this load component [21]. How- optimal angle between the member centroidal axis and
ever, Prager's original intention was to optimize also the vertical be ei . Then the optimal strain field
the layout of the members within the archgrid. Prager shall be shown to consist of the following components
repeatedly stressed that there must be some similarity
between the optimal layout of archgrids and that of Ey= 0, ex= k(1-cot

2
8i), yxy= 2k cot 8i, (24)

grillages. Unfortunately, his untimely death prevented
Prager from completing this joint project with the furnishing
author. owing to his contributions to this field,
archgrids and cable networks of optimal layout shall be El= k, 2 = - k cot

2 
8 , (25)

termed Prager-structures. More recently, the author
and Wang [22] made significant advances in constructing where the inclination of Cl with respect to the verti-
this particular class of optimal layouts. At present cal is e.. The above strains give the following rela-
Prager-structures are already available for a much tive horizontal and vertical displacements between the
wider range of loadings and boundary conditions than two sides of the shaded segment:
Michell frames.

Av= 2kLicot 8i = 2khi, h - kLi(1-cot
2
61 ). (26)

Prager-structures differ from Michell frames in two
respects. Firstly, all members must be in compression The first equation under (26) obviously results in
(archgrids) or all members must be in tension (cable kinematic admissibility because in Fig. 6a Zh.= 0 if we
networks) in Prager structures, whereas the sign of take the sign of the elevation differences into con-
member forces is not constrained in Michell frames. sideration. The second relation under (26) furnishes
Secondly, only the (usually vertical) line of appli-
cation of the external forces is prescribed for Prager EL i  E(Licot

2
e ) (27)

structures, while the point of application of all loads
is also specified for Michell frames. This means, that which implies
for Prager structures we consider a system of (usually L
vertical) forces, whose vertical position (elevation) j (dy/dx)

2 
dx/L = 1, (28)

can be arbitrarily adopted. These forces are to be 0
transmitted by continuously variable members (which are where L is the total span between supports and y(x)
throughout in pure compression or throughout in pure is the function describing the centroidal axis of the
tension) to the supports. The latter usually form the Prager-structure. Relation (28) implies that the mean
boundary 8 of a domain D contained by a horizontal square slope of the solution must be unity, which con-
plane termed foundation plane N. The specific cost dition has already been derived by variational methods
function for Prager-structures is * - kF (with F ) 0) earlier (21, 23]. The unit mean square slope condition
where F is the member force and k is a given is still valid if a plane Prager-structure is subject
constant. There is also a significant difference to a distributed load in which case the spacing of
between the appearance of a Michell frame and a Prager- loads in Fig. 6a tends to zero (Li+ 0).
structure. For plane domains, a Michell frame usually
consists of a system of densely spaced members covering 4.3b. Prager-structures for Axially Symsetric
large areas of the domain, whereas a Prager-structure Vertical Loading and Axially Symmetric Supports. The
consists of a single curve or polygon. For three- above conclusions can be readily extended to any
dimensional domains and distributed loads, Michell axially symmetric system in which the supports and line
frames presumably consist of space-frame-like continua loads (Qi) form concentric circles and the intensity of
(although the actual optimal layout of such frames is the distributed load q(r) depends on the radial co-
not known); Prager-structures, on the other hand, have ordinate (r) only (Fig. 6b). For such a system, the
a single middle surface which contains the centroidal optimal displacement field can be constructed by first
axes of all arches or cables. Two features of Prager- taking a symmetric version of the strain field in
structures make them more practical for many design Fig. 6a and Eq. (24) and then generating an axially
problems than Michell frames. First, they are surface symmetric equivalent of the same field by rotating it
structures of small structural depth and hence they are around the axis of symmetry. The actual Prager-
suitable for covering large areas. Secondly, the structure can be obtained by the following procedure.
vertical location of the load is determined by the
optimal shape of the middle surface which is a realis- (a) Consider a set of simply supported beams having
tic assumption for long span roof structures. At this the same span as the radial distance between supports
stage, Prager-structures are designed for a stress and having the loads formed by the product of the loads
criterion only. At a later stage, allowance will have on the Prager-structure and their distance from the
to be made for buckling of archgrids and dynamic axis of symmetry, that is Qi * ri for line loads and
behaviour (flutter) of cable networks. r * q(r) for distributed loads (Fig. 6c).

4-41



circles. An example of such a Prager-structure is

shown in Fig. 7a in which the magnitude of the point
loads is constrained by the relation P 2 -21'1 Cos a
and P 4 = 2P 3 cos a with a view to maintaining equili-

O h brium of the three radial member forces at the centre
(see also the force diagram in Fig. 7b). Fig. 7c shows
a side view (Ri) of one "leg" of this structure which
must satisfy equilibrium and the unit mean square slope
condition (28). Inside the circle containing the loads

Y P1  and P2  in Fig. 7a, the strain is l = k in all
_61 horizontal directions and hence any arbitrary stati-

__ cally admissible system in compression represents an

(a) L - equally optimal layout. In Figs. 7d and 7e, examples
L of such alternative optimal solutions are given.

r'QI r2Q2 4.3d. Prager-Structures for an Eccentric Point
r1 ... r2Q11Load and a Circular Support. This problem shall be

used later for constructing Prager-structures for a

- 2 single point load and any arbitrary boundary condition.
In Fig. 8a an eccentrically located point load is to be

AMr transmitted to a circular support by a Prager-structure
[J.Jwhose universe fulfills the following restriction: the8centroidal axes of all members are to be contained by

r~q~r)vertical planes passing through the point P. Some such
r(r) planes are indicated in plan view in Fig. Ba (AB, CD

and EF). It shall be shown subsequently that the
optimal elevation of the point load is

Nr) h - 'R- d7
,  (29)

- oQ 2 w .1Q
f 2where R is the radius of the circular support and

d is the eccentricity of the point load P. This
r L C) means that the optimal elevation of the point load in
r( W this problem is always given by a hemisphere whose base

is the circular support. Moreover, it shall be estab-

lished that an infinite number of structures have the
Fig. 6. Plane and axisymmetric Prager structures. same minimum weight. The set of optimal solutions

shall be shown to consist of all layouts in which mem-
(b) Determine the bending moment diagram M(r) for each bars connect the point P with the circular support,
equivalent beam. provided that all such members are in compression (or

all members are in tension, if the vertical point load
(c) The optimal elevation of the Prager-structure at is acting upwards).
any distance (r) from the axis of symmetry is given by
k - M(r) where k is a constant for each span (J) and
tae curve k " M( 1r) must satisfy the unit mean square m D
slope condition in (28).

4.3c. Prager-Structures for a Quasi-Axisymmetric
Loading. The axially symmetric strain fields described A B a b
in the last section can also be used for establishingA . cc
the optimality of Prager-structures with axisymmetric Cc)
supports and point loads located along concentric

P, 1 6 . vP 2  p
3 P3  P, p C D

p1 - D (d)

a P2  / " ,/2kh

aI -P A B
P2  AC E F 0 S AeoP ai/

(b) (ci (b) ( e)

4j Fig. B. Prager-structure for an eccentric point load.

R (a

Proof. In each vertical plane containing the point P,
P1  P1  P, P1 we shall use the type of strain field given in Fig. 2c

and Eqns. (8), (9) and (14). For an arbitrary plane
N / (e.g. CPD in Fig. Ba) through the point P, the angle I

between the direction of the principal strain l and the

vertical (Fig. Sd) can be expressed in terms of such
angle e for the steepest member (AP in Figs. Ba and Ac)

Pt (d) P (P2 and the orientation 0 of the general plane Cl:

Fig. 7. Praqer-structure for quasi-axisymmetric load. cot 26 - cot + tan - cot 28 cos (30)
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The strain field in Sq. (14) and Fig. Rd,in which now which a point load is associated with Prager-structures

k I, a, b and 8 are replA.ed hy k, , S and 3, can also having two and more than two members, respectively,
be expressed in terms of h = 1a b) 1/2 and 9 in the shall be termed R and S regions. It follows from

following form extensions of the Prager-Shield theory (5] and Eq. (7)
herein that the weight influence surface (or surface

£ = 0, ex- (1-cot
2
g)k, y -2k cot 5, furnishing the optimal elevation of the point load) for

the considered Prager-structures consists of a series

E k, e2" - k cot
2 

U. (31) of circular arcs in vertical planes connecting the two
supporting points in R regions, and of hemispherical

Then for arbitrary plane CPD the displacements along surfaces (whose base is the inscribed circle) in

the vertical line through P (Fig. 8) given originally S regions.

in Eqs (15) become

Ev = 2kh, Ah - 2kh cot (25). (32) R

For the particular plane A" with B 0, the symbol A F
in Eqs. (31) and (32) is replaced by 8. Combining P A U
Eqns. (30) and (32), we can expresss A in terms of 8: s

h A b 6
2k h cot (28) cos 5. (33)

The vertical displacement h in (32) represents the Fig. 9. Prager-structures for noncircular boundaries.
displacement at the intersection of the considered ver-
tical planes. It is independent of the orientation B The optimal regions of a Prager-structure for a square
and hence satisfies compatibility. Moreover, it can be domain with a single point load are given in Fig. 9b
seen from Fig. Be that the horizontal displacements of and the corresponding influence surface in Fig. 9c.
all vertical planes are also compatible, if these The latter consists of cones in the R regions and a
planes are permitted to deform in a normal direction spherical surface in the S regions such that slope
(broken line in Fig. Be). Hence, for the structural continuity is satisfied at the region boundaries.
universe considered, the requirements of the Prager-
Shield condition [Eq. (2)] are completely satisfied and The optimal regions and weight influence surfaces in
thus optimality of all layouts consisting of straight Fig. 9b and 9c are similar to those for an optimal
compression members connecting the point P and the square simply supported grillage (see Fig. 6.15a on
supporting circle is established. p. 194 in (51) . The only difference is that along

lines of optimal force transmission the first order
Important Note. The present proof is restricted to a curvature u" - 3

2
n/3x

2 
must be constant for grillages

structural universe in which all members are contained and the exact curvature u"/(1 + u. 2 )3 / 2 
for Prager-

in vertical planes passing through the point P, because structures. It is rather remarkable that the late
the normal deformations (broken lines in Fig. Be) would Professor Prager anticipated this similarity without
result in out-of-plane principal strains whose direc- finding the actual connection between the two theories.
tion does not coincide with that of the assumed optimal
members. However, we cannot rule Out the possibility 4.4 Optimal Layout of Membrane Shells
that the layout in Figs. 8a and 8b remains optimal when
the structural universe consists of all possible member In this class of layout problems the specific cost * is
directions at all points. In fact, it seems unlikely the shall thickness which depends on the value of the
that within the constraint of non-negativity of the two principal membrane forces F1, F2. For shells
member forces, a better layout can be found, obeying the Tresca yield condition, for example, the

specific cost function becomes
4.3e. Prager-Structures for a Point Load and Any

Support Condition. It was concluded in the last *- k(IFiI + IF21 + IF1 - F21), (34)
section that all straight compressive members connec-
ting the loaded point P and a circular support are where k is a known constant. A typical cost contour
equally optimal if such a point is contained in a hemi- [representing a constant value of 0 in Eq. (34)] is
sphere whose base is the circular support. It can also shown in Fig. 10a and the corresponding cost gradient
be shown easily (221 that the structural weight becomes n Fig. lOb. Assuming that the structural universe
greater than that of the above solution if some of the consists of shell middle surfaces in all possible
load is transmitted to a point outside the considered directions at all interior points of the domain 0, the
circular support. Prager-Shield condition stipulates that along any

middle surface with a non-zero shell thickness, (i) the

On the basis of the foregoing considerations, we can principal strains (cl, 62) must have the same
construct the Prager-structure for a point load and any directions as the principal forces (F1, P2

) 
and

arbitrary supporting line forming the boundary B or the (ei) (cl, £2) must equal the generalised gradient of
domain D in the foundation plane W. The optimal with respect to the actual values of (F 1 , F 2 ). This
elevation h of the loaded point P is always given by means that for a stress point A in Fig. 10a, for
Eq. (29) and the members of the Prager-stucture connect example, the admissible strains are furnished by the
this point with the intersections of a circle and the
boundary 9 of a domain D provided that (a) such circle

is contained entirely in the domain D and (b) the pro-
jection of the point P on the foundation plane is a
convex combination of the considered intersections. In Fp

Fig. 9. for example, the associated circle furnishes a
two supporting points (A and 3) for the loaded point P, kand for the point P2 we have three supporting points (b)_
(C. 2 and F) . Moreover, for any loaded point within W
the triangle C1W the Prager-structure consists of three
members and for any point of D outside the triangle CZ?
it contains two members. Regions of a domain 0 in Fig. 10. Cost contour and gradient for membrane shells.
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line segment A in Fig. lOb, and for the line segment 4.7 Optimal Design of Solid Plates.
"a" in Fig. 10a the strains are given by the point "a"
in Fig. 10b. Moreover, along any shell of vanishing In investigating the optimal thickness variation of an
thickness the principal strains must represent a point elastic plate with a maximum thickness constraint by a
on or inside the hexagon in Fig. 10b. The above layout finite element method, Cheng and Olhoff [33] have
problem would then, in general, furnish a cellular (or discovered that the optimal solution contains rib-like
"honeycomb") type continuum consisting of an infinity formations of maximum feasible depth when a large
of densely spaced, intersecting shells in several number of finite elements is used. Prager has pointed
directions. out in a private communication that the layout of such

ribs appears to be similar to the optimal grillage
If for practical reasons we want to restrict the layout [15] for the same boundary conditions.
solution to a single surface structure then, as in the Subsequently, the author, Olhoff, Cheng and Taylor [34]
case of Prager-structures, we may leave the vertical have shown that a large number of existing papers on
location of the loads unspecified and/or restrict the solid plate optimization, based on "smooth" solutions,
principal forces to compression (or tension) throughout are in fact erroneous because the global minimum weight
the system. solution contains in some regions an infinity of

densely spaced stiffeners. The optimal configuration
A shell of uniform strength in a broader sense (or of these stiffeners has been determined for a circular
"Ziegler-shell"), as defined by Ziegler [24] and Issler plate [34] and is being investigated for other botndary
[25], fulfills the condition that the principal mem- conditions, using the layout theory described i this
brane forces at any point of the middle surface must paper.
represent a point on the yield surface. Issler [25]
has shown that for a given shape of the middle surface 5. Conclusions
and for a given loading, at most two thickness distri-
butions corresponding to two different segments of the It has been demonstrated that the concepts of static-
yield surface, satisfy the above requirement. In a kinematic optimality criteria and basic structure (or
shell of uniform strength in the narrower sense (or structural universe) enable us to determine the optimal
"Milankovic"-shell), as introduced by Milankovic [26] layout for various broad classes of design problems.
at the turn of the century, the two prinicpal membrane The proposed theory converts in effect an extremum
forces must have the same value (FIS F2 ) at 41l points problem into a problem of analysis which becomes essen-
of the middle surface. Issler [25] has also demon- tially a geometrical task. This paper has not covered
strated that this latter condition determines both the layout optimization based on repeated redesign and
thickness variation and the shape of the middle surface mathematical programming methods because they are dealt
for a given load. Examples of such shells are with in other papers at this symposium.
Milankovic's [261 and Dkmeci's [27] solutions for
selfweight and snow-load respectively. Prager, the A new class of layout problems, viz. Prager-structures
author, Nakamura and Dow (28, 29] have determined the (or archgrids and cable networks of optimized member
fully stressed thickness variation and the optimal layout) was discussed in detail. In these problems,
radius of spherical Tresca-shells for a variety of load all memberq are required to be in compression (or all
combinations which all included selfweight. More members are to be in tension) and vertical loads of
recently (30], Dow, Nakamura and the author determined unspecified elevation are to be transmitted to the
the optimal shape of axially symmetric Tresca shells boundary of a horizontal domain so that the total
for various load conditions and found that a Ziegler structural weight takes on a minimum value. Prager-
shell of optimized shape turns out to be a Milankovic structures were derived for a wide range of loading and
shell. boundary conditions and the surprising conclusion was

reached that the optimal weight is always proportional
to the sum of the products of the loads and their

4.5 Allowance for Selfweight. optimal elevation.
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Abstract sealed to the wall with a pressurized hose seal along
its perimeter. The entire structure is built to con-

Large deflection elastic-plastic response of a tain blast and fragments, to trap aerosolized materials
hemispherical cuntainment shell configuration clamped and to permit photographic observation of the test.
to a horizontal rigid foundat~on and subjected to an A significant problem associated with the enclosed
internal blast was analyzed using a finite-difference range tests is the overpressure resulting from shock
structural response code PETROS 3 5. optimization loading as well as rapid heating of the air within the
study was conducted based on a minimk.. amount of ma- enclosure as the penetrator and the target are torn
terial required to elastically contain the first pres- apart during their encounter as shown by R. Abrahams
sure pulse from a specified explosive charge subject to et al. [I]. The structure must survive both the re-
workspace constraints, I flected and the residual overpressures induced by the

4%he reflected overpressure peak was estimated from interaction until ambient conditions are reached due
a scaled distance of the wall from the point of detona- to venting out to the atmosphere through the exhaust
tion based on a conservative cube root scaling law and system.
an exponential decay given by the modified Friedlander Since the key element of the AHKELS (Advanced High
equation. The residual quasi-static overpressure was Kinetic Energy Launch System) range is the enclosure
obtained from an equation developed by Kinney and structure, the Target Loading and Response Branch was
Sewell based on the ratio of the available vent area assigned to estimate the overpressure loading on the
and the internal volume, wall and analyze dynamic response of the preliminary

Only a quarter segment of the structure was configuration at critical locations and assure struc-
modelled using 18 equal width mesh in one layer and four tural integrity from a conservative viewpoint. The
Gaussian integration points through the thickness in choice of a hemispherical configuration was confirmed
each mesh. The 1020 steel was represented by three by an earlier investigation by N.J. Huffingtonet al. [2)
sublayers followed by m perfectly-plastic behavior and who demonstrated the effectiveness of such a protective
elastic-plastic unloading resulting in a polygonal structure.
approximation. In the absence of any available experimental data

-he results indicated the initiation of flexural it was decided to obtain a theoretical estimate of the
waves at the boundary propagating towards the pole and transient and residual overpressure loading due to a
converging thereby altering the spherically symmetric centrally located equivalent charge weight at the base.
breathing mode of response of the centrally loaded The subsequent objective was to perform an approximate
hemisphere. The peak deflection predicted by the code conservative static analysis for an initial estimate of
occurred at the pole and permanent deflection was found wall thickness. Finally the dynamic elasto-plastic,
to be quite small after releasing the load. Transient large deflection response of the shell configuration
strain components at the inner and outer surfaces near clamped to a horizontal rigid foundation was studied to
the clamped edge due to largely elastic oscillations indicate critical locations where peak strains or de-
showed the effect of bending deformation superposed on flections could occur.
che membrane couponents. In conclusion the protective
structure was found to be efficient and cost effective Estimation of Transient Loads
and capable of blast containment with an adequate
margin of safetyh- The transient loads were estimated under the as-

sumption that the test firing of penetrator rounds
Introduction would generate overpressures inside the containment

chamber similar to those caused by an internal blast
The Ballistic Research Laboratory is currently in due to an equivalent central charge weight of 29.03 kg

the process of acquiring a target enclosure to facili- at the base of the hemisphere. Assuming the walls to
tate destructive terminal ballistic testing of chemical be rigid, the symmetry of the charge and the structure
explosives (CE), special armor (SA) and kinetic energy about a vertical axis through the center indicates
(I) penetrators by safe containment of blast, frag- uniform distribution of internal reflected loading
ments and resultant harmful combustion products. The upon the structure. For the estimation of peak re-
present investigation is based on a preliminary concept flected overpressure, a conservative cube-root scaling
of the firing range as shown in Figure 1. The target law (31 is employed to compute the scaled distance Z
is located inside the hemispherical enclosure at the of the wall from the charge location in the form
end of a long concrete pipe-guide. The gun-launched
projectile travels through the pipe-guide and enters Z - R
the enclosure through a .914 m diameter entrance hole. 1/3
The target interaction with the projectile is monitored WE
photographically with flash X-ray equipment and pene-
tration velocity is obtained using velocity screens and is the equivalent charge weight and R is the
electronic counters. An air exhaust system mounted at distance of the wall from the charge location.
the rear of the structure operates during the test and Once the scaled distance is known the reflected
draws back aerosolised material out of the enclosure parameters such as peak overpressure, impulse, time of
after a test and traps it in filters in the exhaust arrival and duration time of the shock loading could be
ducting. A large sliding door with a configuration to estimated from compiled airblast tables [4,51. The
match the curvature of the hemispherical wall allows decay of reflected overpressure is assumed to obey the
equipment access inside the enclosure. The door is modified Friedlander exponential decay equation which

can be written as
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-t/t 0Static Stress AnalysisPr *P
m (l -t/to1e o (2)

Prior to a detailed dynamic response study, a
where to is the positive phase duration of the impulse, static stress analysis estimate in the linear-elastic-
P. is the peak reflected overpressure and t is the small deflection regime was conducted to obtain an
elapsed time from impact or detonation. The exponential initial estimate of the enclosure wall thickness.
decay parameter a is given as Since the duration of the reflected pressure is less

than 1.5 me compared to 1600 ms for the duration of the
P + P 0.65 quasi-steady overpressure, an approximate static analy-

a- .57( (3) sis, based on a minimum factor of safety of 2.0 is con-
0 sidered to be satisfactory. For the preliminary inves-

where Po is the peak quasi-static overpressure obtained tigation, stress-concentration near holes, cutouts and

from residual overpressure calculations, wall openings was neglected. However the effect of
ground-plane reflection of the shock wave was included
through a load multiplication factor of k m2.0, whichEstimation of Quasi-static Loads in effect doubled the applied load.

Quasi-static pressures immnediately following the To contain the initial pressure pulse in an elasticmanaer-onlyitherpeakrrefleted overpressullowiwastin
reflected pressure were predicted assuming that the manner only the peak reflected overpressure P, was in-

heat of combustion of the TNT is used totally to heat cluded in the calculation of stresses and deflections.
An equivalent static meridional stress a can be calcu-the air within the enclosure (6]. A relationship for lated by equating the resultant upward force due to

the resultant increase in pressure is internal pressurization to the net downward restrain-

0.4 hw ing force due to the stress developed at the clamped
P V , kPa, (4) edge resulting in

RkP
where

V = 1513.9 m
3

, the internal volume of the a (7)

enclosure where
WE 29.03 kg, weight of the explosive charge R 8.987 m, the median radius
h - 13.5 KJ/g, the heat of combustion of TNT. k - load multiplication factor.

An internally pressurized structure vents the pressure However for an assumed factor of safety of 2.0 a
to the surroundings through openings in it3 walls caus- 1/2 ar, where a. is the static yield stress. Substi-
ing a slow decay to ambient condition as shown by tuting this value of a in Eq. (7) and rearranging terms
Kinney and Sewell [7] and is computed from results in an expression for the estimated thickness h

in the form
LnP-LnP .315 (Al'V) t, (5) RkPr

ay
where y

t - elapsed time in ms
P - absolute pressure at t. The yield stress ay for the wall material which is

Av - 2.33 m2, the available vent area. 1020 steel is 241.3 MPa. Hence the wall thickness h
from Eq. (8) is found to be .019 m.

The long term duration of the decay is essentially due Up to this point no consideration has been given
to the relatively small vent area available causing a to the possibility that fragment induced damage to a
slow pressure decay to the atmosphere. shell might result in catastrophic rupture when the

The blow-down time t,, required to reduce the blast loading is applied. One should estimate the ma-
residual overpressure to ambient conditions developed terial removal produced by the impact of the worst
by Keenan et al. [8] based on the firino of high explo- threat fragment and perform a local three-dimensional
sives in chambers with known vent area, and volumes is analysis of the stress field to determine whether a
given as crack would be propagated under such loading. This

-. 86 problem in fracture mechanics is rather difficult to
tg - 6.28 (AV/V) (6) analyze and can be at least partially circumvented by a

conservative selection of wall thickness under the as-
The above equation is valid for A/I/3 <0.21. In the sumption that the residual thickness is capable of with-
current design the ratio Av/%01 3 equals .018 and the standing the peak quasi-steady pressure even when a 50%
duration time for the quasi-steady pressure is approxi- depth of penetration has been achieved by a part-
mately 1600 ma. through fragment. The final thickness chosen from a

The computation involves determination of peak conservative viewpoint was .0254 m (1 in.) which is
residual overpressure from Eq. (4) which when combined readily available. The .0254 m thickness corresponds
with Eqs. (5) and (6) yields the quasi-steady part of to a stress level of 45.5 NPa which when compared to
the loading history. The junction between the reflected the yield stress results in a final margin of safety
overpressure history and the quasi-steady loading is of 4.3 which is satisfactory.
smoothed by a curve interpolation scheme in order to The peak radial deflection AR at the pole is esti-
avoid a sharp transition. This loading is applied mated from Ref. (101 as
uniformly at each msshpoint on the inside wall in the R2kP (-V)
radial direction in the finite-difference structural AR r(9)
response model in the PETROS 3.5 computer program 19]. 2Eh
The load-time history inside the hemispherical enclos-
ure was zeroed out after 180 ma to facilitate damping where E, V are elastic material properties.
of sml elastic oscillations and to observe any resid- To detect resonance due to coupling of the dura-
ual deformation of the hemispheric wall. The peak re- tion time of the pressure pulse with the natural vi-
flected overpressure was found to be 257.3 kPa while bration period, the time period T was calculated from
the peak residual overpressure was approximately Ref. [101 as
1 0 0 k P a . T - R A 1- E - ( 1 )

4-48

I- - n I I -' '.. . ."_"_ _ °



where p is the mass density. Further check of any in- structure with a 2.75 in. thick steel armor wall liner
teraction of the reflected pressure pulse due to ground and a 2.5 in. thick roof liner indicated an increase of
plane reflection with the elastic oscillation of the 64 times in containment capacity of equivalent charge
pole did not reveal a significant problem, weight for the hemispherical structure with a 50% re-

The peak radial elastic deflection at the pole duction in weight and concurrent doubling of the in-
from Eq. (9) was found to be .0011 m which is quite ternal volume capacity without any significant sacrifice
small. The gross weight of the hemispherical enclosure in the minimum margin of safety. In addition the sim-
was found to be approximately 96,400 kg based on an plistic design of the hemispherical enclosure, although
.0254 m wall thickness. In this study allowance was somewhat difficult to fabricate, was a significant im-
made for the weight of flanged material at the base but provement for static and dynamic load bearing consider-
not for extra weight associated with access provisions, ations. The down-time for duration of residual over-
welds or foundations, pressure was decreased substantially due to availability

of larger entrance hole diameter and vent area.
Optimization Study

Dynamic Response Analysis
An optimization study based on equivalent strength

showed substantial weight saving for a hemispherical Response of the structure subjected to transient
configuration at or below 6 m radius bu.- marginal say- loads from an instant blast was conducted using the
ings at higher radius up to 9 m due to compensating BRL version of the PETROS 3.5 computer program [91,
thickness increases. An equation proposed by R. Karpp which employs the finite-difference method to solve the
et al. (11] for the minimum amount of vessel material V. nonlinear equations governing finite-amplitude elasto-
to contain a specified charge is given as plastic response of thin Kirchhoff shells. The model

is valid for large deflections and can be employed to
-4r / 1. 0406 "0406( 0406 treat the entire structure rather than a small section.

y Material Model
The uniaxial tensile quasi-static stress-strain

where ey is the yield point strain of the vessel meter- property of 1020 steel is used for primary vessel
ial in biaxial tension, H is the charge weight, p is material. The material is modelled in the code as a
the density of the vessel material and K is an empirical combination of three linear segments followed by
curve-fit constant found to be 4.08X 10-r NAg. perfectly-plastic behavior and linear elastic-plastic
Although the minimum amount of vessel material to con- unloading, resulting in a polygonal approximation of
tain a specific charge is not the governing design cri- the experimental data. The strain hardening part of
teion, there may be some interest in determining the the stress-strain curve is generated by a sublayer
optimized value. If the volume of vessel material is hardening model from a weighted combination of elastic
plotted as a function of the radius-to-thickness ratio perfectly-plastic curves yielding a piecewise multi-
of the container as given in Eq. (11) a slow variation linear hardening representation. Strain-rate effects
is observed in the amount of vessel material required were neglected, which is conservative since these
to contain the dynamic load as a function of the radius- effects increase the structural resistance and thus
to-thickness ratio R/h. The variation in material reduce the total deformation.
volume over the design range of 350 !C R/h s 200 is only
about 3%. Thus, the amount of material required to Finite-Difference Model
contain a specified charge in this range of configura-
tions is essentially constant. Very thin wall, large- Since both the responding structure and the applied
radius vessels with R/h 2 400 makes inefficient use of loads are symmetric with respect to the vertical axis,
material at least for blast wave containment. on the it is sufficient to model the response of a single pie-
other hand for thick wall, small-radius vessels with shaped segment of the hemispherical enclosure and gen-
R/h ! 150, at least 12% or higher saving in material erate the entire structure by 3600 rotation of the
volume can be realized with judicious choice of rein- structure about the axis of symetry resulting in quite
forcement in critical sections. Unfortunately sub- economical computer runs.
stantial saving in material could not be achieved due A total of 18 meshes along the surface and a
to constraints of minimum workslW e and equipment ac- single layer through the thickness were used to repre-
cess considerations and the additional requirement of sent the pie-shaped segment. Four Gaussian integration
part-through fragment containment with 50% depth of points through the thickness were used at each mesh for
penetration, computational purpose. The total number of mesh points

The analysis so far applies only to the contain- did not exceed 37. The mesh points at the base were
ment of the initial pressure pulse. However for long restrained from movement in both axial and transverse
term containment the volume of vessel material V. re- directions. However, the pole was allowed to move in
quired to contain the static pressure elastically can the radial direction due to symmetry boundary condi-
be estimated from the semiempirical relationship tions. Intermediate mesh points were allowed unre-

H strained movement. Only the internal. nodes were sub-
V C (12) jected to blast pressure in the radially outward

direction.

where C is a constant with a value of about 1.3 vP N a/ Results and Discussion
kg for most solid explosives and P. is the final static
pressure. The material volume appears to be independent The peak deflection of 1.17 mn occurs at the pole
of the radius-to-thickness ratio if the internal radius of the hemisphere at approximately 36 ms from initial
is approximated by the average radius of the vessel and occurrence of internal blast. However, the deflections
the usual formula for equilibrium of a thin shell is are, in fact, sIall enough to be in the linear elastic
used. based on Sq. (12) the material volume required to range. and any residual deflection after elastic oscilla-
contain the static load was found to be approximately tions are damped out is probably caused by a numerical
20% of that required to contain the initial dynamic artifact of the code.
load. A maximum deflection of 0.82 am, essentially

A comparison of the 9 m hemispherical structure radially outward is observed at a point at 450 from the
with an equivalent 9 m X 9 m X 7.3 m rectangular paral- vertical axis of the hemisphere in a mridional plans.
lelepiped all welded depleted uranium (DU) containment
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Displacements in general are small everywhere and are analysis code which neglects transverse shear deforma-
less than 4% of the shell thickness so that geometric tion and rotatory inertia, the analysis gives a clear
nonlinearities are insignificant. The larger response insight into the initial loading mechanism due to
at the pole is attributed to focussing of flexural structural resistance and interaction of various con-
vibratory energy (2]. ponents of the response. However, an examination of

The PETROS 3.5 code was run for 8000 cycles the characteristics of the hemispherical structure
(192 ms) in an undamped mode, after which artificial reveals the following:
damping was introduced to suppress the elastic oscilla- 1. The 9 m radius, .0254 m thick hemispherical
tions, which were positively biased due to residual enclosure is an efficient protective structure capable
internal pressure. Fully damped condition was achieved of withstanding internal blast from a 29.03 kg TNT
at cycle 8235 (198 ms) when the final configuration was charge with assured structural integrity.
found to be identical to the undeformed configuration 2. The structure is capable of successful con-
with no evidence of residual plastic deformation. tainment of combustion products and fragments with

Energy balance studies using the code confirmed sufficient mass and velocity to achieve a 50% depth of
absence of plastic work and numerical instability, penetration with a satisfactory margin of safety.
Both total and kinetic energies were bounded. The 3. Peak deflection occurs at the pole due to
fluctuations of kinetic energy appeared to have twice elastic oscillations of the structure in the breathing
the frequency of the work performed by the internal mode resulting in focusing of vibratory energy at the
blast pressure. pole.

Variation of transient strain components on the 4. Peak strain occurs at the clamped edge and
outer and inner surfaces of the hemisphere at a point exhibits considerable difference in straim amplitude
near the edge indicates that the meridional strain com- between the inner and outer surfaces due to bending
ponents on the inner and outer surfaces are almost in waves originating in this region.
phase initially but become out of phase and unequal in 5. The ratio of the vent area to the internal
magnitude with increasing time signaling the build-up volume is small enough to result in a slow rate of
of some flexural deformation. The hemisphere moves venting and an extended venting time of 1600 ms for
outward and inward, except at the fixed boundary in a the quasi-steady residual overpressure to blow-down to
breathing mode resulting in membrane strains upon which the external ambient conditions.
the bending strains are subsequently superposed due to 6. Cumulative damage effect due to repeated test
propagation of flexural waves from the fixed boundary firings could conceivably cause low cycle fatigue of
towards the pole. Significant difference in strains the structure and a periodic inspection of the internal
between the outer and the inner walls at the clamped surface and joints for cracks in critical regions is
edge could be primarily attributed to domination of the recommended.
response by the bending strains. The circumferential 7. Future work should be directed to modelling of
strains indicated by continuous lines are zero as the enclosure structure with wall openings for the
expected. Calculations for maximum meridional stress equipment and personnel access doors, protective walls
based on peak strain results in a stress level of for X-ray equipment, detailed analysis of critical
48.26 MPa which is equivalent to a safety margin of joints and stress concentration due to holes and cut-
4.0. As expected from elastic theory peak strains outs in corner regions.
occurred at the fixed edge while maximum deflection
occurred at the pole. Acknowledgements
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OPTIMUM COLUMN BUCKLING UNDER AN AXIAL LOAD
AND ITS OWN WEIGHT

Sadia M. Makky
Mathematics Department, College Of Sclence

The University Of Bagdad
Adamya, Bagdad, Iraq

Summary Let (x, y. z) be the coordinates of a point
-' of the coltum before deformation, let

Avertical colum of a given length made of ti(xi y, z), s2(x , Y, z), and s3tx , y, z)
(-elastic homogeneous, and Isotropic mater-

, is to be designed with circular cross be the components of the displacement vector
sections of varying radii (or equivalently o ' that point. Assuming no elongation along
with any preassigned cross sections that are the column axis, and sections normal to the
similar and similarly oriented). The lower center line remain ,ormaI to the deformed
end of the column is assumed to be built in, center line, it follows that the components
while a vertically copressive force is as- -of the displacement vector are given by
sumedto be acting on its free upper end. The
optimum shape of the columnis determined such sl(x, y, z) = u(z) - [Il-cos a(z)J,
that the weight of the column is minimum, and
yet the column does not buckle under the s y, z) = 0 , (1.1)
action of the prescribed compressive force

plus its oun weight. 3x y, z) = -x sin -C(Z)
This v4.nv t s similar to that cosi -
dered by Keller and Niordson~l] in two where, u(s) is the lateral displacement of
aspects$ (i) The formulation of the mathe - the center line, and aC is the angle between
matical model and the method of Its solution the z- axis and the tangent to the curve
are different. (ii) A preassigned compres- representing the center line after defer-
sive force is supposed here to be acting at mation S Assuming aC is very small, the
the upper end of the column. Moreover this components of the displacement vector will be
treatment is a generalization of [2), In the
sense that it reduces to the problem cosider- sl = u(z) | s2 = 0 5 33 = -x u'(z) , (1.2)
ed in [2) when the external force is taken
,to be zero. where, prime denotes differentiation with
'The linear theory of elasticity is used to respect to z. Let vi(r, 0, z), I = 1, 2, 3
express the stress-strain relations, the
energy method is applied to define the sta- be the covariant components of the displace-
bility criterion and calculus of Variation ment vector relative to the cylindrical
Is utelized to minimize the weight. The coordinate system. When the tensorial trans-
solution of the resulting non-linear two- formation (5], and Eqs(l,2) are used these
point boumdary vlue problem is found by a components take the forms
modified method of successive approximations. vl(r, 0, z) = u(z) cos 0 ,

Statement of The Problem v2(r, 0, z) = -r u(z) sin , (13)

Criterion of Stability v3(r, 0, z) = -r u'(z) cos 0 . (

Although there are different approuches in
determining the critieal conditions for From the defizition of the covariant deriva-
structural instability, (3) and 141J, we will tives [5), and from (1.3) it then follows th*
use the energy approuch. This method is
applied for conservative systems, where the Vl = u' cos Q , v3 1 : -u' cos ,
work can be expressed in terms of the exter- 1
nal forces. V2,3 = -ru'sin 0 , v, 2 = ru'sin 0, (1.1)
Lot the equilibrium configuration be given a
small virtual displacement without violating v = -ru'cos , v 0, otherwise.
the geometrical boundar7 cnditions. If the v3 ,3
work done by the external load, d4e to this
virtual displacement, does not exceed the The Stress-Strain Ilatims
increase of the stored strain energy, the
body is cosidered stable. Otherwise, the The linear theory of elasticity states that
excess energy will appear as kinetic energy. the components of the strain tensor are
This indicates an instability of the originl related to the displacement by [6) s
configuration for the virtual displacement.
The Virtual Disilacmnt ei3 = (v i '

3 .' v 3 'i)/2 " (1.5)
Ty ussing Uqs(l. ), these relations will take

Assiie that the axis of the column is along the following forms
the a- axis, and that its fixed end is at the 63- -r u"(z) Cos 0 (1.6)
origin of a rectagular coordinate emy_ rat. 3 3Ihei
Assume furthermore, that the center line of =0 otherwise •
the colm is given a virtual displacement
in the x-z plane. Assuming, to simplify the analysis* that

III I l' _.__ _ _ =. : _ =. =_
j ~~-- -3 --



Poisson's ratio is zero reduces the stress- z-w(z) 1/2strain relations to: E l + u'2 (t)1 dt z • (1.14a)

Crij = 2 G eij . (1.7) On the other hand,z-w~z)
In the above relations oj are the components z = w(z) + £ dt . Cl.14b)
of the stress tensor and G is a material Neglecting powers of u' higher than 2 it
constant. Upon combining Eq(l.6) and Eq(l.7) follows from (1.14) that
the stress components will be given by z-w(z) 2

33~2ru~z csG ;w(z) = Eu'(t)J /2 dtr3 = -2 G r u'1z) cos 9 |~)[lt) 2d
(1.8) z 2

Cj = 0 , otherwise . - £ [u'(t)] /2 dt . (l.lg)

Finally, differentiation of both members of
The Elastic Strain %nerRY Eq(l.l) with respect to z yields

2The elastic strain energy is given by[7] w'(z) = u'(z)/2 . (1.16)

Z = Oj e ab g Ijb dV ; (1.9) Mathematical Statement of The Problem

where V is the volume of the column, and g To determine the optimum shape of theare the contravariant components of the column, a criterion which relates the buck.l-metric tensor, relative to the coordinate ing load to the shape must be given. Thesystem being used. Since all the components criterion which we have adopted is that theof the strain tensor are zero except e3 3 it column is stable as long as the strain energy
follows that 3 is not less than the work done by the extern-

L a(z) 21r3 dr al load, due to any infinitesimal virtual
E = I 2Gr u"(z)cos 0]dQ dr dz displacement E41. In other words the columnis stable when
In deriving the above equation use is made of
Eqs(l.6), (1.8), and (1.9). Finally, upon B $. T ; (117)
integrating, as aove indicated with respect
to r and 0, the elastic strain energy becomes buckling starts when inequality (1.17) isL violated$ i.e., when E < T. Taking E = T,B = C [u"(z) A(z)]2 dz, where (1.I0) and using Eq(l.ll) and Bq(l.13) one obtains

A(z) =a2(z ; C = GiT/2 (1.1) C[A~z)v'(z)f-DA~z)w(z)-Qw'(z) dz =0, (1.18)

The Mk where

The change in the potential energy dueto the virtual displacement of the column is The total weight of the column is
LL DA(z) dz (1.20)T im A(z) w(z) d + 9v(L) (1.12) £
The mathematical problem is to findwhere m is the density, w(z) is the vertical A, v and w as functions of z such that W*,

drop of points along the center line result- as given by (1.20) is minimized and condi-
Ing from the lateral virtual displacement of tions (1.16) and h.18) are satisfied.
the column, and Q denotes the external comp- This is a variational problem involving aressive force acting at the upper end of the conditional extremum; the auxiliary funtion- &column. Assuming that the column is built in al is as follows.
at its lower end requires that w(O) = 0 ; and 2 (1.21)
consequently Iq(1.12) can be written as L [D A(z) - B(s) (w'(z) - v (z.)/21
T L [D A(z) w(s) + Q w'(z)] dz , (1.13) idz - P[CA2(z) v,2(z) DA(z)w(z)- ]2 Z),
where D =fu .

In the above funotiona4 P and B(z) are the
joiAti, BftvXeM The Vetical Dro And The, constant and variable Lagrange's multipliergLateral VONiftlac respectively[94 Eqs(l.16)&(1.19) are used.

Suppose that P is a point on the center
line of the undisplaced column, and P' is the The Solution Of The Problem
position of the point after the virtual dis-
placement. If a is the distance of P to the *ler's Eauations V
fixed end of the column theng Since it is
assumed that the virtual displacement is in- The necessary conditions for the func-extensional, it follows that the distance tional defined in the previous section to
along the curve representing the center line have an extremuh see[9J are the following
after deformation, between P' and the fixed Buler's equations
end of the colu is s also. Neee
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w - V2 /2 = 0 , (2.1) expression v, and for N the expression H1

B3' + P D A = 0 (2.2) found in step 2. above, to find an expre.-

B v 2PC[A2 v =0 , (2.3) sion for M as a function of z, call it M1

D(IPw )- 2PCAv'2 =0. (2.+) 4. With the newly found MI, and v1

Eq(2.14) yields a new expression for A, say A,
The Boundary Conlditions a first approximation for the optimum shape.

If the column is biult in at the end 5. Likewise, using Al and wj in connection
z = 0, it then follows that with Eq(2.15) with its corresponding boundary

condition one can determine v1 as a function
u(O) = 0 , u'(0) = o0 (2.) of z and

w(O) = 0 • (2.6) 6. The value of the parameter - can be
determined so that condition (1.18) is

Using the last condition of (2.5) in connec- satisfied.
tion with Eq(l.19) gives

7. When the value of P , determined in 6.
v(0) = 0 • (2.7) above is subistituted in v, the latter

becomes a function of z only.
The other boundary conditions are the 

natur-

al boundagr conditions for the variational 8. Employing AI, one can determine through
problem [%J;these conditions are given by: the use of (1.20) a first approximation for

the optimum weight.F-w, = 0 , at z = L ;

9. The steps 1. - 9. are repeated using, now
F , =0A ,at z =,L and v1 to determine A2 , H2 , M2 , and v2;

where F is the integrand in (1.21). Uteliz- and so on.
ing (1.21) with the above two boundary con-
ditions it follows that The proof that this method converges is

2 similar to the convergence proof for the usual
B(L) = 0 ; A (L) v'(L) = 0 . (2.8) method of successive approximations.

Mlthod Of Solution A Numerical Example

Ihen one defines A computer program based on the above
steps, is developed to hind the optimum shape

H(z) = B(z)/P ,(29) of a column with the following speeificationst

M(z) = A2(z) v', (2.10) m = 0.288 lb/inch3

the boundary value problem composed of diff- L = 250 inch
erential equaations (2.1)-(2.1 ,) and boundary 6
conditions (2.6)-(2.9) can be replaced by: G = 15xlO lb/inch2

w' = v2 /2 , w(O) = 0; (2.11) Two cases have been considered$

H' = -DA , H(L) - O; (2.12) (i) The column Is under a compressive

N' = -Hv/2C , M(L) = 01 (2.13) force Q =10
6

A = d/, v')] , (2.14) (ii) The column Is under no compressive

v, = ([D( 1 + P, )/2PCL, v(O) =0 ; (2.15) force.
The optimum shape for these two cases are

The above system of non-linear differential plotted below. The optimum weight for the
equations is solved by a modified method of
successive approximations. The steps are first case is 4542 lbs, while it is 0.5137 lb.
surarisd belov for the second case.

1. Choose simple expressions for A and v as For comparison, a uifora column of ciru-
functions of a, say A, and v such that lar cross section of the same length, which is
ve(O) = 0. made of the same material, Is coidered. The

critical load for meh a eolu m is given by
2. Use Nlqs(2.11), (2.12), and the corre- 10
sponding boundary conditions with the chosen lJ PC a 9EeI/(kL) , where (3.1)
A* and v, to determine v1 ad El as functions
of Z. e = modulus of elasticity a 20,

V a. e (2.13) and the corresponding I = moment of inertia of the cross sectiO
iunay ecodition, taking for v the Chosen
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=... a4/(3.3)
wa/ 4

k is a parameter depending on Ae boundary
conditions for the built in - free case
under consideration k = 2.

Taking Pc = 106 , Iq(3"1) gives

a = 5.726 inches , (3.3)
from which it follows that the weight of the
uniform column with no consideration to its
own weight is 7416.46 lbs. The ratio between
the weight of the uniform column to that of
the tapered column is 1.63 thus tapering
causes a reduction of 38.75k.
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Q =10 lb

250 25o
521.01 21.0-

220, 220t

200t 200-

1201 - 120-

1001. 100-j

soo---

2 0 20-

-10 -5 .=0.1.4 0

tFig.o 1:OPTIMUM COLUMN (Fig. b]: OPTIMUM COLUMN
BUCKLING UNDER ITS OWN BUCKLING UNDER ITS OWN
WEIGHT PLUS AN AXIAL WEIGHTLOAD

L u 290 inch

S 0.1ISI 10 lb / inch
2

M 0.21 8 lb/ inch3
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SHAPE DETERMINATION OF STRUCTURES
BASED ON THE INVERSE VARIATIONAL PRINCIPLE/

THE FINITE ELEMENT APPROACH

by Yukio TADA and Yasuyuki SEOUCHI

Department of Systems Engineering, Kobe University,

Rokkodai, Nada, Kobe, 657, JAPAN

problems(3)-(
6
), and minimum weight design with a con-

It is naturally considered that an extremal prin- straint to deflections is also considered(7)-(lC).

Iciple exists in the formation of shape of a body. This In most of techiniques for optimum structural de-

idea may be extended to the design of a structural signs, design variables such as lengths of members and

shape. sizes of cross sections of a truss are optimized among

V. Hor~k proposed the inverse variational princi- a set of prescribed shapes or in given Ilayouts except

ri-. in general, behaviours of a body are described by for particular problems for beams, plates and so on.

gcverning equations derived by variations of the state Otherwise, for a structure, whose shape is specified

varitIe , such as the displacement, strain and stress, almost everywhere and is alterable only through snme

In ihe Inverse variatibonal principle, the additional parameters, the optimization of the structure is a-

governing equation to determine the structural shape is chieved by searching optimum values of the parameters

derived by the variation of the variables which repre- (11).

sent the configuration of the body, provided that a Recently, the finite element techinique enters the

constraint is imposed on them so as to specify any investigation of the structural optimization, but they

global invariant, for example, with respect to the di- are confined within the design region mentioned above

mension of the body. (12), or the objects of the optimization are limited

).In this paper, the numerical shape determination to that of a distribution of plate thikness(13),(l).

techinique of structures is proposed by combining with toathat f tr n o p ae bns s (P)

the finite element method as an application of the Meanwhile, other new methods have been proposed(15)

principle. First of all, the optimal shapes of bodies -(I7), which seek for equi-strength shapes in non-pa-

which are subjected to statical loads are determined 
on rametric fashion, using finite element method. They

the basis of the potential energy principle. The tri- are dependent on the stresses of local points, but

angular finite element model is employed, and coordi- global evaluation for the behaviour of the body 
is not

nates of the nodal points on the periphery of the body considered.

are adopted as shape variables to obtain the optimal On the other hand, authors formulated a shape de-

shapes independent of preconception. To solve the de- termination problem of structures on the basis of the

rived system of nonlinear equations, a new successive inverse variational principle, proposed by Horgk(18),

reforming procedure referred as *Energy Ratio Methodk, using finite element method. This method can create

is proposed. The several numerical examples show that optimum shapes freely by adopting the coordinates of

the shape of the body is stably reformed into 
the opti- nodal points as design variables.

mal one by the method The structure with the shape In this paper, firstly a method for optimization

obtained is the stiffest one of all the bodies with the 
(19), which uses a new procedure termed as "Energy Ra-

same volume. The influences of the loading and the tio Method", is summarized for the two-dimensional e-

boundary conditi~ja-are discussed. 
lastic problem. Secondly, the principle is extended to

5.Inthe-s i6nd place, the principle is extended to eigenvalue problems(20), and thirdly the influences of

the eigenvalue problems to search the shape of the 
max- boundary conditions on the final shapes are discussed

imum buckling load and that of the maximum fundamental for the first case.

frequency. Several examples using one-dimensional fi-

nite element model are presented and the validity of 2. Inverse Variational roblem

the Energy Ratio Method is also shown. 2.1 Principles of Stationary Potential Energy

1. Introduction Variational principles of solid mechanics usually
consider the variations of strain, displacement, stress,

In the structural design, it is necessary to ob- and force arising in bodies of given shape and given

tain a shape (or, geometry) which will yield a higher mode of supports, subject to surface and body forces.

efficiency (that is, the minimum volume for a given In the inverse variational problems, an elastic body,

strength, or the maximum stiffness with a given volume), whose volume (or, surface area) is given but which is

Among policies to determine those shapes one familiar bounded by a closed boundary of a surface not known in

criterion is an application of extremum principles to advance, is considered(1
8
). Hence, the variation of

the design. structural shape is also taken into account. For exam-

It is often supposed that any behaviour of bodies ple, in the inverse variational principle of the mini-

in the nature is subject to certain laws which are gen- mum potential energy under a subsidiary condition that

erally called extremum principles. For example, the the volume of the body is constant, the functional to

equilibrium conditions and the kinetic equations of a be made stationary is given in the Lagrangian function-

body are derived from the principle of minimum poten- al as

tial energy and Hailton's principle, respectively. nL-ij kz- )dV-PuidS
Accordingly, the existence of similar principles for i -

the formation of the shape of a body is naturally as- +X(vdV-C) ---- 9 stationary,

serted. shape , )A

eSome problems of optimum structural design have

been treated as extremum ones by various authors, and where ul, X1 , and P& are components of the vectors of

were reviewed by Prager & Tsylor(l). Taylor called an the displacement, the body force, and the surface forces

object of their problems a performance(2). Compliance respectively. The displacement ui is an admissible

and stiffness of the body are objectives of extremum function which is related to the strain eq by
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e..=J(u..+u. .) where u . (2) (5)
7 lw W 4+ ..9 (ii,('.2) (6)

-he linear elastic stress-strain relation 7. i

is assumed in the problem (1). V is an admissible re-
gion of the volume integration , S is an admissible
one of the surface integration, and Sp is a subregion 3. Energy Ratio Method

of 5, where tractions are prescribed. C is a given

constant for the volume constancy and . is a corre- The system of equations obtained will be solved

sponding Lagrange multiplier. In Eq.(l), independent effectively by the use of an iterative procedure called

variables subject to the variations are the displace- "Energy Ratio Method"(19). The following is the summa-

sent u1, the Lagrange multiplier A, and the shape of ry of the procedure.

the body. From the first variation of Eq.(l), the e- By the introduction of new quantities Ji such that

quation of the equilibrium in V, the boundary condi- =1 V /a
tions on SO, the equation of the volume constancy, and 8 (=,' ,), (8)
the condition for the optimality of the shape are ob-
tained. Eq.(6) is reduced to

2.2 Discretized Model by Finite Element Method t-1--O

For the purpose of broad applications to any prac- In the process of iterative shape reformations, first

tical problem, a discrete version of the inverse varia- of all, the numerical analysis to the current structur-

tional principle is formulated by means of the dis- al shape is accomplished by solving Eq.(5). Substitut-

placement approach of the finite element method. ing the resulting displacement 1W into Eq.(8), the At's

In the following, it is assumed that the shape of are calculated. From the requirement,Eq.(9), an itera-

a body can be described by appropriate variables e [ 0 tive algorithm to make pl's equal to each other is

=f8i}, i=l,.. ,n3. For example, & is a radius of a 5e=I j-I ogl, (10)

circular bar or a height of a cross section of a beam T 6.,
at a joint in the one-dimensional (axial and flexural) T

elements [Fig.l-(a)]. In the two-dimensional (planar) where I is a mean value of n A's as an approximate

elements, it is a thickness of an element [Fig.l-(b)], value of the real value of Lagrange multiplier A, 8agn

or a coordinate of a nodal point on the outer surface (C) is the sign of x, and 0 is an appropriate coeffi-

(Fig.l-(c)]. We refer those variables as shape varia- cient, for example, of is taken as D./20 - D./I0, where

bles. D. is a representative size of the initial shape in the

Then, the functional for the discretized model direction of the shape reformation. The algorithm, Eq.

which is corresponding to Eq.(l) is written as follows. (10), corresponds to thickening the body when ldi is

*fl=~a,17Ir( (8) s.- a, 1p+AjV( e)-Cl -- , stationary,(l4) greater than IXI and otherwise to thinning it.

1w, 9o,() The new body thus obtained may violate the volume
constraint, then, in the second place, the shape varia-

where & is the stiffness matrix, ad the vector of nod- bles 9 are modified in equal ratio with the use of
al displacements, and ,p the vector of nodal forces. Taylor's expansion so that its volume may be equal to a

The stiffness matrix IK and the volume V of the body given constant C. By this iterative method which is

are expressed in terms of the shape variables 0. The composed of two stages of shape modification, the opti-
paftial differentiation of Eq.(

4
) with respect to the mal shapes will be obtained stably.

nodal displacements 9W, the shape variables e, and the
Lagrange multiplier X provide the equilibrium equation,
Eq.(5), the equation for the shape determination, Eq. 4. Numerical Examples

(6), and the equation of the volume constancy, Eq.(7),

respectively, which constitute a system of highly non- As a practically useful model, two-dimensional

linear algebraic equations: planar) elements subject to the variations of nodal co-

ordinates are discussed through two examples.

01 2

02

(a) \\ _

03 2 03 =

(a) model 1 (b) model 2
(b)

Fil Shape Variables Fig.2 Column
(a) model 1

(a) sizes at joints (b) model 2
(b) thicknesses

(c) nodal coordinates
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Fig.2(a) shows a column subject to a uniformly
distributed load on its upper surface. Abscissae of 5. Problem of Maximizing Eigenvalue

the nodes on the column sides are selected as the shape
variables. It is assumed that nodes along the founda- From the character of the inverse variational

tion are active, but nodes on the upper surface are in- principle that it considers the extremum of a quantity

active. Internal nodes on the horizontal cross sec- which is defined on the whole structure, the principle

tions are always located with equal spacing. The final is applicable to the optimal shape determination prob-

shape of uniform strength is shown on the right of the lems for a body with the highest buckling load or fun-

initial shape. The central axis of the final shape is damental frequency.
parallel with the direction of the load.

The second example is a r'-shaped structure subject 5.1 Eigenvalue Problem
to a load on its protrudent head [Fig.3(a)]. Abscissae
of nodal points on the right side of the body are shape In a body V, let x be a variable representing lo-
variables in this case. Internal points are dealt with cation, 6(X) a function expressing a shape of the body,

in the similar manner as in the previous example. In and v(z) a displacement function. We define two energy

the final shape, the stress distribution is uniform a- functionals N(s,v) and T(s,) dependent on the above

long the right side [Fig.3(b)]. two functions. P is a strain energy, and F stands for
Fig.4 shows the behaviour of the potential energy, the work done by a unit load in the buckling problem or

fr,, with the number of iterations. It is seen that the a kinetic energy in the free vibration problem. In or-
potential energy increases toward its maximum as the der to formulate the problem of maximizing eigenvalue
shape reformation process. by the inverse variational principle, the following in-

From these two and another examples, the following verse variational problem is set up, referring to the
is concluded: the shape obtained by the proposed meth- method under the st" '- load condition in the former
od is the stiffest one in the sense that the strain en- chapter.
ergy is minimum among those of all structures with the "Determine the shape #(x), the eigenvalue At. and
given volume, and each quantity 111i , which corresponds the eigenfunction V(X) which make the functional C(a,V)

to the strain energy density at a part of the structure ,  stationary under the subsidiary conditions that another
is equal to a certain quantity LAt. functional T(s,v) and the volume V(s) are constant",

which is written in the Lagrangian functional s [(21)]
nl-D(,,v)- AT(a,.v)-kCi+)IV(5)-CI -+ stationary.(ll)

44 ~V, a,^4

The stationary conditions of Eq.(ll) ar

*D3 (12)

W IaD *T dv (13)

04.0 ~s ,)=kr(14)

.K.0 - V(s)-c . (15)

(a)lst shape (b)12th shape Equations (12)-(15) are identical with those of conven-
tional formulations which maximize Rayleigh's quotient

Fig.3 P-shaped structure [(l),(22)-(24).

(a) initial
(b) final 5.2 Functional

5.2.1 Buckling Problem Consider a column with
length 1, and denote its axial coordinate and trans-
verse deflection by x and w(x), respectively. In the
buckling problem, the change in the potential energyF7 during the buckling is investigated. In other words,
the increase in the strain energy by bending and the

XI0-31 decrease in the potential energy of the axial load P
are taken as the functionals D and T, respectively.

0 _ * Then, the inverse variational problem that aims to max-
- . imize thebuckling load P is written as

[

-1.5 +A(t Adz-C) ---* stationary, (16)IL - 1.5 W, ,P,;L

where E, I, and A are Young's modulus, the second mo-
l 3 5 7 9 1 ment of area, and the cross-sectional area of the col-

umn, respectively.
iteration

5.2.2 Free Vibration Problem In the free trans-
Behaviour of potential energy verse vibration of an elastic beam, its deflection is

(TTS) denoted by y(Zt>. The strain and kinetic energies of

the beam for the infinitesimal deformation are given as

Fig.lI Process to convergence U= ( ),m (17)
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and where V is given by

K;TPA(8.)d . (18) ,=fw"el ..... ,+l,8"l}T (23)
respectively, where P is a density. Denoting the am-
plitude of the deflection by w(x), it is assumed that In the buckling problem, of is regarded as the axial

(z,t)=W(z)g(t) . (19) load P. From the variation ofs e in Eq.(22) with re-

Then, from the Hamilton's principle, the energy func- spect to the nodal displacements d, the shape variable

tional for W(x) is expressed as a!, and the Lagrange multipliers and A, the stationa-
ry conditions of Eq.(22) are obtained as

1 ; d,( x-(.f'%wd.-k,) IX ao,,K (2)
+;([-td1C st t 1 -ram

) ---. (20) (i=l,..-,n+l) (25)

When a ce rtainL shape a is given, the stationary condi- 1 a'O w k( 6tion of Eq.(20) with respect to w makes/1 be the mini- 2 (26)

mum eigenvalue for the shape, ,#,, where the square root V(fa1J)=C (27)
,V, ofA,, that is,

PS=,/-- (21) Equation (24) is an eigenvalue equation, Eq.(25) is an
is the fundamental frequency for the shape a. equation for the shape determination, and Eq.(27) is o

the volume constancy. The norm of the eigenfunctior i
5.3 Discretization given by Eq.(26), andA in Eq.(25) is dependent on it

We solve the above system of nonlinear equations by +

The above mentioned problems are solved by discre- Energy Ratio Method proposed in Ch.3.

tizing a bar into flexural elements. In the first
place, it is assumed that the bar consists of n ele-
ments, in which their contours vary linearly [Fig.l(a)]. 5.4 Numerical Examples
Thus, if the bar has a circular cross section, the ra-
dius distribution of the cross section in an element, Fig.7 illustrates the results of the buckling
a(x), is expressed in terms of the values at nodal problem for columns with circular cross section; Fig.
points of the element [Fig.51. 7(a) being the case of clamped-free condition, (b) both

In the second place, the transverse displacement -end-hinged, (c) clamped-hinged, and (d) both-end-
in an element is assumed to be cubic, so that the de- clamped. In the last case, only the left side is con-
flection WWx) in the i-th element is expressed in terms sidered for symmetry. The abscissa 4 is a non-dinen-
of the deflections at the nodes and of deflection an- sional axial coordinate x/Z, and the ordinate r repre-
gles there (Fig.6]. Substituting these interpolation sents a/aua , where amt is the radius of uniform radi-
functions into the functionals (16) or (20), and ar- us column, that is, a.1=177JE. Pa.! is the buckling
ranging the.resulting equation in terms of. the nodal load for a uniform radius column, and P is that for an
deflection W*, the nodal deflection angle e', and the obtained colum.
shape variable at, then the objective function, which Fig.8 shows the results of the problem of maximiz-
is to be stationary, is written as ing the fundamental frequency in the free vibration.

1 l n+l 1 n+l Ta Z /i),w is the ratio of the fundamental frequency of the
.fl.. 7(al, 0  . ,a ) W IM(a a )-k7r optimal beam to that of the uniform radius beam.

1 +l The above results are in good agreement with the
,'.o --) stationary , (22) analytical and numerical solutions by the conventional

fail . holil methods (22),(23.

C1 i +1

C6. Effects of Boundary Conditions on
the Optimum Shapes

In practical situations, structures may become to

icli iG2be subject to load and support conditions which are
different from those which were set in the (original)

-L X design. If the behaviours of the bodies are sensitive
( ) ( i.1) to their boundary conditions, the safety of the struc-tures may be damaged in some cases. Accordingly, in

Fig.5 Model of bar this study, it is examined how optimum shapes will beaffected by changes in boundary conditions.

6.1 Compression of Column
__(i) (i+1)

- -- - - - The first example is a similar model to Fig.2(a),
iW1J !except that instead of uniformly distributed horizontalWW load, an equivalent, concentrated load acts at the cen-
Wl V i 4 2ter of the upper surface [Fig.2(b)]. The final shape

i is almost the same as that of Fig.2(a). This similari-W( X WW1 ty between the two models is able to be interpreted by
+x the Saint-Venant principle. In this example, the dif-

e +ference of modeling of loads doesn't have effect on op-
timum shapes.

Flg.6 Deflection
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P P-=1.333 1.333

P o . . ur.. ~

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0a4

(a) (b)

P P
=1.347 1.333

10 sym.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.25 0.5

(c) (d)

Fig.7 Optimum colums
(a)clamped-free (b)hinged-hinged
(c)clamped-hinged (d)clamped-clamped

2.0 41.40 -1/=6.434 " = 1.136 -= 1.066
AliM luni

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

2.0 M -2.227 1 49 2.0 17.13 -4.139

1.0------------- -

Lym.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.25 0.5

(c) (d)

Fig.8 Optimum beams
(a)clamped-free (b)hinged-hinged
(c ) clamped-hinged (d) clamped-clamped
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(a) (b) model 1

(c) model 2 (d) model 3
Fig.9 Oblique columns

(a) basic condition
(b)model 1 (c)model 2 (d)model 3

x
y:x

1:0 
1:0.2 

1:0.25

0/

1:0.3 1:0.6 1:1

1Fig.1O Curved beams

5-6



6.2 Oblique Column (5) Masur, E. F. , Optimum Stiffness and Strength of
Elastic Stru, res , Proc. ASCE , J. Engng. Mech.
Div., 96-EM5(i9°70-1O), 621.

An oblique column is subject to uniformly distrib- D6) Martin, J. B. , The Optimal Design of Beams and

uted compressive load on its upper and lower surfaces. Frames with Compliance Constraints , JBt. J.

We want to determine the optimum shape of this struc- Solids Struct., 7-1(1971- ), 63.
ture under the condition that the nodes on its upper (7) i N. C. & Tang, H. T., Minimum-Weght Design

and lower surfaces are inactive (Fig.9(a)]. To meet of la ti Sani ea wihmefectonsCon
staic quiibiumreqirmen, te fllwin theeof Elastic Sandwich Beams with Deflection Con-

static equilibrium requirement, the following three straints, JOTA, 4-4(1969-lo), 277.
models are examined: (8) Shield, R. T. & Prager, W. , Optimal Structural

M As shown in Fig.9(b), two supporting Design for Given Deflection , , 21-4(1970-7),
points are provided on the centers of both sides. 513.

Model 2. It is assumed that this structure is 9) Huang, N. C. , On Principle of Stationary Mutual
jointed with other members by pins. Thus, two support- Complementary Energy and its Application to Opti-
ing points are set on the centers of both upper and mal Structural Design, ZAM, 22- (1971- ), 608.
lower surfaces [Fig.9(c)]. (10) Huang, N. C. , Minimum Weight Design of Elastic

Model 3. The centroid of the body is fixed, and Cables, JOTA, 15-1(1975-1), 37.
then the coupling forces are applied [Fig.9(d)]. (11) Umetani, Y., J. Japan Soc. Mech. Engrs. (in Japa-

These results show that among the statically nese), 79-693(1976-8), 749.
equivalent loading conditions, the possible different (12) Gallagher, R. F. & Zienkiewicz, 0. C. (Ed.), 0:-
modelings produce different shapes and it is necessary timum Structural Design--Theory and Applications,
to pay careful attention to modeling of boundary condl- (1973), John Wiley & Sons.
tions not given in advance. (13) Hegemier, G. A. & Tang, H. T., (Ed. Sawczuk, A. &

The above example is introduced to the analysis of Mr6z, Z.) , "A Variational Principle, the Finite
a shape for a collarbone of human being. The model 3 Element Method, and Optimal Structural Design for
suggests the optimality of the shape of the collarbone. Given Deflection", Optimization in Structural De-

sign , IUTAM Sympo. , Poland, (1973-8), Springer-
6.3 Curved Beam Verlag, 464.

(14) Rossow, M. P. & Taylor, J. E. , A Finite Element
In Fig.10, optimum shapes for curved beams are Method for the Optimal Design of Variable Thick-

shown against various concentrated loads, where only ness sheets, AAA J., 11-11(1973-11), 1566.
nodal points on the left surface are active shape vari- (15) Umetani, Y. & Hirai, S. , An Adaptive Shape Opti-
ables. These curved beams are simple models for femurs mization Method for Structural Material Using the
of human being. Fig.10 shows that depending on the di- Growing-Reforming Procedure , JSME Papers (1975
rection of the applied concentrated load, the optimum Joint JSME-ASME Applied Mechanics Western Conf.),
shape varies. Honolulu, (1975-3), 359.

(16) Oda, J., J. Japan Soc. Mech. Engrs. (in Japanese))
7. Conclusions 79-691(1976-6), 494.

(17) Tsuta, T. & Yamaji, S. , "Finite Element Analysis
A numerical shape determination procedure based on of Thick-Walled Structure by Using Legendre Func-

the inverse variational principle and the finite ele- tion and its Shape Optimization", Proc. Sympo. on
ment method is summarized, and the advantages of the Appl. of Comp. Meth. in Engng., (Ed. by Wellford,
variational approach and the effectiveness of the Ener- L. C. Jr.), vol. II, (1977-8), 859, USC.
gy Ratio Method to solve a system of nonlinear equa- (18) Hork, V., Inverse Variational Principles of Con-
tions obtained are shown for static and eigenvalue tinuum Mechanics, (1969), 26, Rozpravy "eskoslov-
structural problems. The effects of boundary condi- ensk6 Akad. Vd.
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ABSTRACT i mode shape

-In this paper a general engineering method to minimize P mass per unit of volume

the weight of rotating turbine or compressor blades is i speed of rotation
presented. The cross section shapes are optimized using
the design variables selected by the areodynamicists. ac centrifugal stress

The contraints originate from either aerodynamic or so- a limit values of centrifugal stresses
lid mechanic specifications. As the problem is reforms- 1l12
ted after a first finite element analysis the optimiza-
tion process is quite inexpensive. A large variety of INTRODUCTION
blades can be designed by this method and here, two
examples are given which lead to continuous optimal
profiles and demonstrate the efficiency of the method. This paper describes an engineering approach to minimi-

Nze the weight of compressor or turbine blades, by se-
NOMENCLATURE / lecting optimal cross section shapes. The followed pro-

cedure offers some practical and significant advantages
ai,b ,ck  design variables particulary specially in regards to several previous

c chord of a cross section papers Ill, 121, 131 : first the design variables are
those selected by the aerodynamicists, second no as-

e maximum thickness of a cross section sumptions on the cross section blade profiles are for-

f deflection of a cross section mulated and finally the computer calculations are very
economical. Nevertheless it cannot be postulated that

f m,fM limit values of e/c(x) the final solution is mathematically the best and uni-

centrifugal force que but this lack in the process has only minor disat-
vantages from an engineering point of view.

g, constraints In such a design there are two parts : the analysis of
go transition parameter the structure and the optimization process itself. Here

2 the analysis of the structure is performed in two steps:

gm,gM  limit values of c (x) at start the finite element analysis, then a reduction

H Hessian matrix technique are used . In order to decrease the number of
design variables, to obtain continuous blade profiles,

Im minimum and maximum flexural inertia polynomial fittings of all the mechanical characteris-

J torsional inertia tics are retained and the optimization process is con-
ducted on the coefficients of these polynomials. In

k added concentrated stiffness this part a well known interior extended penalty func-

K stiffness matrix tion 141 is used. The constraints are either aerodyna-
mic or mechanic. Two applications concerned with actual

KG  geometric stiffness matrix compressor or turbine blades and various boundary con-

L length of the blade ditions are presented. The details of the optimization
algorithm, the computer program and the method itself

Mk  added concentrated mass have been described in 151.

MG mass matrix DESIGN VARIABLES - OBJECTIVE FUNCTION - CONSTRAINTS
MG  supplementary mass matrix

N. resonance frequency In aeronautics, compressor or turbine blades are deci-
I ded upon by aerodynamic design engineers for jet engine
R root abscissa of the blade efficiency reasons. The variables used by these desi-

r response factor gners are the chord c,the thickness/chord ratio e/c,

P and the deflection chord ration f/c (Figure I).
S area of a cross section The relations between these variables and the mechani-
u local displacements cal characteristics of the blades, namely the maximum

and minimum flexural inertia IM, I_ the cross section
area S and constant torsion J are generally empiric.

x abscissa
a stagger angle

8 twist
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R+L

W = f p S(x) dx (11)

where R is the root abscissa, L the length, p the mass

per unit of volume. Using (4) W can be written :

n+m+p (R+L)t+
1  

R R+
1

W(ai,b ,ck) I P d (ai,b ,ck)

ZC k1.

Here coefficients dt are polynomial functions of the
design variables ai , b., ck.

Y CONSTRAINTS

X Fig. I - Definition of the blade Constraints originate from either aerodynamic or

solid mechanic specifications. At first the relative
Noting pitch, which is a function of the chord c and of the

number Nb of blades, is allowed to vary in a relativdy
y = e/c (x) (1) narrow interval at the root and the top of the blade.
z f c

2 
(x) (2) These limitations lead to upper and lower bounds on

c and e/c at x - R and R + L. It is assumed that in

1 _ (f/c)
2
(x) (3) the interval (R, R L) the variations noted fM' g '

fm, gm are either linear or quadratic. Thus:

where x is the abscissa of a cross section, 
it can be m m

established that convenient formula for the presented
applications are : fm(e/c(x)) e/c(x) fN(e/c(x)) (13)

S - Alyz + Biyzz1  (4) gm(c
2
(x)) i c

2
(x) g.,(c

2
(x)) (14)

SA 2YZ + B2yZZ) hm(f/c
2
(x)) f/c

2
(x)i f (f/c

2
(x)) (15)

I = A3y 
3
z
2 
+ B3y

3
z
2
zl + C3yz

2
zl + D3yz

2
z1

2  
(6)

J = A1 y
3
z
2  (7) R < x < R + L (figure 2)

Constants Ai, Bi , CI , Di are either known (N.A.C.A.
profiles) or searched by a best approximation fitting
technique. c f c

It could seem logical and efficient to select these
aerodynamical variables, e/c, f/c, as design variables , /
but in practical applications they are only rarely fm

analytical functions of x. This difficulty can be F

overcome by selecting numerical point data tables, c

such nodal values. This approach results in many

design variables, increases the size of the problem
and during the optimization process leads to numerous,

computer time consuming F.E. calculations. That are ___________

the reasons why polynomial fittings have been retained, R RL x R R*L x
thus is it written

n
e/c - y Z I a. x (8) Fig. 2 - Limitations of e/c(x)

The mechanical constraints are relative to the centri-
fugal stress and to the first resonance frequencies

c
2 
- z - E b. x (9) N., (i - 1,2, ...). It is supposed that the maximum of

i-0 J tAe centrifugal stress for x > R is less than a limi-
ting value a 1 and that for x = R, oc is less than o2.

(f/c)
2
- z, - Z ck xk (10) max Ocl t a3l R < x t R + L (16)

k-o
cc  t Gt2 (17)

Consequently the coefficients si, bj, ck, are now the
design variables. Their initial values are obtained The relation between oc and the design variables is
from the fitting of the initial blade shape data which obtained by
is satisfactory as a first approximation. Inserting
(8), (9), (10) in (4), (5), (6) gives S. IM, I, and J 

0
c - Fc/'S (8)

as functions of ai, tj, ck.

in which F is the centrifugal force calculated by,iOBJECTION FUNCTION c

(L+R M

The objective function is the weight of the blade Fc(X) p S(y)n
2 
y dy + E Mk 0 

2 
xk (19)

which is given by the integral :x k-I

5-10
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mk possible added concentrated mass in the and
interval (x, L + R).

The last mechanical constraints are introduced by U -IfL+R 2  
LR (Ikv

2  
+ IW

2
- E ,)x+Ex)dx

assuming a relative stability of the first resonance 
2
JR X R NM xx mW2xx

frequencies of the blade during the optimization.
These limitations can be written : +,

N N, -C N Z 1,2,... (20) + R G J 0
,  

dx + R ES(w x v )xdx (25)

NZm iJ J3 x 2 Rv)x (5

with

N Of N + -Zk (u
2
(x) + w 2

(x) + v
2
(x ) + 6

2
(x)

tin ZN 2 Z Z. Z Z

The resonance values N, are the eigenvalues of the In whi'h,

matrix equation 
:

is the stagger angle (it may be a function
(N, + G  G2) {6} = O(21)of)

G G of X)

1I " IM + Im

which has been already used in several previous
papers 161. u,v,w, the displacements in a local coordinate

system, Ox' y' z', (figure 3)
0 the twist,

6 is the nodal displacement vector,

M is the finite element mass matrix, au m
2u

K the stiffness matrix, M the supple- UX - ' U,xx x ,t

mentary mass matrix, Kg the geometric
stiffnessss trix. g E Young's modulus,G shear modulus, . possible

added local stiffnesses, mk possible added
- 4 2 N

2
. concentrated masses.

In (21) the Coriolis effects have been neglected.

It can be mentionned that all the derivatives of W "
A, c , Fc which are needed in the optimization -

procedure, are easily obtained. For example (18) O
leads to

ao 3F I F 3S
c = c. - Fc. - (22)

ai ai S S
2  

a.

and (20) after premultiplying by the vector 161

d . ={6 Z
t  IaK/ai + KG/aa -0

2 
MG/3ai-A£ZM/aI lf6}

i { 
t 

J J{6 1 (23)

6, eigenvector associated to A U

BLADE ANALYSIS Fig.3 local coordinate system

In order to determine the mode shapes which will be The detail of the proofs of (24) and (25) can be found
[ used in the following analysis, the initial rotating in 171 .Note that non linear terms of strain-displace-

blade is discretized in finite beam elements (six DOF went ftlations are taken into account in U (third inte-
per node). The general integral ex-ressiona of the gral of (25) and that the cross section gravity centers

kinetic and potential er~ergies ca]:ulated by this are supposed to be situated along Ox. The discretized
method are :form of the Lagrange's equations deduced from the in-_ .2 RL+R 2 dx tegrals (24) and (25) is the equation (21). !

T - I f L+1t pS((a2+ 2+ w0)dx + 2 I0  After the first finite element calculation the p mode

shapes of the initial blade

L+R
+ I p j

2
S(w

2
sin2a + v

2
cos

2
m + 2 wvcosa)dx # ,2, , p

L+ R with the component , ' " are knova
L "R 2 I + at the nodal points oV the wesh. They are fitted by2sau u(R+x)dx - I %k (t! (xk)+ "'- (. w

Sx (xk)+Vj(xk)  polynomialsk

€u - k . uk ( 26)

(24) 
u klO Ouk X
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Z2 k I - the choice of a starting point x

1v= Z evk x (27) 2 - the determination (x , rk)V(Xo,r).

k=O The initial hessian ma rix H. (secon de-
rivatives) is the unity matrix,

and used to make the classical variable change 3 - the calculation of the minimizing direction
at the step q by

(61 = $1 {q} (28)

This means that (24) and (25) are calculated in Sq -- Hq V0q (So - V- ) (31)

all the following steps of the optimization sheme
by new formula. For example it is obtained for T 4 - the calculation of the step a in this

direction by : 
q

I RL+R [t S 0 xq+l - x + q S (32)

To 41 } S S ($1 {- Sdx q q S

0 I in which three formulas for a are available,
q

5 - the determination of the modified hessian,

and of the new value of O(xq+l, rk,

2 csO{jt {qj dx 6 - return in (4) or stop and take if necessary

2 fc C0a new value of rp

R sO
For all details or this part and also for the strategy

sym . 0 in choosing the evolution of r , the value of ,

the reader can consult the papers 181, 91,o1101?
f L+R ., {}d

+ f R 
2
pS (R+x) {1 .. .. put q dx APPLICATIONS

R The proposed method has been applied to the determi-

+ I ° t nation of the optimal design of two actual turbine and
+ 'mk {t l(x k ) Icompressor blades manufactured by SNECMA. In these two

(29) examples the ratio f/c is not allowed to vary during

the optimization process, So the design variable are

c
2
. cos

2
a , cs = cos a sin a , s

2
-sin

2
a the coefficients ai and bj. The numerical values of

the characteristics of the initial blades are given
in a non dimensional form.

After the calculation of the derivatives of (26),
(27) with respect to x, a similar transformation a) Turbine blade
is easily applied to the integral form (25) of U.

The relative variations ofc and e/c from top to the
It must be pointed out that these new integrals root of the initial blade are
which yield T and U are computationally inexpensive,
as they are composed of polynomials. Further the I < c(x) < 0.92

different powers of x are integrated only once by

the numerical Gauss point method. I < a/c (x) < 0.76 Fig. 4

OPTIMIZATION PROCESS 
dtop - aroot - 270

The material characteristic are
It has been mentionned in the introduction that the
optimization process uses an extended interior pens- E - 0.2 E + 12 N/im

2 
, v - 0.3, P " 7900 kg/m

3

lity function - i. e. the function of Kavlie 141.
The search of the minimum of the objective function The exact and fitted values of S.Im, IM, J are in
W (ai, b., ck) which is constrained by the different satisfactory agreement as it has been show in lIl.

limitations gj (ai, bj, ck) is replaced by the The specifications given by the manufacturer are

search of the minima of the sequence of the uncons-
trained functions e/c (root) - 1,2 % ,+ 15 Z

ba e/ (top) - 7,3 % ,+ 50 %

j(ai'bjCk'r = W (a jk p P -I g--1  c (root) - 6 Z ,+ 15 %

c (top) - 20% ,+ 10 %
J 2 - g1/go 1 Nl first bending frequencies - 1,3%,+ 5,4%

+ J(30) N2 second - 3,2%,+ 0,5%

First the blade is clamped-free. The results of the

Where J is the total number of limitations, J the optimization process are summarized in table (I)at

number of these which are satisfied ; g0 is tAe tran- rest and at the nominal speed of rotation ON' Either
sition parameter and r the response factor. Each va- the first , the second or the both frequencies can be

lue of r in the procels defines a response surface, controlled. When the blade rotates the centrifugal

Here thePmethod retained to find the minimum of # is stress is limited to 30 h bars. It has ben concluded

due to Davidon Broyden 181.It can for a given r ,be in this configuration that the influence of the ra-

briefly summarized in the six following steps :P tion e/c is small in comparison with those of c

5-12
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which is closed from its limiting value 51, i11 The limitations are

deviation of c root - 17 Z + 6 Z
Constraints Nland/orN 2 % weight% Number of c top - 0,5Z + 5,4Z

gain analysis e/c root -8 % + 8%
optimal NI  2.5 21.5 14 e/c top - 3 % + 5%
blade N2  0.5 21.5 22 N1  -5 % + 2,6 ( (6 2N)

ffON 2  - 5,6% + 1,4% Z - - 3,8% + 0,6% Z
Njand N2 1.6 and 0.8 21.2 23

= N Nand N2  0.4 and 1.5 20.4 21 The fitted values of S, Im. IM have been also found
satisfactory (Figures 5 a.b.c). The maximum of the

Table (1) relative error is about 1.2 %. The reduced basis used

the bix first bending frequencies at rest. The boun-

In the following the blade is clamped supported, L.e dary conditionsare the following : clamped at the root,

the displacement inthe direction oy'and the torsion e, Vy = 0 at the top. Table (3) and figures 6a,6b) give
of the top are restrained. The results of the design the evolutions of the blade shape and the weight gain

are given in table (2) and in the figures 4a) and 4b). at the nominal speed.

Constraints deviation % weight Number of Constraints deviation Weight number of
gain % analysis % gain 7 analysis

optimal N, 1.56 14.5 16 optimal N, and -6,2 and
blade N2  1.48 19.6 19 blade N2  2,1 % 1
=2 -N N1 and N2  1.56 and 3 12.1 18 Q QN

table (3)
Table (2)

It is noted (see figures 4a and b) that the effects of Sf/_
the two frequency constraints are opposed with respect 1.1
to variations of e which is shown to be the more sen-
sitive design variable; The weight gain is also less
than in the preceding example.

9R 0.9

Fig.~M 4a4).Vratos fcan

• .. "Y 1 Me

more svere est o th met hod

SX/RO.

FiF. 4a)4b). Variations of c and e/c

am

b) Compressor blade 
1./RThe same procedure has been applied to an actual new

compressor blade which is longer than the turbine blabs
and very twisted. This example can be considered as a

mor seeretes Ofthemetod.Fig. 5 a.b.c. The fitted values of S.lMI,

5-13



CONCLUSION

A general method to minimize the weight of actual
compressor or turbine blades has been presented. It a C
shown to give satisfactory results. As the problem has
been reformated the number of finite element analyses
has been reduced to two. Thus the optimization process
is quite inexpensive and can be applied, to a large
variety of blades with only minor changes in the rela-
tions (4), (5), (6).
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APPLICATION OF OPTIMIZATION TO AIRCRAFT ENGINE DISK SYNTHESIS

/ JI Oh Song' and Richard E. Lee"

Pratt & WWnep Aircralt Group
Govenn t prodlucts Divlkm

Weet Pain Beech, FL 34

ABSTRACT constraints. For this purpose, a general purpose optimization program,
CONMIN[10], is used in this study. CONMIN was designed primarily

4
An automated optimium disk synthesis technique for aircraft gas to solve nonlinear programming problems with inequality constraints,

turbine engines is developed using a mathematical programming meth- and is widely applied in practical engineering problemslll-14). The disk
od. The optimum synthesis program constructs a minimum-weight disk analysis procedure used in the synthesis program is reviewed to ac-
while meeting burst speed, stress and geometric constraints. A general quaint the reader who is not familiar with gas turbine design
purpose optimization program is used in synthesizing piece-wise hyper- procedures, and the disk analysis program is interfaced with the op-
bolically shapee disks in which thermal gradient effects in the radial timizer, CONMIN, to provide a more efficient disk synthesis tool for the
direction are taken into account. For conceptual design purposes, the early stage of disk design. In this paper, we refer to the resulting
disk analysis is simpified based on elastic plane stress assumption. The synthesized disk as the "optimum disk design." As the term "optimum"
feasibility of this approach is demonstrated through example problems is used here, it is intended to be an optimum disk for the preliminary
of a typical disk from the preliminary design phase. design phase of the engine. This synthesized disk is used as the starting

point for further analysis leading to the final design configuration. More
INTROOUCTION sophisticated analysis techniques are used during final analysis to

account for disk plastic deformation, out-of-plane loading, system vibra-

The design of an advanced gas turbine engine begins in a tions, and complex mission usage.
preliminary design phase when the engine designer is challenged with
selecting the best engine configuration for the defined customer require- DISK ANALYSIS
ments. This "best" configuration is the result of an extensive study of
numerous candidate engines of varying sizes, operating at different For preliminary disk design the analysis used is less rigorous than
speeds, at different temperatures, different pressures, etc. The designer the analysis required for a final production configuration. The intent is
must review a large number of these candidate engines against the to arrive at an answer that is correct enough to indicate real trends in
customer's requirements in order to arrive at the optimum configura- weight, size, life, etc., without incurring unnecessary expense due to
tion. analysis sophistication. Since the application of optimization theory to

gas turbine engine preliminary design has only recently been under-

To study a large number of candidate engines in a preliminary taken, the appropriate level of analysis sophistication is still un-
design phase with a limited amount of time requires design tools which determined. For the purpose of this study it was concluded that a
can do a preliminary design of engine components literally overnight, simple elastic formulation to calculate stress would be a reasonable
Reference [1] described a preliminary design tool used at Pratt & approximation. Among the classical disk analysis tools available in the
Whitney Aircraft's Government Products Divibion to do preliminary literature, a hyperbolically shaped disk was chosen as the analyzer. The
designs of gas turbine disks. This tool has been further developed by the well-established solution procedure for this disk is summarized in the
addition of an optimizatiou program which extends the disk synthesis appendix, and the results are used for further derivations in this
procedure to a point closer to the final disk design weight. section. This disk shape represents a slightly more sophisticated con-

figuration than our earlier synthesis-analysis which was discussed in [1).

During the last two decades, significant efforts have been made in The stress distribution for sa axisymmetrically loaded disk is analyzed
the application of optimization to the engineering field, particularly by mssuming that the disk is piece-wise hyperbolically shaped; whereas.
structural problems. Some researchers have successfully used both in reference [11 we had initially used straight-sided rings. Burst margin
linearf2,3) and nonlinear[4] programming techniques to solve for- and cross-section profile slopes of the disk arz also derived so that they
mulated structural optimization problems. The application of could be used as constraints to be satisfied in the optimizing process.
mathematical programming techniques is comprehensively reviewed in Finally, the disk weight, which is the objective function to be min-
referencef5]. Others have pursued the optimality criteria approach imized, is calculated.
based on the fully stressed design concept[6,7]. More recently, the
state-space method has been introduced from the optimal control A disk with varying thickness was divided into a number jf ring
theory[S]. This method is primarily aimed at efficient sensitivity elements, as shown in figure 1. Each element has the cross-section'
analysis, and has been successfully applied in mechanical and structural profile of a hyperbola represented as
systems[9]. However, the nonlinear programming technique is believed
the most suitable application to the optimum disk synthesis. This is t = cRa  (h
because the optimum disk synthesis problem can be easily formulated
as the standard form of the nonlinear pvWgxainming, and a where a and c are constants to be determined from the geometry. Plane
well-developed solution algorithm can he exploited, stress assumption is made in this analysis. Temperature is assumed to

be constant within each ring element, but can vary from element to
o The objective of this paper is, therefore, to apply the existing element.
optimiation technique in synthesizing gas turbine engine disks with
minimum weight while meeting burst margin, stress and geometric Denoting the outer and inner boundaries of ach elemuent by

subscripts o and i, respectively, and using the equatiin (A-8) derived in

• itrrh go,. the appendix, one can get stresses at the outer ane inner boAndaries of
"Senior Design gnieinsr each element as follows:
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up Rb ml-a-I BR 2-a-I

.= + - f+ 8(3+Pw
2R 2  By applying the continuity of radial displacement, u, and radial

C c stress at the boundary of the elements k and k+l, the following
(2) conditions may be obtained.A miai B m2a1 1 + 31

T = c mRm + c m2R6 A 8+(3+V)a pw2R62 (u)k = (uj)k+

where 6 = oi, and constants a, c are given in Equation (A-i) and mi, m2  (c) = O
defined in Equation (A-8). A and B for each element are determined (3
from the boundary conditions. (OR)k :(Ri)k+l

(UR)n = F/(Rim circumferential area)

where k = 1, 2 ...... n-I, F is the rim pull due to the centrifugal force of
blades, and n is the total number of ring elements. The expression for
the radial displacement, u, may be written in terms of A and B from
Equations (A-4), (A-5), and (A-8) in the appendix. ui and u0 are
radial displacements at inner and outer boundaries, respectively.

Then 2n unknowns of A's and B's for n ring elements can be
determined from the 2n equations of boundary conditions in Equation

Disk (3). As a result, stresses at the boundaries can be obtained from
Equation (2) and stresse at any radial station from Equation (A-8) by
substituting A and B.

Using the radial and tangential stresses, additional quantities
related to the disk design criteria are derived. These are constrained in
the optimum disk synthesis.

Effective stress is an important variable to be considered in disk

(a) Bladed Disk Segment design. Effective stress, based on the Von Mises yield criterion, is
defined as

F e6 = (R 6 
2 - aR69

0
TA + 6T,2)1/2 (4)

where 6 = io, and Ore- and a. are effective stresses at inner and outer

boundaries, respectively.

Another important consideration for the gas turbine engine disk
design is the speed at which the disk will burst. A reliable estimate
of the burst speed may be obtained from the average tangential

Hyperbolic strts, OTavg. The ratio of the speed at which the stress reaches ul-
Ring Elements timate stress to the design speed may be used as a design criterion and

called "Burst Margin." Burst margin (BM) may be defined by

] Kth Element BM= (MUF -u / O'Tsvg)1/2 (5)

. /where MUF is a material utilization factor which is determined experi-

mentally, and Oru is ultimate tensile strength. OTavg can be obtained

from the simple free body of the half disk.

Ff + F

OTavg 2rAr (6)

(o)k where Fr is the body force due to the centrifugal force of the disk, and

(RI)k Ar the disk cross-sectional area. Fr can be written as

(Rl) 1  1st Element Ff = 21F W2 t [ (Ro)k p R
2
tdR (7)k-l 9 )k

- In addition, geometric constraint should be considered in the disk
design. Slope angles of the cros-section profile, as shown in figure 2,

(b) Disk Model need to be constrained to maintain the validity of plane stress ssump-

tion. Experience shows that a large angle (8i)2 in figure 2 tends to
decrease the utility of the material at bore edge because of nonuniform

Fig. 1. Typical bladed disk shape stress distribution in bore section.
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F Dq+l - Dq + "Ysq (l1)

where Dq is current design, Dq+l updated design, y stepsize and Sq

direction vector for design improvement.

The major function of CONMIN is to find the direction vector S Q

using the feasible direction method[15,16] and stepsize -y at each
iteration by interfacing with the analysis program to guide the design to

the optimum point.

(8^ The optimum disk synthesis problem can be formulated using the
equations derived in previous section as

Find D = t ... tn+1, (Ri) 1 ... , (Ri)n such that

minimize WT

(002 2 subject to

BML , BM BMU

(TiLk <- (OTihk !5 (OUTiU

(UrToL)k :S (O'To)k :5 (6ToU)k

~~~~~~~(aRiLk- oa~ k  _ i~
) k - -UR~ k f=__ - (U k ~(12)

(aRoL )n - (a 0 )n : (0RoU)n

Fig. 2. Slope constraint

The angle (86)k can be obtained from differentiation of Equa-
tion (1) (6eoL)k : ("eo)k -< (UeoU)k

(01)k = tan-[ a (R)ka- 8) (OiL)k -< (6i )k 
-- (OiU)k

(OoL)k < (0o )k -< 
(OoU)k

where 6 = o, i implies outer and inner boundary of the element

respectively. Finally, the disk weight, WT, may be given as and

WT-21 ( I p RtdR (9) jL _ tj -- tj
U

k=l (Ri)k
(RiL)k !5 (Ri k :!5 (RiU)k

OPT M DISK SYNTHEIS where k = 1, 2 ... , n, j = 1, 2 .... n+l, ti. tn+1 are the disk

With the disk analysis derived in the previous section, all the thicknesses at various radial stations, and (Ri) 1 is the bore radius. n is
necessary information required for disk design can be obtained if the the total number of ring elements. Superscripts L and U represent lower

disk geometry is given. Optimum disk synthesis is to choose the disk and upper limits of the variables considered, respectively. The Equation

dimensions of the minimum -eight disk while meeting given design (12) can be converted to the standard form of Equation (10).

criteria. The optimization program simply guides design improvement
by interfacing with the analysis program until the optimum disk is The disk synthesis procedure may be summarized as follows:

obtained. This is the fundamental difference between the use of op-
timizatiom theory to size the disk and the alternative, iterative practice Step 1. Initialize design variables based on engineering guess.

summarized in reference [1. The general purpose optimization pro-
gram, CONMIN, is used here. CONMIN is organized to solve the Step 2. Do disk analysis using Equations (1) to (9).

classical nonlinear programming problem with inequality constraints,
i.e., in mathematical terminology, Step 3. Check the constraints of Equation (12).

Find D such that Step 4. If no constraints are violated and no design improve-
ment is made, the result is optimum. Then stop here.

minimize J(D) Otherwise go to Step 5.

subject to Step 5. Obtain the improved design from Equation (11) and
go to Step 2.

* (D) --O Steps 3, 4, and 5 are carried out by the optimizer.

and D is bounded or unbounded.
EXAMPLES AND RESULTS

Where D - IDj, j-1, 2..... 21 is the vector of design variables,

I 4j. j-l, 2..., m I the vector of constraints, and J the objective Four different variations on a typical turbine disk are presented to
function (or cost function). f and m represent the number of design illustrate the capability of this approach. The disk is divided into ten
variables and constraints, respectively. Design improvement then can be elements with thermal gradients. As shown in figure 3, disk elements
made as: and stations are enumerated from the bore to rim in ascending order.
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F (0oU) = 56'

Disk Rim t10 t l 0 0L 9

S t ( 0 oU)k 46.3-. k 2:1..... 8-to
a 8 ( 0 oL)k -46.3

, k 2, 3. .... 8

7

5 7 (OiU) = 46.3'. k 2. ... 9

15 t6 (0iL) = -46.3'. k - 2,: ... , 9

4 tk 0.25 in.. k 1, 2 .... 9
- t4

3 t BMU" (OaT L)k, (E'T.L)k, (ORoL)k, (O.RiL)k, (OeoL)k, (OleiL) k

and tiU 
are unbounded, where k = 1, 2 ... , 10 and j = 1, 2 ... , 9.

- t212 In order to show the effectiveness of the program developed here,
extreme initial configurations are taken. Cases 1, 3 and 4 start at a very

-tl conservative configuration, while case 2 starts at lower bounds of design
Disk Bore variables. All of these initial configurations are outside of the range of

choices which a designer would realistically consider. The reason they
are selected here is to illustrate the versatility of the optimizer in

- arriving at an optimum configuration.

Case I

Fig. 3. Configurtion Of example Thicknesses at station 1 and 2 are linked so that t1 = t2 in the
synthesizing process. Hence, the number of independent design vari-

ables is 8 instead of 9. This implies that the cross section near the bore
Constant variables used in the analysis are: is rectangular. Disks with rectangular shaped bore sections may be

observed in many engines. Initial design variable values are t I = t2 =
E = 27.1 x 106 psi 2.2 in., t 3 = 1.5 in., t4 = ... = t9 = 1.2 in. and tl 0 = tjI = 1.415 in.Specific weight =f 0.284 Ib/in.

3

a = 7.39 x 10-6 in./in. *F Case 2
= 0.3

MUF = 0.8 Case 2 is same as case 1 except that initial design is chosen at the
a u = 210,000 psi other extreme for bore and web geometry. The classic disk shape is
Rotational speed = 11,500 rpm intentionally avoided to test the optimizer. Initial design variable values
F = 1.393 Y 106 

lb. are t1 = ... = t=0.25 in. and tl0 = tl 1.415 in.

The radius at each station and temperature of each element are Cast 3
tabulated in table 1. Radius and temperature are held constant in first
three cases. In the fourth case, radius is designated as a design variable. In case 3, t I and t2 are not linked anymore, and are independent

design variables. Initial design variable values are same as those in
Disk rim thicknesses t1 0 and tll are fixed to accommodate the case 1. Additional constraints (0o) 1 and (0i)1 are impoeed such that

blade. In this example, therefore, t1 ... , t9 are taken as design variables (0oU)l = (0iU)l = 46.3" and (0 ,L), = (0iL)l - -46.3' .

and t1 0 = t1l 1.415 in. Constraint limits used in common for four
cases are:

Case 4
BML f 1.3

Radial locations of ring elements are included as design variables
(T 3U)o 000 in addition to the thicknesses of case 1. (Ri)l is taken as the independ-

fiT3,00 pi ent design variable, while (Ri)2 . ... (Rj) 9 are linked such that the height
So of each element in the radial direction is proportional to that of the

(aT 0 )k= 114,000 psi. k = 1. 2. 9 initial configuration. (Rj)1 0 and (Ro) 10 are fixed because of the blade
attachment requirement. Except for some additional design variables

(OT.U)k = 114,000 psi. k 1, 2. 10 and constraints, the initial configuration, design variables and con-
straints are the same as those of case 1. In this case, bore radius is

(0RU) i 126,000 psi constrained such that (RiL)I - 2.5 in. and (RU)1 -5.0 in.
In cases 1, 3 and 4, the initial design is so conservative that no

.orNUk = 126,000 psi. k = 1, 2. 1 0 constraints are violated, while initial design of case 2 is not feasible.

Initial and converged final values of design variables are given in table
oU)k =15 p2 for the first three cases, and in table 3 for case 4. Initial and final

oleo p = .configurations are depicted in figures 4, 5, 6, and 7. Disk weight history
in terms of the number of iterations is given in figure 8. Note that case

(eiU) k  114,5M pi, It 1, 2.... 10 1 and case 2 have converged to virtually the same optimum disk, which

Table 1. Radii and Temperature Distribution of Example

1 2 3 4 5 6 7 8 9 10 It

Raim (ha 3.750 4.615 5.0468 &480 &913 6.345 .778 7.210 7.640 8.076 8.459
TOm*@aut s er) 703 711 724 742 767 79 83 677 92M 975
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may, therefore, be considered to be the global minimum disk for given
constraints. In case 2, even though 38 out of 83 constraints are initially
violated, the program successfully corrected the violations. Case 3
converges to a disk that is 7"v lighter than cases I and 2. As might be
expected, it can be observed that the disk weight can be reduced if the Unre" stic
requirement for a rectangular bore element is eliminated. It should be Coatio
noted, however, that bore thickness in case 3 is greater than cases 1 and chosen Intentionay
2. It might be necessary to constrain bore thickness to'- smaller value in
some applications. In practical design, the bore section of the optimum
disk shown in figure 7 would be made as the smooth shape illustrated
by dotted lines in the figure. In case 4 where bore radius is a design
variable, disk weight, bore section thickness and bore radius are reduced
compared to cases I and 2.

Table 2. Design Variables for Case 1, 2 and 3

Iea.e Csec 2 Case 3
Initial Final Initial Final Initial Final

t1. 2.2 2.022 0.25 2.030 2.2 2.846
2" 2.2 2.022 0.25 2.030 2.2 1.614

W 1.5 1.318 0.25 1.325 1.5 0.944
W 1.2 0.683 0.25 0.691 1.2 0.376
W 1.2 0.315 0.25 0.316 1.2 0.316

t6 . 1.2 0.302 0.25 0.301 1.2 0.301
0 1.2 0.286 0.25 0.286 1.2 0.286

t8. 1.2 0.273 0.25 0.274 1.2 0.270 WT = 72.8 lb WT = 45.5 lb
9 1.2 0.556 0.25 0.553 1.2 0.555 Initial Optimum

10, 1.415 1.415 1.415 1.415 1.415 1.415
ll 1.415 1.415 1.415 - 1.415 1.415 1.415

is in inch.

Table 3. Design Variables for Case 4

R (inch) t (inch)
Poition Initial Final Initial Final Fig. 4. Initial and optimum disks, Case I

"1 3.750 2.5 2.2 1.523
2 4.615 3.615 2.2 1.523
3 5.048 4.173 1.5 0.772
4 5.480 4.730 1.2 0.346
5 5.913 5.288 1.2 0.334
6 6.345 5.845 1.2 0.315
7 6.778 6.403 1.2 0.296
a 7.210 6.960 1.2 0.280
9 7.640 )514 1.2 0.423

10 8.076 8.076 1.415 1.415
11 8.459 8.459 1.415 1.415 unreluski

Ccn"guation
Chosen)Il~fhWd

The solution of the simultaneous equations for the disk analysis is
provided through the program LEQT1B of the IMSL[17] library. Com-
putations art carried out in double precision using the IBM 3033
computer. Computing time is approximately 5 CPU seconds for each
case.

CONCLUDING REMAMIS

An optimization technique has been applied to the synthesis for
compressor and turbine disks of conceptual aircraft gas turbine engines.
A simple elastic disk analysis program is combined with the general
purpose optimization program, CONMIN, to minimize disk weight
while meeting burst margin, stress and geometric constraints. This
expedites preliminary design work where disk configurations are being
studied and initially sized. 1 i.-

The feasibility and effectiveness of this approach are demon-

strated by numerical example problems. The synthesis program con- WT - 22.0 lb WT = 45.6 lb
structs optimum disks whicli may not otherwise be possible because of Initial Optimum
the engineer's limited intuition. It is also shown that the implication of
certain constraints can be readily evaluated.

The program presented here can be used to provide quick design
guidance in the preliminary design phase and can provide the starting __

point for a more elaborate (for example, plastic) final solqtion.

The most important feature of the program is that it can not only
improve design quality but also can drastically reduce disk design time. Fig. 5. Initial nd optimum disks, Case 2
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75

70 Cas I '-
Case2 -0E

uraitc65 Case 3 ....
Configuration - -- Practical Cms 4
Chiosen titentionaly Configuration

50

35 I

l'-irn.~30 I
WT -72.8 lb WT 42.7 lb

Initial Optimum 25

2020

NmeofIterations

Fig. 8. Disk weight history
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APPENDIX where u is the radial displacement.

Introduce the following stress function that satisfies Equation
Let the radial section thickness of the disk of figure A-i be (A-2)

represented by the hyperbolic formula o=ta
t=cRa (A-1) (A-6)

In (jt 0t) do' + t p W22= t ,where a =In (Ri/R 0 ) dR

and In c =In ti a In Ri Then by using Equations (A-0~ and (A-6) and assuming that T is
constant, the compatibility equation (A-3) becomes

d2o - do a 3 tcp 2e3a A7
d#2  dfl

where =In R

t c~aFrom Equations (A-6) and (A-7) one has

1A m-a-1 B______ 3v (0R

c c 8+(3+V)apWR
UR = Rml + -(A-8)

R C mA ml-a-I 1 B m2m 2 -a-1 1+31' (0R
* ~T m1  +cm2 8+(3+ V~a ps1R

Hj where

-m +_ __ _ Pa_ + I1 ~+ A
_____ ____ _____2 4 V+1"

Fig. A-I. Disk ring element of hyperbolic section 2 4 a I'

By assuming plane stress, the equilibrium equation and com- Ri :s R -5R
patiiliy euaton cn b wrtte asA and B are constants to be determined from the boundary conditions.

d 21 (A-2)

RdT+ (T (R -=0 (A-3)
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MEuNC.LA.iUM t Disk thickness

Ar Disk cross-sectional area To, T Reference and current temperatures. respectively
BM Burst margin u Radial displacement

Vector of design variables U Superscript denoting upper bound of constraint
E Modulus of elasticity W ikwihF Disk rim pull a Coefficient of linear thermal expansion

Ff Body force due to centrifugal force Stepize in design imprvement
J(D) Objective function (or cost function) o Ang r constraint

L Superscript denoting lower bound of constraint Poissonstrat
MUF Material utilization factor P Poisson's ratio

(Ri)k, (Ro)k Inner and outer radii of k-th element, respectivel3 P Material density

S Direction vector for design improvement Angular speed

/
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Summary Lureean pressure vessel rejuire',nts and also geomet-

ries will allow the ease of projection from th, manu-

he problem of shape optimization to minimize facturing point of view.

stress concentration factors is Presented. Casign

variables are chosen such that ortimal configurations Z. Comoonent Geometr'

Lan be produced for a cylindrical pressure vessel with

an end closure and nozzle intersection. The configuration to be studied is shown in Fig. 1.

This is basically an as-embly of three axisymmetric

system model is formed in which the stress components, namely a torispherical end clnsure, which

rra.iients -re calculated numerically us'.- the finite can be formed from a two or three radii era cap, a

element method and optimization is performed by the cylindrical portion which Porms the main bo.ev of the

nenalty function technique. Various examples of the vessel and a hemispherical end closure which is pierced

de sipn algorithm are presented showing optimal geomet- by a protruiing nozzle. The torisoherical head formed

ries together with plots of bounder, stress concentra- from two radii is defined by the head radius x I ,

lions for th3 sequence of designs generated. knuckle radius x,, closure height x 3 and head and cylin-

1. Introduction drical wall thicknesses of x4 and x. respectively. In

The design of cylindri'cal pressure vessels and this case the design variatlss are to be definoj by TheThe esin o cylndrcalpresureveselsand vector

ansociated components has been the suojact of consider-

ale attention due to the many severe requirements of X,

industry. As a consequence of complicated Feometries x

and the complex problem of stress analysis uesign in x

the past have been largely formulated from empirical (1)

riles and it is only recently that optimal configure- Xn 4

tions for such components has been attempted. 4

In this presentation a more rational design tech- x5

nique is adopted which is of a general nature. The

basis of this formulation is a two-dimensional isopara- In the case of the three radii torispherical head

metric finite element for the analysis phase and a 1

penalty function procedure for the optimization of the the geometry is defined by the head radius x
I 
, two

objective or merit function. knuckle radii, x 
I 

and x- and head and cylinder wall1'

The most important problem associated with pros- thicknesses x 55 and x6 .

sure vessel design is the production of components to ensure that the Knuckle radii x-
1 

and x 3 1 remain tan-
which have minimum stress concentration effects. The gential. Here the design vector is cefined by the

oasis of this requirement is to ensure enhanced fatigue following six variables

pehaviour since it has been shown (1) that as stress

concentrations are minimized the safe working life of x31

the component will be substantially increased. 2

In this treatment a cylindrical vessel with tori- 3

spherical end cap and nozzle intersection is considered. 1

The geometrical shape of the comoonent is described by 1 4

a set of design variables xn such that the maximum Xn 5 (2)

stress concentration factor (SCF) occurring within II

the body is reduced to a minimum value for a given set I 6
of loading conditions.

Although the problem of determining stress concen-

trations has received much attention (2,3) it is only In the cylindrical portion of the vessel the diameter 0
recently thut researchers have devoted themselves to cylindrical length Lc, and the transition lengths LF are

the solution of optimal shapes to minimize stress con- treated as constant dimensions.
centratiar effects. Much of this recent work was
centred on the optimization of notches and fillets (4,5) A somewhat different problem is posed by the nozzle
and the success of these investigations has lead onto hee intersection in that unlike the torispherical heads

the more general design applications such as consideredhere(5..5) Ofthee rcentpaprs ll se igh where the whole of boundary may be subject to change we
r 6arm only concerned here with the reinforcement of the

degree polynomial approximations to give an accurate nozzle where it intersects the hemispherical closure.

description of the stresses and the only major differ- The general configuration adopted is one that can pro-

since lies in the geometrical descriotion of the boundary duce balanced reinforcement since it is well Known that

share. In this formulation the boundary dssori-tion is -

such that evolved shaoes will satisfy the Au:IE and such geometres offer good structural behaviour.
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Here the variable P defines the 1rotrusion into the boundary elements have been 3pecified the internal
end closure, the radius R, angle B anc distance S des- region is meshed automatically such that element compat-

cribe the internal reinforcement and the radius R_ ibility is maintained.
L

defines the external reinforcement. It should be noted A prerequisite of this type of scheme is that an
that in the geometry of Fig. (1) the dimensions R and automated mesh generator is required. This has been

3
w depend explicitly on the choice of the design vector developed ich that once the geometry and mesh densities

have been .efined all other input and loading conditions
xn . For the optimization of the nozzle intersection are generated automaticallv although this may be over
x
the design variables are chosen as stepped if some special input type is required.

RI 4. The Optimization Problem

As mentioned previously the most important design

criterion for pressure vessels and related components is
xn = (3) the reduction of stress concentration factors such thatn failure by fatigue is minimized. Morrison at al (11)

have shown that the fatigue failure of such pressurised
components can be predicted with good accuracy using the

R maximum shear stress theory or Tresca theory. Further-
R21 more this theory has been adopted by the ASME pressure

vessel codes (12) and in particular is a requirement
Equations (1). (2) and (3) define the design vectors for designs based on a numerical procedure.
for which optimal sets will be sought. It should be
emphasized that the choice of these design vectors is Thus using the notation of (12) if a1 , 02 and c3
very important indeed in that overcomplication of the
geometry may prove restrictive in computer time and are the three principal stresses at a point with
also design shapes may evolve which may be difficult to °1 > 02 > 03 algebraically then the stress intensity for
manufacture. On the contrary oversimplification may the Tresca theory is defined as the largest of the three
restrict boundary evolution and therefore only trivial stress differences and is defined as
solutions may be forthcoming due to the type of config-
uration defined. So 0 3 4)

3. Method of Stress Analysis Therefore using equation (4) the criterion for
optimization can be stated as "given an initial oesign

Due to the complex geometry of the vessel shown in vector x which defines the component geometry find the
Fig. (1) its structural response cannot in general be n

defined explicitly in terms of the design vector x
n  n

therefore a system model must be introduced which phys- intensity S, occuring in the body is a minimum".

ically describes the behaviour of the component in
terms of the design parameters. To achieve an accurate The usual classical approach of minimizing
system model the method of analysis used must be cap- Z(xn). n-i, N where N is the number of design variables
able of accurately predicting the behaviour of the is n * applicable in this treatment since optimization
structure under the conditions of arbitrary geometry is based on a discrete element technique where only a
together with applied mechanical and thermal loading finite number i of stress sampling points will bs con-
conditions. sidered. The reformulated discretized objective func-

tion may be written as a minimum-maximum problem, thus
These requirements can be adequately met by the min max

application of the finite element technique. Here the Min Z(x ) = mn  mai (5)
eight noded isoparametric parabolic formulation will be n x

used which is fully described elsewhere (9). In order
to give an accurate description of the stress field the In equation (5) the stress intensity S is sampled at a

finite number of locations i throughout the body and
stresses are sampled at the 2x2 Gauss points throughoutboundary and describes the bound-
the mesh and linearly extrapolated to give stress values xn
at the boundary. This type of formulation has received ary region which is subject to variation.
increasing attention for the solution of the optimi-
zation of continuum structures and many excellent The objective of ec tion (5) requires that the
results obtained (6,7,8,10. maximum SCF occurring % nin the given component is

brought to a minimum vaiue therefore no behavioural con-
3.1 Automated mesh generation straints are required on the stresses. In this treat-

ment the only constraints required are geometrical con-
In general the application of the finite element straints g(x ) and technological constraints t(x )

"

technique involves considerable computing time espec- n n

ially where accurate results are required and a fine Constraints of the type g(x n ) are required to ensure

mesh becomes essential. Here it is proposed to sub- that designs evolved remain compatible and undistorted

structure the components such that mesh refinement can while constraints of the type t(x ) allow the designer
be controlled and the benefits of simplified discretiz- n
ation used during the early iterations of the design to prescribe fixed limits which may bE a mandatory
scheme d requirement of the design. The application of con-

straints g(x ) and t(xn ) render the problem one of con-

This technique has further advantages in that Strained optimization although it should be noted that
areas which are known intuitively to have low stresses the basis for these constraints is to prevent unusable

may be specified with a low mesh density and vice versa desIgns from being produced thus essentially the tech-
for areas where peak stresses are likely to occur. nique still retains its unconstrained nature.

Typical component substructures are shown in Fig.

(2). In the case of the nozzle intersection once the
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4.1 Mathematical Modelling The updated objective function is defined as
N N

As mentioned in section 3. it is invariable when Z(xn) = (anX 2) {(a Xn) * a .t (1
optimizing a continuum type structure that the analyt- n=1 n 1

ical effort required predominates over the optimization
phase. If optimization was directly applied to a five In equation (10) the coefficients a are seterminez
variable probler such as the 3 radii head of Fig. (1), n a
then approximately 1200 re-analyses would be required by the quadratic fitting of the stress gracient --xn

for solution and obviously this is very restrictive w
inded onsderng he mout o nuerial orKwhich are calculated at successive design points. Thisindeed considering the amount of numerical work poeuei ar~~u sflos tr h ata

required. procedure is carried out as follows. Store the partial

derivatives asxn) from so-e irevious design zoint
To reduce this number of analyses to a reasonabli dx f

number the technique of sequential modelling (13) incor- j-1 n

norating move limits will be used. This involves gener- n

ating an approximation to the objective function near design point yields

some current design point x . Since this approximation lS(x )j-1

is only valid near the current design points x 
j 

then n = a x * a nl,\ (11)
n lx n n i,n

limits must be placed on x to control the accuracy of n

the system model generated. Optimization is then per- thn rconsideriqg equati~n (1J) at the updated design

formed sequentially after establishment of each new point gives a new set of ejuation3

approximate model. These limits are prescribed by aS(x P
adding a set of constraints on the design space as n 2 x * n=1, (12
follows ax n r Xar

n

Z(x n - j xn J x + 'tx , n=1,N (6) The required unknowns a are then founo fror

L U
where Ax and Axn  denote the upper and lower moves a:(xn(J aS(x I-limits respectively., n

nnjimts aspax ax
The constraints L(x ensure that the system model an x n - x j-l1

2(lx -' x~n n
generated is accurately defined since optimization is

restricted to the design space defined by xL and AUx •and an N is soveC for by substitutin the known ters

An nn n a into equation (11). Finally the constant term in
Applications of this technique have shown convergence 

n

* to optimal solutions in approximately 8 to 10 design equation (10) is expressed as
steps (7) with only 70 reanalyses required compared with % 11

1200 reanalyses for the direct application of optimiz- 1211 = 0 (Xn) - I (a nxn)J - 1 (an+x)
3  

(14)
?tion. max n=1 n=1

5. Formulation of the Objective Function Since the objective function and constraints are of

a general nonlinear form the optimization algorithm used
The formulation of the system model is simply an must be capable of efficient and effective solution of

artifice to create an approximate mathematical model on such nonlinear systems. A method which has found wide
which optimization may be performed. Many such models usage for the solution of such problems is the penalty
have been based on linear formulations due to the sim- function method which transforms the usual classical
plicity and ease by which solutions may be obtained, approach into one of unconstrained minimization by
However this linear treatment can cause severe restric- adding the constraints to the objective function through
tions in the loss of design space available and problems a penalty parameter r K . This formulation is fully
can also arise due to lack of convergence especially treated in reference (14) and only a brief description
when nearing the optimal design point. will be given here.

To move away from total linear representations the The unconstrained minimization form may La written
objective function proposed will be based initially upon

a linear approximation and on subsequent iterations M

extended to form a second order polynomial approximation. mino (x *r r = Z(x - (15)

The linear form of the objective function is written as 
n )m1

N where M is the number of constraints and G(g(xn) ) is the
~n) = )I (nn 7n(x ah1 penalty function. Optimization is performed by minimiz-

h=1 ning O(xn r K) as an unconstrained function of x and rK

nnin which the coefficients a n are derived numerically for a sequence of decreasing values of r K supch that rK -0

with respect to the maximum stress intensity S as as K'.

asx n The optimization scheme completes the requirements
an ax n=l,N (8) needed to form the optimum design algorithm. Thus we

n have a design system which consists of four major

Once the terms an , n=1, N have been found the constant segments as follows:
n

term in equation (7) is derived as 1. Geometrical input and automated mesh generation.
N 2. Analysis of the component by the finite element

*N+ - S (x)- (an) method.
max n.l 3. Formulation of a system model which mathematically
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describes the optimization problem. 6. Cesign Examples
4. Optimization of the system model by the penalty

function approach. In this section various design examolei are JD-

sijered to show the application of the otiza -
The application of the design algorithm is shown scheme. Two and three racii heads are treate. and

below in the form of a flow chart. Before considering parisons are made between SCF produced for *h hear,
examples of the application of this system it should be under internal pressure loading. Ontimal . rein-

noted that the analyses and optimization solutions forcement is also treated under the compoine? -cnit .
chosen are by no means the only possible routines but of internal pressure loading and nozzle thrust.
at the present time seem to be the most favourable
means of treating continuum type structures. In all examples considereJ a two pDint Lau~s rul

was used for numerical integration and Poi4.or', rat>.
v and the elastic modulus E were taken as C.3 an,: 3ix!_
]b/in

2 
respectively. For thermal loacing condition. thf

INPUT -40 coefficient of linear expansion was taken as 12x; L

ICONTROL DATA l*C, and where results are expressed in terms of 3
St

this is defined as -.

AUTOMATICN AESH ]6.1 Two radii head

LOAD RDUTI.N;S Before considering the optimal design of the t
iradii head constraints of the type g(x) must be :efi

PThese constraints form a linear set as follows using the

FEALCRGAE S iS1 notation of Fig. (I).
T  

m x C O V E R G E(x x 3  x

92 (x) = 0/2 - 0(16

r g 3 (x) 3/2 - x 3  
0 0

SYSE CCE IOCIIE xn94(x) x 5  x4 X>

aETC. IAND MCVE Also the vector x must be non-negative.
nLIMITS

In this case the head radius x1 is dependent

exnl'citly on the variables x2 and x3 and may be calcu-

_PTIMIA ICNlated from the following expression

St. g'tZ " n ) x (E)2

x3= - (D.x2)
= 3 ' (1

1 3 - x2
NO

The loading conditions for this example were

internal pressure and a thermal load of 300'C applied to
S 6 the internal surface. This simulates the important

stage of start-up conditions where temperature stresses
may be more important than mechanical loading.

Initial and final design shapes for this case are

shown in Fig. (3.1). The optimum shape shows a reduc-
tion in the head thickness due to thermal loading and
also a significant change in the head radius x1 . Fig.
(3.2) shows the reduction of stress for each design step
with the optimal solution being reached in six re-
designs. The shear stress was lowered from -85 lb/in

2

to 204 lb/in
2 

which is a reduction of 29%.

6.2 Three radii head

FLOW CHART SHOWING APPLICATION OF ANALYSIS,
SYSTEM MODEL AND OPTIMIZATION SEGMENTS. The applied geometrical constraints for this con-

figuration are somewhat more complicated due to the fact
that a further radius has been included in the knuckle
region. These constraints may be written as follows:

1 1 1

91 (x) 
= 
x1  - x2  >0

1 1 0
g2 (x) = 0/2 - x 0
931(x) 

= 
D/2 - x ll1 >11 I~ I1  >10Ii

94 1(x) 
= 

xI 1 - x 3 1 0'33
9 x) a>/cont ....

5,_
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1(x) 1the discrete nonlinear programming problem and this
[6 0 (13) cont. method can be used regardless of the techrique employed

in analysis.

-C x 1 1- -
1
( o8

______-_x 3  e )0cos_ Examples of different configurations under various9 71Ix ) = I - I- 9 >
7 1 1 -loading conditions were examined and very promising

(x 1 results were obtained. Results were generally obtained

-1 x)= (x - x1) SING + x1 - x1 0 in six to eight design steps but this obviously depends
- 2 3 4 2 - on how close the initial design vector is to the

1 optimal solution.
In this configuration the head radius x1  can be

I 1 1 n The versatility of the optimization scheme and the
defined in terms of x 52 x3 . x4 C and 8 as follows: generality of the finite element method in solving

2 
+ p 2x4 1x - (x4 1' - (21) arbitrary geometries allows the application of the

z r 2x 4 p 4 - 19) technique to many different problems. Here the method

2[x 1 1 P x 1 could produce optimal configurations without the j- jr
2 Z 4 parametric studies which usually form the basis of many

where [ 1 1, 1 Codesigns and loading cases.

Pr = 2 - x3 - 3 - x3 cos 5 (201 Finally it should be mentioned that the procedure

and developed is not intended to completely replace the

Pz 
(x 1 

- x31) SING (21) design engineer but allows him to have at his disposal
I a most powerful technique which fully analysts and out-

puts the structural response of the component at eachResults for the three radii head are shown in Fig. stage of the optimization process.

(4). In this case internal ,ressure loading only was

applied and the closure height and thicknesses were 8. References
held constant. As seen from Fig. (4) appreciable reduc-
tions in SCF were obtained. Fig. (4) also shows results (1) Harvey, J. F., Theory and design of modern pres-
for the two radii head under the same loading conditions sure vessels. New York, Van Nostrand Reinhold,
such that comparisons car be made between the two head 1874.
types. Considerable stress levelling is achieved in
both cases with the SCF for the three radii head being (2) Peterson, R. E., Stress concentration factors,
approximately 16% lower than the two radii head. Wiley, New York, 1974.

6.3 Protruding nozzle (3) Neuber, H. and Hahn, H. G., Stress concentration
in scientific research and engineering.Aple

The geometry of the protruding nozzle is 
shown in

Fig. (1). Again constraints mutt be applied to control Mech. Rev. 19131. p.107, 1956.

the geometry such that slope continuity between the (4) Schnack, E.. An optimization procedure for stress
various radii forming the reinforcement is achieved, concentration by the finite element technique.
Constraints for this case are written as Int. J. Num. Meth. Engng. Vol.14, p.115, 1979.

(ID - (O-P) Cos:)- P(5) Bhavikatti, S. S. and Ramakrishnan, C. V.,
= R3 - R1  S > 0 (22) Optimum design of fillets in flat and round ten-

SIN(T - 8 - sion bard. ASME publication 77-OET-45, 1977.

92 3 = W - {0 - I-P-(O-R 2)COSBJ - P} tans (61 Frencavilla, A., Ramakrishnan, C. V. and
2 2d'Zienkiewicz. 0. C., Optimization of shape tc mini-

- {O - [0-R1COSO-PI tany - - R3 0 (23) mize stress concentration. Journal of Strain
12 3Analysis, Vol. 10, No.2, pp.63-70, 1975.

together with x being non-negative.
n (7) Middleton, J. and wen, D. R. J.. Automated

An example is shown in Fig. (5) of a typical nozzle design optimization to minimize shearing stress in

under internal pressure loading and nozzle thrust. The axisymmetric pressure vessels. Nuclear Eng. and

initial design consisted of the material defined by the Design, 44, p.
357

, 1977.
inside surface of the hatching shown in Fig. (5). Rein-
forcement was subsequently added to this as optimization (8) Queau, J. P. end Trompette, P. Two-dimensional

progressed and this is shown by the internal and ext- shape optimal design by the finite element method.

ernal hatched areas. Plots of SCF are shown for the Int. J. Num. Meth. Engng. Vol.15, p.1603, 1980.
inside and outside surfaces of the nozzle reinforcement.
The major reduction in SCF occurred on the outside sur- (9) Zlenkiewicz, 0. C., The Finite Element Method,
face where the initial SCF was reduced from 5.0 to 3.19 3rd Edition, McGraw-Hill, U.K. 1977.

which is a reduction of 36.8%. It was noted that little
change of SQF took place on the internal boundary (10) Kristensen, E. S. and Madsen, N. F., On the opti-

throughout the design changes, mum shape of fillets in plates subjected to mul-
tiple in plane loading cases.

7. Conclusions Int. 1. Num. Meth. Engng. Vol.10, p.1007, 1976.

The optimization of shape to reduce stress concen- (11) Morrison, J. L. M., Crossland, B. and

tration factors in a typical pressure vessel configur- Parry, J. S. C., The strength of thick cylinders

ation has been successfully treated. A mathematical subjected to repeated pressures. ASME Trans.

model was formed by calculating structural sensitiv- Paper 59-A-167, 1959.

Itias which were based on the finite element method of
analysis. (12) ASME Boiler and Pressure Vessel Code 1980.

The penalty function approach was used to optimize
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(13) Romstad, K. M1. and Wang, C. K., Optimum design of

framed structures, ASCE. Str. Div.. 94, p.1219,

1 968.

(14) Fiacco. A. V. and McCormick, G. P., Nonlinear
Programming: Sequential Unconstrained Minimiza-
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NUMERICAL METHODS FOR SHAPE OPTIMIZATION

AN ASSESSMENT OF THE STATE OF THE ART

G. N. Vanderplaats
Naval Postgraduate School

Monterey, California

Abstract

Numerical techniques for structural optimization recognition that, for many problems, the element stiff-
have seen extensive development over the past twenty ness matrix is the product of a single design variable
years. This was motivated, in large part, by the and an invarient matrix. This leads to the ability to
classic work of Schmit whereby he showed that the mini- create high quality approximations to the analysis which
mum weight 4esiqn of a statically indeterminate struc- can then be used to improve the optimization efficiency.
ture, designed to support multiple loading conditions, However, this feature does not exist when considering
need not be fully-stressed. The design variables were elements where the stiffness matrix is not of this form.
member cross-sectional areas. Using a simple three-bar Shape optimization (as well as some fixed-shape problems
truss the design obtained by the common stress-ratio such as frames) falls into this category, and this re-
,nethod was statically determinate and weighed approxi- quires an approach which is different than that used for
mately seven percent more than the optimum indetermi- fixed-shape design. A close look at sensitivity compu-
nate truss which he designed using nonlinear program- tations using the finite element method will identify
minq techniques. the difficulties which arise when the shape is allowed

Following this work, majir advances in structural to change.
optimization have been made. However, the vast Shape optimization problems are classified into
majority of this effort has been devoted to the member discrete and continuous structures, where discrete
sizing (fixed shape) problem where the design variables structures are defined here to include truss and frame
are the cross-sectional areas of truss members or structures and continuous structures include machine
membrane or web thicknesses as in aircraft wing skins castings and arch dams as examples. The significant
and stiffeners. The key to the high degree of design consideration here is that the finite element model used
efficiency today is in the ability, for a large class in the analysis must be modified during the optimization
of problems, to provide high quality approximations to of continuous structures if the analysis is to remain
the response variables as functions of the member valid.
sizing design variables. A review of the available literature in shape

Relatively little effort has been devoted to the optimization is presented. Several fundamentally dif-
shape optimization problem where the nodal positions of ferent, approaches to the problem are reviewed and com-
the finite element structure are treated as design pared. These include direct approaches where the geom-
variables. However, it is intriguing to note that by etric variables are included in the same set as the
allowing for reasonable geometric changes, the optimum member sizing variables as well as multi-level approach-
three-bar truss reduces to a statically determinate es where the fixed-shape problem is solved as a
two-bar truss of even lighter weight and which is sub-problem within the configuration design process.
fully-stressed under the specified loading conditions. In reviewing the state of the art, it is seen that,
This satisfies our intuition that the optimum structure for a large class of problems, the fixed-shape design
should make the best use of material and provides problem is efficiently solved using modern optimization
motivation to study the shape optimization problem. techniques. When the structural shape or geometry is

In discussing numerical methods for shape optimi- treated as a design variable, the state of the art is
zation, it is necessary to provide a logical progression not so well developed. Given sufficient resources, many
to our discussion so that the similarities and differ- shape optimization problems can be solved. However the
ences with fixed-shape optimization may be identified. methods presently available for their solution lack the
To this end, the basic design task is first outlined as efficiency desirable for everyday use.
a mathematical programming problem. It is assumed that With major design improvements achievable through
the finite element method will be used as the analysis the use of shape variables, this is clearly a subject
tool. Using the displacement method, the mathematical requiring concentrated research and development efforts.
nature of the analysis problem is discussed. From this It is hoped that the insight gained from this review
it is seen that the major efficiency improvements in will served to generate ideas and advances in this very
flAed-shape structural optimization have come from the timely topic.

53
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MULTILEVEL OPTIMIZATION OF ARRAYS OF PROTECTIVE STRUCTURES

S. GINSBURG and U. KIRSCH
Department of Civil Engineering,

Technion - Israel Institute of Technology
Haifa 32000, Israel.

Summary Due to functional requirements the configurational
variables are discrete and the objective function,

The present study deals with optimal design of arrays representing the cost, is neither differentiable nor
of protective structures. The structures, intended for continuous.
storage of explosive materials, consist of rectangular
reinforced concrete (RC) plates, beams, and doors. To simplify the analysis, approximate behavior models

are employed. These include empirical loading express-
The design variables include: a) The elements' cross ions, idealized constitutive laws, and simplified
sectional dimensions; o) The structural configuration; dynamic models. A multilevel optimization procedure,
c) The glometric location of the structure. The cons- in which the different types of variables are treated
trains are related to safety distances, functional separately, is proposed. Several authors, e.g. [6].
requirements, and structural behavior. The objective proposed separate design spaces for geometry and cross
function represents the cost, including cost of mater- sections in truss optimal design. In general, such a
ials, real estate, subgrade, maintenance, etc. solution may be viewed as a multilevel approach [2,7,81.

In the formulation presented in this study, the cross
The main difficulties involved in this problem stem sectional dimensions are optimized in the first level
from the complex analysis and the nature of the design for a given configuration and location of the struct-
variables, constraints, and objective function. The ure. As a result, the structural elements can be
various types of variables are of fundamentally differ- optimized independently in a simple manner. Data
ent nature, and some of the variables are discrete, banks of optimal elements are introduced, to be used
The objective function is neither differentiable nor in the higher levels of the optimization. 1-n the
continuous, second level the structural configuration is optimized

for a given location of the structure. For each
Approximate behavior models are employed in order to candidate geometry the optimal cross sectional dimen-

simplify the analysis. Since it is not practical to sions are chosen from the data banks. The geometric
optimize all the design variables simultaneously, it location of the structure is selected in the third
is proposed to use a multilevel optimization procedure. level. For each selected location, both the struc-
The variables are optimized in different levels, tural configuration and the cross-sections are opti-
according to their type and nature. Considerations for mized.
choosing the levels are discussed and numerical examples
illustrate the approach and its practicality. The proposed approach combines efficient suboptimiza-

tion for cross sectional variables, reduction in the
number of design variables optimized simultaneously,

I. Introduction and improved convergence.

Protective structures, intended to resist the effects
of explosions,are usually expensive due to the nature 2. Problem Statement
of the loadings and design criteria. Therefore,
improved designs may id to conside-able savings in Consider the array of RC rectangular magazines shown
the total cost of the structure. While much work has in Fig. 1. The object is to minimize the cost of
been done in the last two decades on optimum structural storing a unit weight of explosive material. It is
design [1,2], most applications are limited to cross assumed that the number of structures is large and
sections optimization. Examples of previous work on all the structures are identical; i.e., the optimal
optimal design of protective structures include: cross design represents a standard magazine. The pre-
sections design [3] or optimization of geometry and assigned parameters include: materials properties,
cross sections [4] of RC slabs subjected to impulse unit costs, height of the structure, and spacings
loadings; and optimal (average) strength of magazine between beams. Uniform cross sectional dimensions of
doors [5]. the RC elements and standard steel doors have been

assumed. The optimal design problem ca* be stated as
The main difficulties involved in design of protective follows: find the vector of design variables
structures stem from the complex analysis and the nature (X} = {D},{L},(TC},(AS) where
of the design variables, constraints, and objective
function. In general, the nonlinear dynamic analysis {D} = {DlD2I (distance between adjacent structures)
must be repeated many times and the various types of
variables involved are often of fundamentally differ- (L} = L1,L2 }  (length and width of the structure,
ent nature, from both the mathematical and the physical L1EA I , L EA)

nature,1 1'2 2(1S points of view. I
t o w{TC} = {TC ... TC I } (thickness of concrete plates)

The present study deals with optimal design of arrays
of protective structures, intended for storage of {AS} = {ASI ...AS I (amount of steel in plates)
explosive materials. The structure consists of RC
rectangular plates, and the design variables include: such that
(a) The elements cross sectional dimensions (plate J

thicknesses and amounts of steel); C = C./W - min. (objective function) (2)
(b) The structural configuration (length and width); j=1

(c) The geometric location of the structure (DL D) [D
U )  

(bounds on distances) (3)
(distances between adjacent structures). DI<f) DU (budonisac) (3

-. . .E4~c~.5-33A



{L
L } 

< {L < {L 
U  

(bounds on structural (4) elements are detemined by the yield line theory, con-
geometry) sidering dynamic values of material constants [11].

( TC} < TC
U I (bounds on concrete (5) c) Dynamic resgonse of elements

thickness) To compute displacements and stresses in the elements

{L}<1} < pU (bounthe medium is discretized, resulting in systems of
pL }(ounds on steel (6) lumped masses and nonlinear springs. A single degree

percentage) of freedom system is assumed for each RC element, with

the following equation of motion [11]{J< {V
U }  

(deflection constraints) (7)

F- I m e (1

{0} < {90} (rotation constraints) (8) F-P=K ma m e(1

L in which F = time dependent external force; P = inter-
(o I < 1o < (a (bending stress (9) nal force (resistance); m = mass of the element;

constraints) a = acceleration; K,, = a factor relating the value

{TL, < {T} < T
U}  

(shear stress (10) of the actual mass m and the equivalent mass me . The

constraints) value of K is determined from the principal mode
of vibratio. For example, consider the sector of a

In the above formulation plate shown in Fig. 3. The equation of motion
(rotation about the support) is

AA 2 = sets of allowable discrete values of LI and L2, IF
respectively Fc- (EMN+EMp) = - -a (12)

I = number of elements in the structure
L,U = superscripts denoting lower and upper bounds, where c = distance of the resultant force from the

respectively support; MN' Mp = negative and positive internal

C = total cost of a magazine per unit stored
explosive material moments, respectively; Im = moment of inertia; I =

W = quantity of explosive material in a magazine width of the element. From Eqs. (11),(12) we obtain

C4 = the j-th component of the objective function Im (5
JJ = number of components of the objective function K M (13)

p = steel percentage 
LM am

V = deflection For an element consisting of a number of sectors

e = rotation at the supports E(Im IC)

a = bending stress K = m (14)

T = shear stress LM Em

L. For earth covered elements the corresponding mass of

It should be noted that (D is a function of W. The the cover is also considered in the equation of motion

behavior constraints (Eqs. (7) to (10)) are implicit [12]. Multi-degree-of-freedom systems may be consider-

functions of the design variables, given by the ed for each element if better approximations are re-

analysis equations. quired. Numerical algorithms (such as Runge-Kutta) or
available results [111 are used to solve the equations

Two types of structures, earth covered and uncovered of motion and to evaluate displacements and stresses.

(Fig. 2) have been considered. The cost function
(Eq. (2)) includes: cost of materials (concrete, steel, d) Computational considerations

doors), real estate, subgrade, maintenance, etc. Due Analysis of a single element, including calculation

to functional requirements the variables {L are dis- of the loadings and solution of the equations of motion,

crete. The behavior constraints restrict the amount of involves much computational effort (up to 10 sec CPU on

damage due to possible explsions in adjacent structures. IBM 370/168 were reported for complex loading histories).

There are several elements in a structure and the
analysis usually must be repeated many times during

3. The Analysis Model optimization. Therefore, it is proposed to reduce the
number of analyses in the solution process by introd-

In the discussion that follows only blast loadings have ucing data banks of preoptimized elements for sequences

been considered. It is assumed that other effects of given loadings and element configurations.

(such as fragments) are secondary and may be checked

after the optimization process. Modifications in the

design can then be made, if necessary. An approximate 4. Multilevel Optimization

analysis model has been employed with the following

features. Design of a large complex system usually involves
decomposition into a number of smaller subsystems,

a) Loadings each with its own goals and constraints [2]. In

The explosive materials are represented by an equi- general, an integrated problem cannot be decomposed

valent TNT charge at the center of gravity of the into subproblems which can be independently optimized.

charge (9,101. The blast loadings due to a possible There may be many different ways of transforming an

explosion are computed by the methods described in optimization problem into a multilevel problem. In
TM 5-1300 [11]. The model is based on experimental the model coordination approach [2.7,8] used in this
results and idealized (such as piecewise-linear) study, we choose certain variables called coordinating

pressure-time relations, or interaction variables to control the lower level

systems. For fixed values of the coordinating vari-

b) Constitutive equations and resistance-deflection ables the lower level problems often become independ-

functions ent and simple to optimize. The task in the higher

Idealized elaso-plastic behavior models have been levels is to choose the coordinating variables in such

employed. Also, it is assumed that cracking (but not a way that the independent lower level solutions are

spalling) may occur in the concrete. The piecewise optimal. The term "model coordination" derives from

linear resistance-deflection functions for the various the circumstance that a constraint is added to the
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problem in the form of certain fixed interaction vari- An additional constraint on {R
°) 

is that the first-
ables. level problem has a solution, i.e., that H({RO))

exists.
Define the vector of cross sectional design variables
(Q) as The two-level problem is solved iteratively as follows:

1. Choose an initial value for the coordinating

(QI = (TC},(ASJ (15) variables {R°}.
2. For a given (Ro} solve the I independent first-

and the vector of configurational and geometric vari- level problems.
ables {R} by 3. Modify the value of {Rol so that .'([R°)) is

reduced.
(R) = {D},{L} (16) 4. Repeat steps 2 and 3 until min H({R°}) is achieved.

It has been noted earlier in section 2 that the vector If all intermediate values for (RI,(Q} are feasible,
of design variables XI can be partitioned (Eq. (1)) the iteration can be terminated always with a feasible-

even though nonoptimal-solution, whatever the number of
(X} = (RI,(QI (17) cycles. This is advantageous from an engineering point

of view and may considerably reduce the computational
In this formulation [RI is the subvector of coordina- effort, particularly if the object is to achieve a
ting variables between the subsystems and IQ) is the practical optimum rather than the theoretical one.
vector of subsystem variables, in turn partitioned as
follows Since the second level variables ((D and (LI, see

Eq. (16)) are of fundamentally different nature, it is
(QI = (Q11. QiI....{Qi }  

(18) proposed to decompose the second-level problem into
two-levels, such that only the configurational varia-

The subvector (Qi1 represents the cross sectional bles (LI are optimized in the second level, while the
variables associated with the i-th element (subsystem) geometric location variables ID) are treated in a new
and I is the number of elements. With these defini- third-level problem. The three problems are solved
tions, the objective function of Eq. (2) and the iteratively until the optimum is achieved. Note that
constraints of Eqs. (3) to (10) can be expressed in the I first-level subproblems remain unchanged
the general form (Eqs. (22) to (24)). The modified second and third-

I level problems are formulated as follows (Fig. 4).
C = F({XI) = F ({R},{Q.1) (19) Second-level problem, For a given geometric location

i1l

(D = {D0°  (28)
gk({XI) = gk(Rl) < 0 (20) find {L°I such that
hi4{X}) = hi((RI,{Q.i) < 0 (21)C(D1L 0 ,Q) m

C({D1}, 1°,{Q1) - min (29)
in which gk are cunstraints on the (RI variables
(i.e., Eqs. (3),(4)) and hi are constraints assoc- gk{DO},{L°)) : 0 (30)
iated with the i-th element (Eqs. (5) to (10)). That

is, the variables (RI may appear in all expressions, Third-level problem. Find (001 such that
while the variables {Qi) appear only in the constraints
associated with the i-th element, and in the correspond- C(4D,{L),(Q}) - min (31)
ing term of the objective function. Specifically, it
is assumed that the cross sectional variables of a gk({D°I,{L}) <0 (32)
given element affect only the constraints and object-
ive function component of that element. The proposed solution procedure is possible since the

system by its very nature can be decomposed. The
The general optimization problem can now be formulated loadings depend only on the (R) variables, therefore
as the following two level problem. the first level problems can be solved for fixed

loadings. The main advantage is that I independent
First-level problem. Determine a fixed value for (RI simple subproblems are obtained in this level. It has
through the constraints been noted that (0L1 is a function of W , which in

turn is a function of (LI. Thus, Eqs. (3) are the
(RI - (Rol (22) only erlicit constraiits which are functions of both

(01 and {LI. The main r-eason for choosing L) as the
Then the integrated problem can be decomposed into the second-level variables is their discrete nature. For
following I independent first-level subproblems: any given {D1 only a limited number of (LI values
find (Q,) (1.1,...,I) such that must be considered.The solution process iS shown in

Fig. 5.

C = F ( R °, {Q i ) * min . (23)

h 1 1 5. Optimization Methods for the Various Levels

First-level. For the relevant ranges of loadings and

Second-level problem. The task in the second level element dimensions, data banks of preoptimized elements
problem is to find {RoI such that have been prepared. As a first step a sequence of

I loadings, with fixed peak pressure and variable dura-
H((R°) = X Ha({Rol) * min. (25) tion, is computed for a given element configuration.

i.1 iThe cross sectional dimensions are optimized by a

g((R)) 0 (26) direct search technique. For each selected concrete
k thickness the amount of reinforcing steel is minimized,

where Hi({R is defined by and the optimal thickness is evaluated by quadratic
I)e interpolation. The data banks, to be used in the

H (R
0
°) = min C. (27) higher level optimization, are obtained by repeating
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this process for several element configurations. gence rate was much slower; the number of iterations

Intermediate solutions may be evaluated by inter- was about 50% larger. This can be explained by the
polation. difficulties encountered in searching the optimum in

the discrete variables space. Choosing IL} as the

Second-level. The optimization method in this level second-level variables, the number of checked points

is based on a direct search in the space of the dis- for a given {D} value is limited by the constraints
crete variables [L}. For each assumed L value the of Eq. (3).
optimal L2 is selected. L1 is then modihed, with
the current optimal L2 (or the nearest feasible value)
chosen as the initial design. The L1 values are modi- 7. Concluding Remarks
fied until the optimum is reached.

A multilevel approach for optimal design of protective

Third-level. Powell's direct search method [13] is structures has been presented. The solution method,
applied in this level with the convergence criterion which is based on a simplified analysis model and

decomposition of the integrated problem into a number

JC({X q) - C{X q+)I/C({X q) < Ec  (33) of smaller subproblems, is motivated by the following
difficulties:

where cc is a predetermined parameter and q is the a. Nonlinear dynamic analysis is needed to describe
iteration number in the third level. An additional the structural response even when approximate

criterion models are used.

b. The various types of design variables are of
I{X q - {X q+l} < £x  (34) fundamentally different nature from both the

physical and the mathematical points of view.
ensures that the iteration is terminated only if the c. The objective function is neither differentiable

condition of Eq. (34) holds for two successive itera- nor continuous.
tions. d. The problem size (numbers of variables and

constraints) may be large in practical problems.

6. Numerical Examples A simple optimization model is proposed for the cross-
sectional variables. Preoptimized elements are

Two types of magazine have been considered [14]: introduced for a set of given element configurations
earth covered structure with a standard cover thickness and loadings. This information is then used for effi-

and an uncovered structure. F.g. 6 shows some xeasi- cient optimization of the higher level variables. The

ble combinations of the {L} variables (a = standard approach is general and is not restricted to a speci-

spacing, b = required spacing to satisfy functional fic problem, analysis model, or optimization algorithms.
requirements, c = required spacing for doors). Fig. 7 Rather, other types of structure (such as steel or

shows a typical design space for the cross sectional composite structures having non-rectangular shape),

variables, in which As and As are the amounts of re- different analysis models (dependong on the type of

inforcing steel required for tensile and compressive approximations and simplifications used) and optimi-
forces, respectively. A direct search in the space zation methods (such as optimality criteria) can be

of d (the effectivedepth of thu cross section), as employed.
shown in Fig. 8, provides the optimal element for the

given loading and configuration. This procedure is The numerical examples indicate that efficient solu-

repeated for all relevant loadings and element confi- tionr which do not involve much computational effort,

gurations. Typical optimal costs for a sequence of can be achieved for complex optimal design problems by
triangular pulses are shown in Fig. 9, in which p is the proposed approach.
the peak pressure and the time axis denotes the
duration.
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EXTENDED ABSTRACT

Nonlinear equations constraining an optimization opposite from that used in the lower bounding

problem often confound analytic and numerical approximating problem.

procedures that work well when all constraints are Before developing these ideas, the article defines
inequalities. A rigorous theory is developed for and discusses the underlying concepts of minimum and
constructing simpler approximating problems that not infimum, critical, redundant, and binding constraints,
only reveal hidden monotonicity, but also give both boundedness and monotonicity. This permits stating the

upper and lower bounds on the optimum. This permits two principles of monotonicity analysis more precisely

postponing solving exact constraint equations until an than in previous publications.

almost feasible, nearly optimal design has been These monotonicity principles are then applied to
located, designing a nagnetohydrodynamic power ,iant described

In optimization problems constrained by briefly in engineering terms. This requires directing
itiequalities, monotonicity analysis has been used to the 12 constraint equations and then constructing lower
identify constraints which must be satisfied as strict and upper bounding approximating problems, for which
equations at the optimum . When such "binding" supporting theory is presented.

constraints are easily solved in closed form, they can
De used to eliminate variables, producing, if not the

optimum sought, then at least a simpler problem.

Although there are other advantages to knowing
which constraints are binding, this particular one is

lost on binding constraints that are not solvable. In

engineering design problems, a constraint is often made
unsolvable by small terms or factors appended to
improve the accuracy of a basically simple physical

relation. Then it becomes attractive to neglect or

cancel such refinements (here named "obscurants") to
obtain a solvable, though perhaps inaccurate,

approxima tion.

This article shows how to construct approximations
that achieve solvability while retaining most of the

original accuracy. Each obscurant is replaced by a

bounding function which is either a constant or a

function having the same form as some underlying part

of the constraint. The replacement bounds the

obscurant either from above or below, depending on the
direction of the inequality. In this manner an

approximating problem is constructed whose optimal

solution bounds the original minimum from below.
Although every binding constraint still must be

satisfied as a strict equality at the true optimum,

approximate designs can easily be adjusted to produce

nearly optimal ones on the feasible side of the

inequalities. Being upper bounds on the true minimum,

their comparison with results of the lower bounding

approximation gives rules for accepting a design as

satisfactory.

This procedure is more difficult to apply to

equality constraints. One cannot tell whether an
obscurant is to be bounded from above or from below

until its equation has been replaced by an inequality

identifying the equation's non-optimal side. This in

turn requires monotonicity analysis, but the

monotonicity needed is often hidden by the obscurants.

A way out of this dilemm will be demonstrated on part

of a mrgnetodynamic power plant design problem having

for constraints 12 equations and NO inequalities.

A further difficulty is that, unlike

inequalities, equations do not have a feasible side

obtainable simply by adjusting approximate designs.

Hence upper bounds for termination rules are not

readily available. One can, however, construct an

approximating problem giving an upper rather than lower

bound on the true minimum. This is done by replacing
each obscurant with a function bounding it on the side
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Krister Svanberg
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S-l00 44 Stockholm, Sweden

0. Summary a linear function of the design variables:w Cx) = wO +. ;wx The structural stiffness matrix K
'This paper dleals with convexity properties inWW =w0+ljThstuurltifesmrxK

uaprmizatio, d als ith the cely reled and the structural mass matrix M are also linear func-strr tural optmzation, and with the closely related tions of x, i.e. K Cx) = KO + xK. and M(x) =
question of local versus global optima. 0 + a

The problem we investigate is that of minimizing = M + JxjMj, where Kj and Mj (j=0, 1,.. ,n) are constart
the structural weight subject to constraints on o
displacements, stresses and natural frequencies. It is syimetric matrices. It is further assumed that each
assumed that the structure is described by a finite design variabel x. is restricted between given bounds:

xmin Jnmaxelement model, and that the transverse sizes of the < <x_ , where xj and x. are constant
elements, e.g. thicknesses of membrane plates, are the I - I
design variables. This implies that both the objective positive real numbers. This may be written: x E X,
function, i.e. the weight, and the structural stiffness where x = (x1,.'x-T is the vector of variables and
rrotri;% depend linearly on the design variables. The
constraint functions, however, become nonlinear and X = {xnx' < 1.ax , j=1,..n}. For each x E X,
they may in the general case give rise to a nonconvex t I

feasbleregin i thedesgn pace Thn thre s a the structure is assumed to be non-degenerate, so thatfeasible region in the design space. Then there is a K (x) and M(x) are symmetric and positive definite.risk that a local, but not global, mimimum is attained It should be noted that since the weight w is a
when any of the various existing methods for numerically linar function in x, it is also a convex function in
solving the problem is appiied. This fact is illu- x. Thus, uhm investigating if the minimum weight
strated by examples of ntivex problems. problem is convex, it suffices to investigate if the

wceal cases where the feasible region always becomes imposed ccnstraints (on displacements, etc.) give riseto a convex feasible domain in the design space. (Thisconvex, so that. due to the linearity of the objective statement is made clear in section 2.)
function, each local optimum is in fact also a global We will occasionally use the notation 11vI!, to
one. Three exa les of constraints which are proved to denote the euclidean norm of the vector v. If

Wxd s such conveity properties are: i) a natural T 1a
kind of "symmetric displacement constraint, where the v = (vl,..vn)T E Rn , then lvii' = ;v. We also use the
magnitude of the displacemnt is peasured in the direc- notation S for the "unit sptere" (of 'table dinsiontion of the applied load, ii) a bglobal' displacement
constraint, which may be interpreted as a lower bound apparent from the context), i.e. S = II i 1)•
of the smallest eigenvalue of the structural stiffness 2 Conex optimization probles
matrix, and iii) a lower bound on the lowest natural
frequency. In this section we bring together sane basic defi-

1. Introduction nitions and results, concerning nonlinear optimization
in general and convex problems in particular, which

When an "optimal" ;olutin of a structural optimi- will be frequently referred to in the forthcoming
zation problem is obtained, by sane numerical method, sections. The results collected in this section have
it is often very difficult to decide if it is the been )axw for several decades, and we therefore anit
"global" optimal solution or just a "local" one. If, the proofs. A more exhaustive description of the matter
ho.ver, the considered problem is known to be convex, may be found in refs [1] and [2].
then sane strong statements about the global nature of We consider here the following general optimization
obtained solutions can be made. This is the main reason problem P:
for the investigation of convexity properties in
structural optimization accomplished in this paper. A P: mi fCx) , x R
second reason, which we do not go into details about,
is that if the considered problem is known to be conveK, subject to gi (x) _5 ni, i=I ..m
then methods specially developed for covex problems
could be used. Such methods might be more efficient min M,
than methods developed for more general nonlinear Xj- 5 xj <x-., j=1,..n
problem.

The problem we consider is to minimize the f and g, are rel-valued functions. ai, )and x
structural weight subject to constraints on displace- ] a
-ernts and stresses, under multiple statical load condi- are constant real numbers. To shorten the notation we
tions, and on natural frequencies. It is assumed that will also write:
the considered structure is described by a linearly
elastic finite element ol, and that the transverse P: min f x)
sizes of the eleents (cress section areas of bars,
thicknesses of memram e plates etc.) are the design subject to x C Pl
variables. The elements may be linked together in
groups, so that the j:th design variable x detenines where 9, the feasible set, is defined by

the sizes of all the elents in the J:th gruX . Also,
awm elements May ham fixed sizes. - xeMn < x7'x, j=1,..n} and I =f,.l

Ukder theme asumptioms the structural weight w is
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Definition 2.1: A point xP E 0 is said to be a global Iaa 2.7: Let g., v E V, be a collection of functions
minimum point of P if f(x*) f f(x) for ll x E Q. which are convex over the convex set C. Assume that,

for each x E C, max {g V (x)) exists. Then the "pointwise
A global minimum point is what we nonally are vEV

searching for. However, algorithms for numerically maximun function" g, defined by g (x) = max fg (x) , is
solving nonlinear problems of realistic sizes can not, convex over C. vEV
in the general case, be expected to find anything
better than a local minimum point: V may be a finite or infinite index set. The

lae'a is illustrated in fig 2.2.
Definition 2.2: A point x* E 0 is said to be a local
minimun point of P if there is an t > 0 such that
f(xi < f(x) for all x E Q2 such that 11x-x'-II < C.

If x* is a global minimum point then x* is Cy) . r)
obviously also a lccal minimum point, but the converse (K)
is in general not traie.

Definition 2.3: A set C in Rn is said to be convex if
ux + (1-p)y E C, for every x, y E C and every real
number ii such that 0 < 1i < 1.

The following property is fundamental for convex
sets:

Lemma 2.4: Let C, , v E V, be a collection of convexX

sets in R. Then the intersection set C - n c Fig 2.2 g(x) = max{g 1 (x),g 2 (x)).
vEV

i(ERIx-C, for all vEV) is convex. (If C is ehzpty g is convex if g, and g 2 are convex.

then C is by definition convex.)

V may be a finite or infinite index set. The lemma
is illustrated in fig 2.1. We now came to what, in tis paper, wil:. be meant

by a convex problem:

Definition 2.8: If, in problem P, the feasible set Q is
convex and the objective function f is convex over 2?,
then P is said to be a convex (optimization) problem.

Lemma 2.9: A sufficient condition for p to be a convex
problem is that the objective function f and the
constraint functions gi' i E I, are convex over X.

The following theorem is of obvious practical

nportance:

Fig 2.1 C C OC2 is convex if Theorem 2.10: Assume that P is a convex problem and

C, and C are convex, that x* is a local minimum point of P. Then x* is also
2 a global minimum point of P.

Most of the methods cuamonly used in structural
optimization, see e.g. ref [3], &d not explicitly use
definitions 2.1 and 2.2 when searching for a minimum

Definition 2.5: A real-valued function (0, defined on a point. Instead they search for, and usually end up
conex set C, is said to be corvex over C if with, a point which satisfies the so called RT-cxndi-
1P(ux+(l-1i)y) < w(x) + O-(1-i(y), for every x, y E C tions (= Ktfrn-Tucker conditions).
and every p suh that 0 <1i < 1. Definition 2.11: Assume that f and gi are differen-

Fbr twice continuously differentiable functions tiable functions. A point x~l E 0 is said to be satis-
tkere is an alternative characterization of convexity: fyivj the X21-conditions of prolem P if ther-e are non-

nelative real nunbers Ai, i E I, such that the
Loama 2.6: Assume that the function tP has continuous following two conditions are satisfied.
second partial derivatives on a convex set c in if'.
Then d is convex over C if and only if the Hessian re ifixd
matrix , (= the matrix of second derivatives) of (p is >0 ifx=
positive semidefinite throughout C, i.e. if and only i

hT(x)h ax . -j 0 for all x E C and eery ia j Y 3

vector h E To. _< 0 if xg = x

The following property is fundomntal for Cfiwen
functions: fr all J C (1,..,n), where the derivatives are

evaluated at x - x..
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ii) Xi(gi(x*)-a i ) = 0 for all i E I. The structure has only got 2 degrees of freedom,
namely the horizontal and vertical displacements of

In the general case, such a "KT-point" x* may fail the single non-fixed node. The elements are linked
to be even a local minimum point of P. In the convex together two by two, so that we have the following
case, howver, the situation is completely satis- variables:
factory: x I = cross section area of elements 1 and 2.

Theorem 2.12: Assume that P is a convex problem and x2 
= cross section area of elements 3 and 4.

that x' satisfies the XT-cditions of P. Then x* is a The lower and .uVer bounds on the variables are
global minimum point of P. min min Max max

x 1  = 2  = 1.5
Convec problems possess a variety of other There is only one displacemt constraint. The

interesting and useful properties, see e.g. ref (41, corresponding load vector p and "virtial load" vector
hut we believe that the above theorems, 2.10 and 2.12, q, which are shown in fig 3.1, av:
suffice to point out that convex problems are well-
behaved omxpared to nocazwec ones. ( d21

3. Dilaceint- and stress constraints P 'nq =

Displacement constraints are usually of the form
q u 5 ., where u is the nodal displacement vector, q Note that, since q is parallel to elemwmt 1, the
is a given cnstant vector and a is a given real considered displacement constraint is equivalent to a
numbez. u is obtained fram the systen Ku = p, where constraint on the tensile stress in element 1.
o is the load vector and K = Ko + jxjKj is the After swe calculations we obtain the following0 -1 structural stiffness matrix:

structural stiffness matrix. Thus u = K- p, and a
given displaaent constraint may be written: 2x 1 + x

d(x) = TK-p < a K-=E -

q is in the literature often considered to be a 0 + x
"virtual load" vector, a convention we will follow in
this paper. Note that q and p are both assumed to be where E = Young's modulus of elasticity. We then get

given constant vectors, while K- 1 depends on x. We will the following displacement constraint:
therefore occasionally (winen we want to emphasize this
dependence) write T x)p istead of the shorter d C' . - 2

TI -1 q pisedo h hre V Zx 1+ 2  X1 +2 2
q K-p. The meaning is however al.*,s the same. Ass4e, for slMlicity, that a = 4

Unforttmately, displacement constraints are not fiE
always convex: constraint then becomes: 3VVE

3 1 2
Pro2ition 3.1: Displacement- and stress constraints -+x x _<
may give rise to a nonconvex feasible set. 1 2

We prove this statement by presenting an example The feasible set implied by this constraint,
of a nonconvec problem, where the chosen displacement together with the lower and upper botmds on the
constraint is equivalent to a stress constraint, variables, is shown in fig 3.2. It is clearly non-
Consider the two-dimensional truss structure shown in convex.
fig 3. 1. To see what consequences this might lead to, assume

that x1 has been fixed to the value 1.0. The feasible
set is then reduced to the two line segments:

0.1 <x 2 .<0.25 and 1.0 c x2 < 1.5

(see the dotted lines in fig 3.2). The global minlimum
weight solution of this, restricted, problem is
obviously x2 -0.1 (and x, = 1.0), but it is also clearI

gL j that x2 - 1.0 is a local minimum solution. If a

starting point with x 2 - 1.0 is chosen, then this
latter solution is the one which most likely will be
found by a standard method for solving the problem.

(0 It should be noted that this undesirable existence
of a non-global local minimum can not be avoided by
any transformation of the design variables. If the
problem is formulated in e.g. the reciprocal variables
&I = 1/x1 and &2 = 1/x 2 we get the situation

Fig 3.1 Two-dimensional 4-bar truss. iltrated in fig 3.3.
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1 2 3

I.s
Local solution 6
ifx is fixed 4

1.0 to 1.0 Feasibi p q

set
Global solution (non- Fig 4.1 Example of a symmetric
if xI is fixed convex) displacement constraint.

to 1.0

0.1 Symmetric displacement constraints can be given an
1alternative interpretation. Since q = yp and p = Ku,.O I 4"X I we have:

Fig 3.2 Feasible set of the 4-bar problem. d
is the strain energy in the strtture when the given
load p has been applied. A symmetric displacement

)(,L constraint may thus be formulated: "For a given load
0.D lLp, the resulting strain energy must not exceed a given£ qantity".

We now prove that symmetric displacement
Global solution constraints possess an attractive convexity property:
iff is fixed

Theoren 4.2: Let d(x) = qK-p and assume that q = yp
for some real number y > 0. Then d is a convex
function over X.

set Proof: We prove this theorem by showing that the
Hessian matrix of d is positive semidefinite for all
x E X, cf. lemma 2.6. We also m-e the formula:

K- I - K- K -K , which is immediately obtained by

Local solution differentiating the identity K- K - the unity matrix.
if fI is fixed If we differentiate d = qTKl p twice, we get:

to 1.0
t0d - - qTK - -5- Kp = (using K = KO + jxjKj) =

1.0 TI -1p=

,/,l t 2. d = qT l DK k'K K 1P + q1jK-K K K P
I, a-xj-I a -xk K- ax K-l

Fig 3.3 Feasible set in the reciprocal variables. == qTK-1 (K-Kj +K KjK-Kk)K-Ip.

4. Symmetric displacenent constraints We must prove that D hhk Z 0

Men defining a displacement constraint, it is for all h=(,.hn) But
sometimes natural to let the "virtual load" vector q 2-
be parallel to the load vector p. We will call such a -ao'2k h = TK-(h lhjKj +
displacement constraint "symmetric": j khkK. jhjJj

+ h-K1K7-1 h K p = 2K -1HK-1H1Kp, where the
Definition 4.1: The constraint d(x) =gK p<a is introduced matrix H = jh.Kj is symmetric. With q =Tp
said to be a symmetric displacement constraint if we then get:
q = rp for some positive real number T. eh

2 1 -K1

As a typical example, consider the famous 10-bar
cantilever truss in fig 4.1. Assume that one of the = * piTK(l k1  

> 0, since Kve
lrodcases consists of a single vertlcal force in node definite.
v. A reasonable oonstrahint is then to place a limit on
the vertical displacement of node 6, under this load-
case. This clearly becomes a symmetric displacement
contraint. As a consequence of this theorem we get:

6-6
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Corollary 4.3: The minimum weight problem subject to a dG(x) = max {pT K (x)p}, it thus follows that dG is
collection of symmetric displacement constraints pES

e.g. one for each loadcase ) is a convex problem. convex over X.

5. Global displacenent constraints As a consequence of this theoram we get:

Consider a displacement constraint qTK-1p a. We Corollary 5.3: The set {xEXIdG(x) < al, which alter-
may "nomalize" this constraint by normalizing the natively can be expressed as {xEXI A(x) > ;}, is
vectors p and q: convex. -

T _ 1 The convexity of the set fxEX AK (x) > A1 ) alter-

( ) -< 1011'[ natively follows fran the following theorem:

An arbitrary displacement constraint may thus. without Theorem 5.4: Let XK (x) be the smallest eigenvalue of

any loss of general ity, be written: the stiffness matrix K. Then AK is a concave function
qTK-1 p < , where Ilpl = Illl = 1. Such a (normalized) ovr X.

(Note: a function w is concave if and only if -o is
displacement constraint is symmetric if and only if convex.)
q = p.

Now, assume that, for a given value of a, we Proof: AK(x) = min {sTK(x)s = min fsKos + 7x sTKjs}

require that TK -1p - a for all vectors p and q such sES sES

that JlpJl = llq? = 1. This infinite set of constraints - AW = maxf - sT - JxjsTKjs}
may equivalently be written: K s ES K s 1 s

max fqK (x) pl < a For a fixed vector s, the ftnction within the brackets
p,qES is linear, and thus convex, in x. Fran lemma 2.7 it

then fo].lows that - AK is convex, i.e. that AK is

where S is the unit sphere, so that, for each x E X, cove over X. K

the maximum on the left hand side is taken over all
vectors p and q such that jlpll = 1lqT1 = 1. (This 6. Seqdglobal displacement onstraints
maximum clearly exists since, for each

x E X, qTK- (x)p is continuous in p and q, and the set Assume that, for a given value of a and a given

over which the maximum is taken in coapact.) We will load vector p, we require that qT K-p < a for all
call this constraint a "global displacemaent virtual load vectors q such that 1q1 - 1. This is a
constraint": sort of "compromise" between an ordinary and a global

displacement constraint, and we therefore use the name
Definition 5.1: The constraint .%(x) < a, where a is a "semiglobal":
given real number and the function dG is defined by

%(x) = max qTK- (x)pl, is called a global displace- Definition 6.1: The constraint max fq K p) < a, where

n co s a is a given real number and p is a given vector, is
called a semigiocbal displacement constraint.

A global displacement constraint implies e.g. that:
for any unit load applied on the structure, the The maximizing q E S in definition 6.1 is'easily seen

displacem mt of any node in any direction does not K -i

exceed . to be q . The semiglobal displacement

Using som well-knowm rules for vector and matrix a lK Pll

calculus, see e.g. ref E 51, we get: constraint may thus be written: lJK 'plJ <5a or,

S 1 -1 T -1 equivalently, llull < a. (As before, u is the nodal

dG(X) = max fmax fqTK-1p) -- ma p)xK IpK = displacement vector.)

pCS qES pES IlkCpII Since 11 2 = = PTK 2P, and since p;iClp is
-1 convex over X (as was shown in section 4), one might

p 01 1/A ) guess that also MIuj2 is convex over X. Then the set
PsxI lull 2  2 = {xEK I lull <alwoiilbe cnve.

where XK x) is the smallest eigenvalue of the stiff- However, as will be shwn by the example to follow,

ness matrix K. It also follows that this is not always true. Instead, we can state the

d( W max FK'p. following:

pES Proposition 6.2: Semiglobal displacement constraints
A global displacement c nstraint (x) 5 is thus may give rise to a nonconvex feasible set. Also,

exuivalent to a lower limit on the smallest eigenvalue ljulj and lull 2 , i.e. Ilk- 1(x)pll a pTK- 2 (x)p may be

of K: X(x) Z mi where A = v, bt also to the n- --nvex functions in x.

inf iite set of symmetric displacement onstraints: Ccmsider the two-diensional 3-bar truss shown in

pp<afor all p such thatllPll = 1fig 6
There are two variables:

Theorem 5.2: The global displacement constraint x cross section area of elements I and 2
Ma-ction is convex over X. (not elmgats 1 and 3!).

_Prof: From theorem 4.2 we know that pTK-1 (x)p is x2 = cross section area of elemt 3.

EFex (in x) over X, for every vector p, and accor-
ding to lemma 2.7 the pointwise maximum function of a
collection of covex functions is conex. Since
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p7. Natural frequency constraints

The natural frequencies toi of a structure are

(0,0) obdtained fron the generalized eigenvalue problem:

Ky = u,
2 MY

where K = K + Ix .K. is the structural stiffness

matrix and M = + xjM is the structural massI' ma)trix.
( A 6 An inportant example of a frequency constraint,A the only one that will be considered here, is that no

natural frequency should be less than a given number
(0,-I) in . This may be written w W) ? -pi'ere

S(X) is the lowest natural frequency of the structure
(i.e. the me lest number w for which there exists

Two-dimensional 3-bar truss. a vector y P 0 such that Ky = At).
In general, constraints on natural frequencies may

give rise to a nonconvex feasible set. The constraint
The load vector, applied in the non-fixed node, is mentioned above, however, possesses the followi g

p . (-I , 2) T . After scoe calculations we obtain the attractive property:

following displacement vector: Theorem 7.1: Let W(x) be the lowest natural frequency

(x 2 -x 1 ) and let win be a given positive real number. Then the

u 2 • + set fxEXIj (x) > Pn is convex.

1 1 2  21 To prove this theorem we need the following well-
Crhe two ccrprnents of u are respectively the hori- known result, which may be found in e.g. chapter 3 of
zontal and vertical displacements of the nonfixed ref E53.
node.)

1 s a Lema 7.2: If A is the smallest solution of the eigen-
Assuming (for simplicity) that a f , the semiglobal Vru-prblem Ky = XWy, where K and M are symmetric

displacement constraint"lull2 < 2 becomes: and positive definite, then:

(x2 -5x 1 ) 2 + (x2 +3x 1 ) 2 < (x1+3xlx2 ) X yTy

The feasible set inplied by this constraint is shown Proof of theoren 7.1: According to the above lemna we
in fig 6.2. By direct calculations it is seen that have:
the two points: K2I k(Xy)

3 'F ) and ( ,- y 0 yTMy y:0 mxy)

are feasible, i.e. satisfy the above constraint. , where the introduced functions
However, their midpoint is, also by direct calcula-
tions, seen to be unfeasible. The feasible set is k(x,y) = yTKoY + Ix.YTK.y and m(x,y) =

thus nonconvex.
= + yx-y.-y are linear in . and quadratic in y.

X2. We also have k(x,y) > 0 and m(x,y) > 0 for all x E X
and y * 0.

Now, consider 9 = {xlXI(x) > wi) =

={xEXW2 x) ! Xmin), where m
in = (,in)2 =

Feasible set

(looks convex,but is in fact = f{C h~x _> Xm in for all y * 0)

slightly nonconvex! 

Y

= b Xlk(x,y) > n"mn(x,y) for all y 01 =

= n (xEXlklx,y) > X mnm(x,y)1.

SX Flor any fixed y , 0, the set fx xlk(x,y) > Xm Nm(x,y)
is convx, since k and m are linear functions in x.

4 But according to lana 2.4 the intersection of any
3 6 collection of convex sets is convex, and it thus

follows that S1 is a convex set.

Fig 6.2 Feasible set of the 3-bar problem.
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8. Conclusions

In this paper an investigation concerning
convexity properties in structural optimization has
been accomplished. The investigation is not claimed
to be exhaustive. It has been shown that, although
the problem in general may be nonconvex, t/here are
sane nontrivial special cases where the convexity of
the problem can be proved, e.g. uen the structural
weight should be minimized subject to a collection of

symetric displacent constraints and/or a global
displacement constraint and/or a lower bound on the
lowest natural frequency.

It is reasonable to believe that there are other
special cases, than the ones discussed in this paper,
which also possess inportant convexity properties.
Further research concerning these questions is thus
reccx~iended.
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'II

A SELF-CONTAINED THEORY FOR OPTIMUM DESIGN

OF SKELETAL STRUCTURES AND THE GLOBAL OPTIMUM

Erdal Atrek

insaat BIlUmU, Muhendislik-Mimarlik FakUltesi,

Istanbul Teknik Universitesi, Macka, istanbul, Turkey

SUMMARY derivation of interaction relations for fabricational constraints,

e mand a new derivation for displacement constraints. Additionally,
The minimum weight design of truss and frame systems some ideas regarding the global optimum are set forth basedis considered. Constraints are on stresses, displacements, on numerical experience with small-scale problems.

and cross-sectional areas. Each constraint is coupled to
inverses of all design variables. The objective function is The classical ten bar truss example presented to sup-
applied in two forms. A modified form yields the Lagrange plement the theoretical material
multipliers associated with active constraints. Then the
new design variables are computed using the other Theory
expression for objective function. An algorithm for adding
and deleting constraints within an active set is developed. An optimization problem with a single objective would be
The solution proceeds without recursive relationships presented as the minimization of the objective function.
between re-analyses, and some steps may not need optimi- W T
zation procedure. The disjoint optimum of the ten bar truss - a
problem is found during solution. An approach to generate subject to a set of constrzints which may be nonlinear in the
starting vectors towards the global optimum of flexural design variables a. Again, Equation I may reflect only the
systems is discussed. The theory is illustrated with a linearized form of the actual objective function. Here, t is a
numerical example., column vector of weighting coefficients.

Introduction In optimum design of a skeletal structure, such as a truss
or a frame, for minimum volume, a would be the column vector

Two main methods for optimum design of structures are of cross-sectional areas and f would be the member lengths.
seen to be gaining increased popularity with regard to the Optimization for minimum weight would proceed by including
literature on the subject. One is the mathematical the unit weights in 1.
programming approach wherein a mathematical programming
code (optimizer) is coupled with a structural analysis Frequently met constraints in structural design are on
routine (simulator). The popularity of this approach perhaps stresses ( ), displacements ( 6) and member sizes (a). These
lies to a degree in its convenience. The optimizers are can be represented in the following basic form:
mainly written with a general purpose in mind and are *

available in package form for many search algorithms. ak 0c 'k k = I,... (2a)
Further, the input towards development of such algorithms
and programs is by no means restricted to the structural 6 < , m = I, ... (2b)
engineering community. This, on the other hand, exacts a m- m
penalty in that structural theory may not always be utilized
to its fullest extent for efficiency of the design process. a. < a. j =(2c)

Still, the simplicity of coupling an optimizer with a simula- i -
tor that has a re-solution facility is very attractive, partic- where absolute values have been implied for the stresses and
ularly in light of the fact that the theory for optimum the displacements. For the fabricational constraints 2c, lower
design of structures has not yet realized its potential to the limits may also be required:
degree structural analysis theory has.

1 a. > a*(2d)
The second method, the optimality criteria approach, a - .

enjoys the reputation of being based more on structural
theory, although the dividing line between the two In Equations 2, the right hand sides (RHS) are the limiting
approaches may grow rather thin sometimes. For example, values for the unknowns on the LHS. These may be prescribed
many structural design applications with mathematical or variable, such as for design with stability considerations.
programming methods include derivation of constraint
gradients through the use of structural theory (e.g., (1)), and It is now noted that, all LHS variables are, in general,resort to mathematical programming tools such as step sizes actually nonlinear functions of the design variables a. Thus
are encountered in optimality criteria applications (2).
Mixed methods develop as a result (3 ok ok(a

The work described herein would fall in the category of 6 m = 6m)(3)
optimality criteria methods in that it is mainly based on
structural theory with the possibility of no need for step a. a.(a)
sizes, but with still the requirement for an understanding of I
constraint surfaces. While the first two functions above are obvious, the third one

follows rather implicitly from structural interaction. In
The main features include direct computation of the optimality criteria approaches, the constraint expressions 3 are

Lagrange multipliers, efficient derivation of stress constraints, linearized with respect to the inverses of the design variables.

* Currently visiting at Department of Civil Engineering, University of Arizona, Tucson, Arizona, U.S.A.
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Thus, for an unknown x. , the linearized expression at a given In the literature, severai techniques for iterative solutI

design would be of Equation 9 are given (2. 6. 7). Here, however, a direct
solution will be attempted. One method may proceed as

n follows:

x.(a) i (4) Assuming that, for a given design, the active constraints
L..= a. are identified, then the Lagrange multipliers for the inactive

(passive) constraints are known to be zero. Setting
where cij are constants to be computed (while for trusses a L_Ic Ty*GiI = it(0)

would be the cross-sectional areas, a in Equation 4 will
and partitioning Equation 9 with respect to active and passive

be taken as the moments of inertia for flexural members in this constraints, one obtains
work).

Such expressions for displacement and stress constraints a A [ 1 121]~
may readily be obtained by application of the virtual work 1 (1)
principle (3, 4, 5). The expressions for fabricational consid- )as LG21 q22 J Lx2)
erations will then follow from that for the stresses ().

X*
After division by xj and rearrangement, Expression 4 will wh-:ce subscript I is associated with the active constraints.

take the form T.ien A = 2 and the first equation in (U) can be solved for
n 2-

fa () 0- 1 (12)

j : - as

Acting from principles of variational calculus, the usual aftc, which a can be found by
procedure is to associate each constraint expression fi with a 2
Lagrange multiplier Ai , to set the expression equal to zero as2 = 921 1(

I fi(a) = 0 (6) This procedure has the effect of keeping _a constant and
varying a2 , as long as no negative values are obtained for the

and to add the resulting expressions to the objective function 2
T T squares of the'.Yariabfes a 2 :

W T a +X Tf (a) (7) s- I -t
A generalization of this technique is discussed after

The objective function is then differentiated with respect consideration of the constraint expressions.
to the design variables and the result set equal to the zero
vector 0 , to obtain a linearized form of the optimality criteria. Stress Constraints

For purposes of the present work, Equation 7 will now be It has already been noted that stress expressions will be
written in the following form: linearized in the form

T T 
n

W = IT L a + lAf(a) (7a) a
where the coefficients S and the Lagrange multipliers _ have Ok . j (14)
been placed diagonally in L and A, respectively, and where I j
is a column vector of unit values.

Substitution for f(a) from Equation 5 yields To attribute a meaning to the coefficients ckj it is suf-

W =I TL a + I TA (y * C a- (8) ficient to invoke the principle of virtual work. Since k is di-
. . ..IL +T Y I -) rectly proportional :o a displacement quantity which can be

Here Y is a diagonal matrix of the reciprocals of the limiting obtained through use of two load vectors, one actual and one
x* ~virtual, it is obvious that ck. contain the actual forces s..

values x and C is, in general, a fully populated matrix of the v
x Setting

coefficients c.. The column vector a consists of the Setn1I c = kjsj
reciprocals of the design variables a, ie., (ad) I/a kj

Performing the differentiation and equating to zero will and substituting in Equation 14 one obtains
give, for truss structures

n
'aw+ L CTY* X = 0k zk (

:~wl -'-a a s (6)

where a is a column vector of the squares of the design k = a

variables, ie., (as), = a. But the indicated ratio (sj/a) is the stress .. Therefore,
ii I

With Equation 9, the design variables # are related to the n
Lagrange multipliers A, On the other hand, the Lagrange
multipliers are also unknown. ok 0kj j (17)

j~l
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In fact, if the stress expressions were written similarly for The next step is to compute DD Solving the first of

the entire structure, one would have (5) Equations 19 for gR :

Z (18) = ( -RR)- ZRD D  (22)

This matrix Z will be very important in the rest of the
theoretical presentation. and substuting in the second equation gives

The most important property Z has is that it satisfies D  [Z (I - zR) z + Z ] (23)

Equation 18 no matter what changes the stresses g go D DR -RR R D

through , so long as small displacements and no geometrical This procedure has the effect of condensing away the
changes are considered. Thus, it seems sufficient, at this time, redundants, therefore reducing the structure to a determinate
to derive Z only for the starting design and to ketp it constant one. Thus, the bracketed expression in Equation 23 should be
throughout the solution. equal to the unit matrix L Noting this equality and solving for

It can now be seen that to derive column j of Z, one needs ZDD '

to apply a load corresponding to a unit value of the stress aiZ - Z DD( D RR
)-1 

ZRD (24)

Thus, for truss members, this load will be equal to the
cross-sectional area, and for purely flexural members (see is obtained.
footnote) it will be equal to the moment of inertia, in
numerical value. For example, for the classical three-bar The derivation of matrix Z is thus completed. Returning
truss, the first column of Z is obtained as a result of the to Equaticn 18 and separating the forces from 0 on the right-
loading case shown on Figure 1. However, it is not necessary hand side, the stress expressions can be rewritten as
to apply a load to obtain each column. It is easily observed
that for a statically determinate structure, Z would be the unit a = Z S a
matrix I, since there is no interaction. Then, to define Z - - - -1 (25)
completely for a statically indeterminate structure, load cases where S is obtained by placing the forces s. diagonally. Thus,
corresponding to redundants should be sufficient. J

the procedure for obtaining the coefficients ckl (Equation 14),
The derivation of Z would proceed as follows (5): Par- will be to keep Z constant and to modify S at each step.

tition Equation 18 with respect to the redundants R:
, Fabricational Constraints

SRFrom Equation 25, separating the forces S on the left-hand

= (19) side as well, one obtains (8)

O-I 3z s 9I (26)

Then obtain columns R by application of loads corresponding to from which
unit values of the stresses aR • This would involve R load

cases, preferably applied after sol ition for actual load so that Z = a - (27)

only the right-hand sides need to be modified, and since more
computer core is available for multiple load cases after initial Again, Z would remain constant while the diagonal matrix S
reduction of the stiffness matrix, is modified at each redesign.

ZRD can now be obtained from ZDR by direct application In addition to providing sensitivity coefficients for fabrica-
tional constraints, Equation 27 has significance for three main

of the Maxwell-Betti Theorem. For truss members, the reasons:
relationship is in the form

a .E I. It will be used to modify the objective function for
z i z..ji (20) direct computation of the Lagrange multipliers.

where E is the elastic modulus. l~ 2. For design of flexural systems, the relation between the
cross-sectional areas and moments of inertia needs to be

For flexural members, since stress at a point rather than linearized at each step. Equation 27 will then be inserted into

along the member is considered, and since the stress considered the linearized relation to provide some global information

is the one at unit distance to the neutral axis, the relationship regarding sensitivities.
is somewhat more different, but is not difficult to derive: 3. If an expression such as Equation 13 would give some

imaginary design variables, these variables can be resurrected

2z ZJ (2z ) (21) by means of Equation 27.
am " jm = 74fE~i _ mi , n

where i and j are two ends of member ij and m and n are two Displacement Constraints
ends of member in, and where i is the moment of inertia.

It is very interesting that the first constraint considered
in the development of optimality criteria methods is the case
of a limit on a single displacement (9). Multiple displacement
constraints can now be treated with ease. However, the trend

For flexural members, the stresses are those at unit distance noted in the literature has been the application of one unit

from the neutral axis. load case for each displacement expression. For a large struc-
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ture with many degrees of freedom that may displace more to some type linearization with respect to inverses of design
than a tolerable amount, efficiency of this type of derivation variables, and has already been tried in Ref. (1). However,
would not be very high. since generality is lost by this linearization, the interaction

Here, an alternative method which re-'uires no unit load expression Equation 27 is now substituted for a I providing addi-
Here analtenatve etho whch rquies o unt lirdtional information. Then

applications is derived in the case stress constraints are
already present. If stress :-astraints are not present, then W - I L A -Sl
load cases equal in number i the redundants need to be - -s z S a (35)
applied. As a ruk of thumb, whenever a linearization is made,

It is noted that for an elastic skeletal structure, the appropriate coupled expression will be made use of.

displacements of the degrees of freedom can be found from Performing the multiplication of the matrices in Equation
the stresses associated with some arbitrarily selected basic 35 and setting equal to a matrix M:
statically determinate system D, i.e.,

T F e (28) W T Ma I  (36)

Here A is a diagonal matrix of cross-sectional areas (or and adding the constraint expressions to this objective function
DO e T !T Ay a-) (37)

moments of inertia), FD is composed by diagonally placing W = I M ai + I A (Y C aI - P

element flexibility "matrices", and Q D is the inverse of the one obtains the objective function in terms of the inverses of

equilibrium matrix for system D. design variables. Taking the derivative with respect to a, will
yield an expression only in the Lagrange multipliers:

From Equation 19 it is known that

-D = ZDR2R + ZDD OD (29) .W = T  
B I ,B
T  

(38)
I -

0 

(8)

By substitution into Equation 28, the following expression
results: or, simplifying

T e A LDRZD1 (30) BTX m (39)
9Partitioning 39 with respect to active and passive constraints:

or separating the forces S from the stresses B 2D1 12] A I ' {!l~ (40)T Fae, (31) l [ 1 B2
9Dand setting - - will give

This equation can now be simplified into
l= (41)

(32) -I I )

which can then be substituted in Equation 9 to find a and
where V is similar to Z in that keeping it constant throughout therefore a.
the des gn changes will not affect the satisfaction of Equation
32. Of course, if the multiplication V S is carried out, the There is one immediate difficulty in this process, and this
coefficients c m in the well-known exprisiion is the possibility of obtaining some negative values in a s . At

this time, such variables are resurrected by using Equation 27.
n For the positive variables the new variables, and for variables

=. m-. (33) with negative a the old values are used on the right-hand
m 1 aj side. If, again this time the variable itself should come out

negative, the prescribed value of zero is assigned to the
will result. variable at this time.

The only bothersome proposal here is the requirement for Modification for Flexural Systems
computation of 9 , and ease may depend on selection of system
D. Since numerical experimentation with large problems is For flexural systems, the initial objective function of
lacking, no comments on efficiency may yet be provided. Equation I would be in terms of cross-sectional areas while the

constraint expressions would be written in terms of the
Computation of the Lagrange Multipliers moments of inertia (or both if axial effects are also consid-

ered). Clearly, some linearization of the relationship between
Due to slight differences between treatment, the deriva- cross-sectional areas a and moments of inertia i need to be

tion will first be shown for truss systems, then the derivation made at each step, such as
for flexural systems will be built on the one for trusses.

The objective function of Equation I can be alternatively a1 = ij (42)

written:

W 
T L A a) where ,~ is a constant to be evaluated at each step. If this is

- 5substituted in the first term of Equation 8, a further mod-
where A is a diagonal matrix of squares of member cross- ification is made by substitution of Equation 27 in the fol-

-s lowing form:
sectional areas. It is now proposed to uxe to the current
values for A while keeping a1 variable. Obviously, this amounts Z= z s (43)
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I I I. . .

Here the vector 1 is composed of inverses of moments of If the two successive designs are ascertained to be rather
inertia. close to such a constraint intersection, a more powerful alter-

native can then be based on the observation that the intersec-Also, Equation 34 will then take the form tion of two constraint surfaces is really the two constraints
T molded into one along that intersection. Thus, solution of the

W IT L 1 (44) two constraint expressions together should give the expression
for the intersection. In order to do this, the two successive

where I is a diagonal matrix of squares of current values for approximations to the constraint surfaces have to be handled
the moments of inertia. Thus, the problem is converted to one together. This procedure has not yet been programmed.
totally in terms of moments of inertia. After new values are
found for i, the cross-sectional areas can be computed based Disjoint Optima of Indeterminate Trusses
on t;ie linearization in Equation 42.

It is known that indeterminate truss systems under a singleIt should be noted here that the numerical experimentation loading condition and under stress constraits only, will have,
with flexural systems is not yet sufficient to bring out the full as an optimum solution, a statically determinate configuration;
significance of the above relationships. i.e., some cross-sectional areas will disappear. Recursive

relations used in optimality criteria approaches are quiteStress Constraints for Flexural Systems sensitive to such behavior since division by the cross-sectional
area is required. However, the direct approach presentedWhen span loads exist in the structure, one would need to herein will not be affected by the disappearance of a

work with the equivalent nodal loads in a finite element cross-sectional area.
approach. Furthermore, since the moments of inertia are the
variables, the stress constraints need to be written in the form It is suggested that if a variable cannot be resurrected by

( So  < * I (45) Equation 27, it is probably tending strongly toward zero. For
example, in design of the ten-bar truss (Figure 2), this behavior
has been observed for the middle upright, member 5.

Where S are the equivalent nodal moments, S are the work-0

equivalent nodal loads (moments), and T is a diagonal matrix of Setting the cross-sectional area of this member equal to zero,
section moduli. The !_ sign holds f r each expression sep- after when thus appropriate, results in the design further
arately. Thus, it is observed that the limiting stress becomes moving on to the minimum weight statically determinate struc-
variable in this case. It is not exactly clear how one should ture. It is not known, however, under what general conditions
proceed at this point. It is, however, possible to use the in- this behavior will be observed and what refinements in the
stantaneous values for the section moduli T, and to simplify theory are needed for more generality.
the constraint expression into a homogeneous one: Multiple Optima of Frameworks

(Z S- SO - X *T) 0 (46)Mlil
- ~ T ~ (46) The two-bar grid of Figure 4 is known to have three

after which the solution rnay proceed in the usual manner. optima (Figure 5) arising from the nonconvex properties of the
problem. The usual approach in such a case is to select

Solution Procedure different starting points so as to try several regions of possible
optima, and thus perhaps arrive at the global optimum. While
this is perfectly acceptable, the choice of starting points is

It is very important to observe that the proposed theory based mainly on intuition and experimentation.
will not produce magic results. The gradients obtained by
differentiation of the objective function are only as good as It is therefore desirable to be able to select starting
the linearization at a particular design would indicate, points not in the region of the previously obtained optimum,
Furthermore, since the solution proceeds based on active con- For example, writing the equation for the reaction R
straints only, no consideration is taken of those constraints
which may be violated by advance in the computed direction, between the two beams of Figure 4.
Perhaps this situation will be remedied in the future. (b d
However, for the time being, the following procedure has been R = a + _V- d -. ) (47)
adopted: 1 2 1

Suppose constraint j is active; i.e. when the design is where a to e are constants, it is observed that R will change
scaled to the constraint surface, j is exactly satisfied. Upon sign depending on the relative values of the moments of inertia
advance with the gradients, constraint i is violated. Now the j, and '2 In the given case, using reciprocals of i I and -2
weight may either increase or decrease, depending on the will provide this result at an optimum. Alternatively, if R is
particular problem. If a decrease is observed, j is deleted and known, its sign may be changed and the corresponding force
solution continues with i. On the other hand, if an increase in distribution may be approximated from the current design point.
weight is noted, for a convex problem * the best solution
between i and j would lie on the intersection of the constraint The second alternative was adopted in an attempt to
hypersurfaces. Thus, a decrease in weight should be obtained investigate this problem, resulting in a move from the localif this intersection hyperline can be found. Then further optimum (point A on Figure 5) to point B. Obviously, theoptimization process may proceed by any method from thisadvance will be along this intersection until a new constraint point on, to result in the global optimum (point C).

Theis violated.

In philosophy, this sounds simple enough. The main The problem that may be encountered will be proper
problem is to find the constraint intersections accurately. definition and computation of such redundants in a stiffness
Otherwise, at each step, the adding up of the errors will siow method of solution. Again, although the philosophy is simple,down the progress. In the solution of the ten-bar truss programming requires more insight and numerical experimenta-
example, a weighting procedure has been used to generate an tion.
intermediate design vector to bring the solution close to the *
required intersection. Again, the convergence rate may depend The situation for a nonconvex problem is not clear to the

. on selection of weighting factors. author.
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Numerical Example References

Ten Bar Truss (Figure 2)
I. Reinschmidt, K. F., Cornell, C. A, and Brotchie, J. F.,

This ten bar truss is now a classical test problem for new "Iterative Design and Structural Optimization", Jour. Struct.
methods. The material density is 0.1 and the stress limits are Div., ASCE, V. 92, No. ST6, Dec. 1966, p. 281.
25 for all bars except for bar 9, for which the limit is 50.
Minimum cross-sectional area requirement is 0.1. 2. Khot, N. S., Berke, L., and Venkayya, V. B., "Comparison

of Optimality Criteria Algorithms for Minimum Weight
Since treatment of fabricational constraints with the use Design of Structures", AIAA Jour, V. 17, No. 2, Feb. 1979,

of expressions in the form of Equation 27 has not yet been p. 182.
coded into the program (although this equation is used for the
other purposes indicated previously), it was decided to assign 3. Sander, G. and Fletry, C., "A Mixed Method in Structural
the value (0.1/RATMAX) to variables which cannot be saved by Optimization", Inter. Jour. Numer. Methods Engrg, V. 13,
use of Equation 27. Here, RATMAX is the scaling factor to 1978, p. 385.
the constraint surface. Near convergence, RATMAX would not
change appreciably and hence 0.1 would be attained. 4. Berke, L., Khot, N. S., "Use of Optimality Criteria Methods

That this approach is rather artificial, without the use of for Large Scale Systems", AGARD Lect. Ser. 70, Structural
supporting explicit fabricational constraint expressions, is Optimization NATO, Sept. 1974, p. 1.1.
indicated by the solution progress on Figure 3. After the

seventh step, a negative value is obtained for a and appli- 5. Atrek, E., "On Stress Constraints in Structural Optimiza-
5  tion", Mechs, Res. Comms, V. 8, No. 2, 1981, p. 61.

cation of Equation 27 again gives a negative value for a5 66. Gellatly, R. A., Helenbrook, R. G., and Kocher, L. H.,

If a, is then set equal to zero, the solution proceeds very "Multiple Constraints in Structural Optimization", Inter.5 Jour. Numer. Methods F-ngrK.,V. 13, 1978, p. 297.
efficiently toward the statically determinate optimum solution
with members 2, 5, 6 and 10 removed. 7. Taig, L C. and Kerr, R. L, "Optimisation of Aircraft Struc-

However, if a is set equal to (0.1/RATMAX), the rest of tures with Multiple Stiffness Requirements", AGARD, Second
H Symp. Struct. Optirn., Milan, Italy, April 1973, p. 16.1.

the steps result in a struggle between this artifice and the
theory. Although there is progress at the completion of each & Atrek, E., "Yapisal Optimizasyonda Optimumluk Ko$ullarj
descent, this progress is extremely slow. The broken lines on Uzerine", TUBITAK, VIL Science Congr., Engrg. Div. Kusadasi,
the figure indicate the use of an alternative weighting factor. Turkey, Oct. 1980.

Conclusions 9. Venkayya, V. B., "Design of Optimum Structures", Jour.
Comps. Structs., V. 1, 1971, p. 265.

A theory based on optimality criteria has been proposed.
There is, at this time, limited numerical experimentation, since 10. Moses, F., and Onoda, S., "Minimum Weight Design of Struc-
the relevant computer program has not been completed to tures with Application to Elastic Grillages", Inter. Jour.
perform all the necessary tasks. Numer. Methods Engrg., V. 1, 1969, p. 311.

A decrease in structural weight is definitely obtained
under stress constraints and there is also the possibility of
arriving at the disjoint statically determinate optimum. On the
other hand, it is felt that further refinements may be
necessary for generality of the task of finding the statically
determinate optimum. More insight will probably be gained
after explicit use of fabricational constraints during solution.

The additional considerations for design of gridworks are
almost completed and numerical experimentation is expected in
the near future.

At the present, design for multiple load cases is believed
to proceed based on relative values of Lagrange multipliers for
each load case, and this aspect is still in the programming
phase.

Displacement constraints have not yet been programmed,
but are being planned for future implementation.

While it is obvious that the work presented represents only
a start into uncovering the possibilities posed by the derived
equations, the initial results are quite encouraging. Completion
of the computer program would result in a large quantity of
numerical data, which upon compilation should yield valuable Figure 1. "Redundant" Loading for Three Bar Truss.
information regarding extension and refinements for the
proposed approach.
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Figure 4. Two Bar Grid (Reference 10).
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Summary

-Marine risers used in offshore drilling and mining
are long, tubular structures subjected to tension, in-
ternal and external static pressure and hydrodynamic Z
loads. Design optimization of risers for general static
loads has been studied by the authors in an earlier - .
paper. -T4he present paper examines the influence of glo-
bal buckling on the optimum design. rSiut

The optimization studies conducted earlier use a
non-linear programming formulation and show that in the P s oit
case of generalized static loads with high tension ap-
plied at the top of the riser two local optima are pos-
sible. One corresponds to optimum design for drilling Un- I&u ;i"

and production risers and the other for mining risers.
Even though in practice high tension is used at the top
of the riser, it has been proven that risers msay buckle -- ilA&t* W

globally while in tension all along their length, due to /

excessive internal static pressure.

-A new optimization model with a minimum weight ob-
jective is formulated. The method of monotonicity an-
alysis is applied to identify possible combinations of
active constraints. Monotonicity arguments allow the
analytical determination of the global optimum by prov- -_ u :i
ing that there exist only two local optima both con-
straint-bound. One of the local optima corresponds to / -

the case where buckling is not critical but instead, the -

stress due to the internal and external static pressure
at the riser's lower end becomes critical. The other /
local optimum is obtained by making buckling critical

along with tensile stresses at the riser's upper end and
static pressure stresses at the riser's lower end. In
both cases lower limits on mud density and inside dia-
meter of the riser are binding. FIGM L: O nL|*6 SY

This method of analysis provides explicit expres- mations involving a cable response with end corrections
sions for the design variables at the optimum and can be were derived in order to make the solution more amen-
used readily for sensitivity analysis. able to optimization. The derived constraint functions

reveal fairly explicitly the dependence of riser beha-

Introduction vior on the design variables and parameters, thus al-
lowing successful application of monotonicity analysis

An important element of the offshore drilling, [9,10]. Attention in [7,8] was focused on risers sub-
mining and production systems is the riser structure, jected to significant external loads, thus requiring
a long tube connecting the platform with the sea bed. high tensions at the top of the riser and eliminating
Drilling or production risers are currently 16*-42" in the possibility of buckling. However , global buckling
diameter, up to 4,000 feet in length and contain drill failures may occur for relatively low external loads
string and circulating mud or petroleum. Kining and high mud densities and riser weight. This problem
risers have smaller diameters, lengths about 10,000 is the subject of the present paper. The buckling con-
feet and are used for suction of ore-rich mud. straint is formulated based on an earlier derivation of

the buckling loads E1l]. The design model is derived
The riser is supported by a tensioning system and treated with monotonicity analysis to identify ac-

housed in the offshore platform and by buoyancy mod- tive constraints and locate the global optimum.
ules properly distributed (see Figure 1). This struc-
ture should sustain the external hydrostatic and hydro- Riser Global Buckling Model
dynamic load, the internal static pressure and its own
weight. Several studies have been conducted on model- The global buckling loads of a riser can be evalua-

ing the structural and hydrodynamic problem [1,2,3,4, ted using the small slope, small deflection linear equa-
5,6]. The design problem and subsequent optimization tions of static equilibrium. Risers can be modelled as
studies were initiated by the authors [7,8]. In this slender tubular open-ended columns subjected to internal
previous work, the riser response under generalized and external fluid static pressure.
static load was analyzed and an exact solution was ob-
tained in terms of Airy functions. Analytic approxi- Studying the equilibrium of the differential ele-

ent dz (see Figure 2) we derive the following
equations [S]1
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where

/ (z + d z) (z) is the banding moment in the y direction,Z2

-M(z+ldz) U is the deflection of the riser in the x

2 direction.

f~().d / (z.1.dz) Finally the linear constitutive relation of bend-

\(z)-dz d2U
1(z) - d 10)

S M(z-2d z) where
0(z-ldz) J"z-1dz) XP(Z

0(0,0,0)64 0 i 11

Elimination of Mz) Q(z) and P(z) from equa-

y tions (1), (2), (9) and (10) yields the linear fourth
order differential equation with variable coefficients

FIGURE 2: FlEE BOY DIAGRAM FOR A DIFFERENTIAL ELEFNU X which describes the riser static response to external

LI EARIZED MODEL loads:

Equilibrium of forces in the x direction: d
2  r d

2
1 ! d r

- I -z I (Wez+Pe(O) - fx(z)dz2 L dz2 J dzI

- fx (1) (12)
dz

In order to derive the buckling loads we set
where

f x (z) - 0 (13)

Q(z) is the shear force in the x direction,
and solve equation (12) subject to the proper boundary

fx(z) is the external force per unit length exerted conditions. In this application the riser was consi-
on the riser. dered as a vertical column simply supported at both

ends. That is,
Equilibrium of forces in the z direction:

U(O) - 0 (14) U(L) - 0 (15)
dpe  (3)

d- We  -d2U(0) 0 (16) d2U(L) 0 (17)dz
2  dbt

2

where
The above boundary value problem (BVP) can be recast

we  wR + WS + WB -B in dimensionless form as follows:

!2 w d4U d [ T) U 0 (18)
Tx) o 2( B(hpz)Th d2+ e ecs

Pe(z) T(z) + Yw _ (hw-z) - Ym " (m-z) (4) dpd dp I (1

T(z) is the actual tension in the riser, = 0 (19) 1(1) - 0 (20)

WR - YR 1 -- - 0 (2 1) -0 (22 )
dP2  dp2

is the weight of the riser per unit length, where

1 -Y 2 (6) p(0)L L
3

Y" 4 2.(23) 
(24)

is the weight of the drilling mud per unit length,

and p (25)

- Y, 1 (D°-D21 (7)
This SYP has been solved in two ways in [11].

is the buoyancy of the buoyancy modules per unit length Analytically, in term of Airy functions of the first

and and second kind and numerically using infinite series.
The results, that is the critical buckling loads
acrit , are plotted versus the design parameter 0

a- Yw D2 (8) for the first six buckling modes in Figure 3 [11 . The
first mode buckling loads provide a lower bound for T

is the buoyancy of the riser and modules per unit Thus if we denote these loads by f(O) the buckling

length. contraint becomas

Equilibrim of momentss T f(S)/ 2  
(26)

!M dls where N2 is a buckling safety factor.
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2 - 2 2 2~j~j~0 D( t-P0 ) Djo 0

TAU CRtTICAL-FIRST X MODES a = - o (34) /--( - (35)
P (D0-O) (Dl=OL)4r

0 0 1

P. (36)
S62.341 0e  -

0,ZPi -Y 3(h.m-z) (37) po yw,(h.-z) (38)

2 2
____ 50 (39)

e1782 nd A A0 A 4i- 4T(9
AU

tee Finally the Tresca criterion gives the limit stress

OT

A (.2341
L

T- max - z-Or  , oz-' t  , ; ot-ar  (40)
1? 1 1 1 I i 1 11

or

OT - max Ioe I ,0 k+-; , Ita (41)

3.Me to 31.422t 316.28s 3162.2a The maximum local value of the stress is a function

BETA of p and can be derived from (42)

{j (BJ+T)+(m-)(-p

FIGURE 3 CRITICAL BUCKLING LOADS VERSUS BETA 2 L2!(D2-D ) + (yya) (.P) LDi
-4" 0 1"

I 2 F

Combined Stresses in the Riser (Ym-yw) (l-p) L (42)

In the present analysis we are concerned about the
possibility of global riser buckling that is likely to
occur for low values of the tension applied at the top Optimum Design
of the riser and high values of the drilling mud density
and the riser weight per unit length. This desiqn prob- The optimization model can now be assembled in the
lem arises for very low values of the external loads form of a nonlinear programing problem. The design cri-
(8]. Consequently, the bending stress component, which tefnon used as objective is the riser weight WR
in the general static problem is significant (7], is

negligible in the buckling problem. R - YR (D2-2 (43)

Let (z,r,t) be the local coordinate system in the
riser where r and t are local radial and tangential The constraint functions are developed following previ-
directions and z is the axial direction. Considering ous practice 8]. There are three stress constraints
the riser tube as a thin cylindrtcal shell we can derive corresponding to the possible local stress maxima along
the following expressions for the local shear stresses the riser. The first constraint refers to maximum

stress due to tension at the upper end of the riser (see

-s 2 4 cos * 3 0 (27) eq (42)) nd is expressed as:

4ZI( + ) I y !144 )

where NJ.z0=0 ) 44

8 is the thickness of the riser tube
where Sy is the yield strength in tension and N1 is

D is the average riser tube diameter a safety factor. The other two constraints refer to
maximum stresses due to tension and static pressure at

and # is the polar ordinate the lower end of the riser. They can be derived from
(42) and expressed as

20 4 < 2w (28) 491T LDi  Sy(1

L(D (Ymyw) D0- 
< 
=(1

Ttr 0 (29) T r -0 (30) 0 i

The normal stresses are: (yW.Yw) _. 2 Sy (46

0" + Op (31) 0 1

The buckling constraint is expressed in terms of

Or - Op - (32) and 
0
t op + ( 133) the nondiuensional variables T and 0 as derived in

the previous section eq. (26), i.e.where

- ($) (47)

-2
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There are several practical constraints that must
be observed. A minimum inside diameter for the riser 2
tube is required for proper mud circulation, i.e., Di> R3: (DW-D )Sy < I

Dimin .Tpper and lower limits for the mud density are (DODi)S
required for drill string protection and blow out pre-
vention, i.e. Ym 1ym<Ym 2 . Acceptable design practice R4: tN2If(O) 4 1

requires that there is some positive tension at the top 1
of the riser, i.e. TrR>O is a strict inequality; also, R5: Dimin D

I 
4 1

partial buoyancy implies the strict inequality

RG, Ym Ym
1 

< 1
WR " Z ywB(D2-D2) > 0 (48)

RV: YmYm'1 4 1
An obvious geometric constraint is that the buoyancy 2
module diameter DB must be strictly greater than the
riser outside diameter Do . Finally, the design vari- plus the inactive constraints
ables must satisfy the relations and definitions de-
scribed earlier, which leads to equality constraints IF - 2
(49) to (52): Re: W[R YwB(D -D 0 < I (from eq. (48))

Equation (24) which defines 0 becomes 2
Eg: Ywg[YR(D 0 -D + Ym D i1 0EI, ! D2 y D (D2-D2) (49)- 4 4-16 1= WR + m - Yw 4 + YB 4 0 - E(D0_D4)/16L3 -I < I (since DB>D 0 )

where WR  is the weight of tl'e riser per unit length 4 4

R10: YW(D2-D2)[ E(Dn-D4)(0-t) ] -1 < 1(eas IR0
IT 2-D2) (50) 16L

3

and the nonnegativity constraints

I is the area moment of inertia
D0 , Di, 0, y, > 0 , t > 0

I (D-D ) (51)S64 0 1 Examining the monotonicity with respect to (wrt)8
in Problem P1 it can be seen that, if a solution exists,

and TTR is given by then either both constraints Ri and R4  are active,
or they are both inactive. Thus Problem PI is reduced

EI + to two subcases, where each of the above alternatives is(t+L) - = R + - ywL(D
2
-D
2
) (52) considered separately. Note that the symbol "<" indi-

This concludes the model description. Note that all the cates an active constraint, while "4" is reserved for
design variables are positive with the exception of T constraints with possible, yet unknown, activity.
which can be negative. The solution procedure is facil-
itated by examining two different cases: Subproblem P1.1 corresponds to having both R1 and

R4 active. Given the activity of the stress constraint
Problem PI: 0 ; T ) -f(o)/N 2  (53) R, we then consider the possibility of dominance be-

tween RI and the other stress constraint R2 . Direct
Problem P2: T > 0 (54) comparison shows that R1  dominates R2 whenever

Problem P1 is examined first. Introducing the WR - DwB 2(-D
2
) > ! yw(D

2
-D

2
) (56)

transformation 4 B 0 4  0 i

Condition (56) dominates constraint Re , which can thus
-T (55) be dropped from sub-problem P1.1. Note that if condi-

tion (56) is not satisfied, R2 would dominate R1and eliminating I , TTR and WR  using equality con- which would then be inactiv3, a situation assumed for
straints (49) to (51) we define the following optimiza- subproblem P1.2. Good design practice requires use of
tion problem in normalized form: some buoyancy modules. Thus DB  is assumed strictly
Problem P1 greater than Do  and R9  becomes inactive. Finally

note that monotonicity wrt Ym shows constraint R6  to
be active and R7  inactive, i.e. the mud density must

mn yR - y (D
2
_-D

2
) be set always equal to its lower limit ym. In order to0 i reveal monotonic behavior of the remaining variables a

subject to: transformation is introduced, via.

2 2 1D2 Li D2 12 (
B(DO+Di)(S-t)Nl it 0 - Di (57)

RI: IS1 D
2  

D + D2  (58)
A 0 i

2 2 2
Z(D 0 D i)tU1  (TuYw)W1iNJ

-V _ This transformation allows a simplification of some ex-
I 6L75-y (01-Dz18ypressions by assuming D32> >D2 with a maximum induced

A R

error of 5%. This is true because the thickness of theriser tube is generally very small compared to ei ther
the inside or the outside diameter. Thus we have:
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Problem P1.1 where

mn wR YD (YMl Yw)LNIDA*2/2DR*2gy

m4 WR = f YRDt *2(DA*,DR*) EDR ZN/16- -y (61)

subject to: is the solution of R2 wrt t . Thus constraint R2  is

considered inactive. Then monotonicity wrt DA and DR
ENI2{(8t) shows that constraints R3  and R5 must be active.

R1: 16L Sy Therefore the solution of Problem P1.2 is constraint
2 bound given by simultaneous activity of R3 , R5  and

NR 6 . Of course all the variables must be checked against
R3: (Sy1- w) • 1 the inactive constraints to assure feasibility. This

DRSy case then gives a second local optimum for problem P1.

Rt4: t[f81-'N2  Now Problem P2 is examined, i.e. the case with r)0.

R5 : 2D2 D-
2 

4 1
imin A Problem P2

plus the inactive constraints ft 0 , Ri and condition 2
(56) appropriately expressed in terms of DA and DR msin WR  Y YRDR
Expressing problem P1.1 in terms of functional monotoni-
cities we have: subject to:

fain Wft(DR-)22 m i n R ( D RR I : E I ( D n + D i ) ( S + T )

subject to: 16L"•

(59)
R (DR ,S ,t

- )  
1 1 R4 (8 ,t

+
) EN _____ 2 +2

R2 : -6 D2+Di)T(-
R3(DA+,DR

-
) 4 1 R5(DA-,DR+) < 1 R 1 Sy-D 1

From (59) it is concluded that R3 must be active due 2
to raonotonicity wrt DR and therefore R5 must be also R3: -Ym-w (
active due to monotonicity wrt DA . Thus the optimum
for Problem PI.1 is constraint bound, determined by si-
multaneous activity of constraints RI , R3 , R4 ,
R5 . This solution is a local optimum for Problem P1, ftS: 0Dimn 1
provided it satisfies the above mentioned inactive con-
straints. R6 1 ' y 1

mm
Next we examine subproblem P1.2 corresponding to

RI and R4 being inactive. Using transformations (57)
and (58) we get R7: YmYm2  1

Problem Pi.2 and T > 0

sin W3  YRD2 and the inactive constraints R9 , R R11

Since R1  and R2 provide only upper bounds on

subject to: T , one possibility is that RI and R2 are both inac-
tive and T > 0 . However, this leads to an unbounded

2 2 problem wrt DO. Thus T, - 0 and at least one of R1
R2:V t + ( Yw)MN D and R2  must be active. But R is the only con-

straint containing B therefore it need not be active
which leaves R2 as the active one. As in the previous

2 cases R6  is also active due to monotonicity wrt y,
R3 : ( LmVw) The problem P2 is thus reduced to:

Problem P2'

iin usin WRf - 7FY(D
2
-D

2
)

IR63 Yalys
-
1 i 0

subject tot

1 7 2 Y aR'2 
1  

2 ( Y m l -Y w ) 1

Monotonicity wrt Y, show that R6 is again active

and R7 inactive, i.e. Yms al Constraint R2 3: ( 1
"
w) 2

is the only one containing t providing a lower bound
on t . Therefore R 5 : ni (1

t* ) 'sx {0,62(DAe,DR.)) (60) It can be seen ismediately that R3 always dominates

R2 and therefore it is active due to monotonicity wrt
Do . Solving R3 for Do  and substituting in the

obj.ctive we get an increasing function wrt bi which
then makes R5  active. Thus the optim for problem P2
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d constraint bound given by simultaneous activity of
R3 , R5 , R6  and T - 0 2_ N* 

(70)
Discussion - lain

In order to study the effect of global buckling on and Ri0  sets a second upper bound for DB
optimum riser design, we have formulated the appropriate
nonlinear optimization problem with ten constraints and 2 r
six degrees of freedom. Three possible local optima have jZ^ - I1 Sy (71)
been identified corresponding to the solutions of pro- imin

blems P1.1, P1.2 and P2'. All three problems are con-
straint bound with constraints R6 , R5 and R3  Obviously, there is always a feasible range for 0
active. From the design point of view this means that since both upper limits for D% are greater than the
(1) The density of the drilling mud must be set in all lower limit. For long risers, that is for
cases equal to its lower limit, that is:

Sy YR-¥w
Ym* " Ym (62) -> (72)

1 lYw YwB

(2) The internal riser diameter must be set to its lower constraint R1 0 (TTR > 0) becomes dominant and the up-
limit which is dictated from practical constraints, vis. per limit for DB  is given by (71). If (72) is not

satisfied, R2  becomes dominant, and the upper limit

Di* - Dimin (63) for %B is given by (69).

2) The second local optimum is the solution to problems
(3) The stress due to internal and external static pres- P2 and P Teal us tm e n tp l

sure at the lower end of the riser must be critical. P1.2 nd P2. The values of y,* , Di* and Do*
This results in an explicit expression for D0  in terms are given by equations (62), (63) and (64) respec-
of the parameters of the problem: tively and

De Dimin/'"- (64) T* - 0 (73)

where The other two design variables, B and DB , do not
affect the objective at the optimum. A solution will

2 (m1-yw) LN1  exist if there are feasible values for B and DE , for

W y (65) the derived values of ym , Di , Do and T

Constraints RS and R9 yield the feasible range
and for D.

< (66) 27

Using equations (62), (63) and (64) we can prove i-- Dimin < YR 1-W

that the lower bound for t derived from constraint
R2  is always negative. Consequently, as inequality which is not null.
(60) shows, T becomes zero in problem P1.2 and the
solutions to P1.2 and P2 become identical. Thus the Finally, constraints R1  and Rio give the feasi-
local optima reduce to the following two: ble range for B 1

1) The first local optimum is the solution to problem 36 (Iw2 16,2 2 -P1. From the activity of R1 and R4 we get 16Ln ( B* < NDi
respectively 7lain w lai /- ND -

B f() . 16L
2
S7 (1-u) (67) (75)

N 2  IDminNl(2-) This solution to problems P1.2 and P2 is similar to

the solution to problem P2 in reference 18]. In both

and cases the banding stresses are not critical.

t* = O- (68) Conclusions

It can be seen from Figure 3 that equation (67) al- The nonlinear design problem for investigation of
ways has a unique positive solution for B The sixth the effects of buckling on the optimum static design of
design variable of the problem, that is D% , does not risers was formulated. Monotonicity analysis was used
influence the objective Wlt . Problem P1 will have a to find active constraints of the optimum. Two local
solution as long as there is a feasible 1) value optima were identified as solutions to constraint bound
satisfying the inactive constraints for the values of problems. In both problems explicit values of the de-
the other five design variables defined by equations sign variables or feasibility ranges were derived in
(62), (63), (64), (67) and (68). Constraint R2 (or terms of the design parameters. These explicit expres-
condition (561) dominates RS and yields an upper bound sions can readily be used for sensitivity analysis.
for D Both local optima occur for the minimm allowable

values of the drilling mud density and internal riser
-2 F y + 1 (69) dial-ter, and when the stress at the lower eid of the' 1- L YwS riser due to the internal and external static preessures

becomes critical. One of the two local optim oc us
Rg sets a lower baund for D when the buckling Constraint becomes active. In this
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case the optimal values of design variables 0 and T 5. Bernitsas, N.H., "Static Analysis of Marine Ri-
are influenced by the bucklinq constraint. sers," Department of Naval Architecture and Marine

Engineering, The University of Michigan, ReportA:cknowleftme'..nts No. 2:34, ay 1981.
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ulty Research Grant Mos. 387565 and 387569 respective- Force Coefficients, Report W278, Aug. 1976.
ly, from the Horace H. Rackham chool of Graduate Stu-
dies of The University of Michigan. The work of the 7. Bernitsas, M.M. and Papalambros, P., "Design Opti-
second author has been supported by NSF Grant No. mization of Risers Under Generalized Static Load,"
CME80-06687. Intermaritec 80, Hamburg, W. Germany, Sept. 1980.

Nomenclature 8. Papalambros, P. and Sernitsas, N.M., "Monotonicity
Analysis in Optimum Design of Marine Risers,"BVP Boundary Value Problem Trans. ASME Journal of Mechanical Design. (to

D Average diameter of riser appear)
DB  Outer diameter of buoyancy modules
Ds max Maximum allowable DB  9. Wilds, O.J., Globally Optimal Design, Wiley Inter-Di, Do Inner and outer riser diameters science, New York, 1978.
Di min Minimum allowable Di
Z Young's Modulus 10. Papalambros, P. and Wilde, D.J., "Global Non-Itera-
f(xl+,X2") Function f Increasing with respect to x tive Design Optimization Using Monotonicity Analy-

and decreasing with respect to x 2  sis," Trans. ASKS, J. of Mch. Design, Vol. 101,
I Riser aross-sectional area moment of inertia No. 4, 1979.
L Riser's length
M Banding moment 11. Bernitsas, M.N., "Riser 

T
op Tension and Riser Buck-

Pe Effective tension ling Loads," ASMS AM, Vol. 37, 1980.
Q Shear force
Ri  Constraint no. i 12. Papalambros, P., "Monotonicity in Goal and Geomet-

Riser's material yield strength ric Programming," Trans. ASNE, J. of Mach. Design
40) Actual tension at the riser's lower end (to appear).
TTR Tension at the top of the riser
U Riser's lateral displacement
We  Effective weight of riser per unit length
Wm Weight of drilling mud per unit length
WR Weight of riser per unit length
hm  Total height of mud column
HTotal water depth
f External hydrodynamic load per unit length
p Dimensionless vertical coordinate along the

riser
Pt, P0, P1 Position of maximum total stress

P0, ;i External and internal local static pressure
wrt With respect to

Greek Symbols

SDimensionless effective riser weight
YB, YR, Yw 8pecific weight of buoyancy modules

material, riser wall material, water
Ya Specific weight of circulating mud
Yml YV2 Lower and upper limits for Ym
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CONNECTEDNESS CRITERION AND THE UNIQUE OPTIMUM OF

THE IZO-STATIC TRUSSES

M.Bayer

Dept. of Aeronautics, Mechanical Engineering Faculty,

Istanbul Technical University, Istanbul

Sum This paper deals with the uniqueness of the p(O), p(1) the path values at points 1 and 2

optimum of the least-weight izo-static elastic trusses respectively

which have given layouts and have members that are

made of different materials. The trusses under consi- q total number of the load sets

deration are subject to sets of static loads where the

member cross-sectional areas, the member stresses and S a solution domain
the nodal displacements are to remain within the pre-

scribed bounds. Connectedness criterion is utilized to t a parameter such that 0 f t ' I

show the uniqueness of the optimum
u ik nodal displacement i for load set k

uU

Symbos uk ik lower and upper bounds on Uik respectively

A. cross-sectional area of member jc whose elements are u
J u vectors ik

A., A. A. values at points 1 and 2 respectively W total weight of the truss

A., A. lower and upper bounds on A. respectively 1W2• j j W
I
, total weights of the truss af points I

A , 1? 2oe and 2p e ond nA respectively W ,Wt t lwih s o h rs fp it
AI, A2 vectors whose elements are A. and A. and 2 respectively

respectively w. weight of member i

E. elastic modulus of the material of member 1 2
j . w. weights of member j at points 1 and 2

-~ respectively
F member force in member j under load set k a position vector whose elements are

ik X ~~~~~arpsioe cto whs lmet r

vectors whose elements are Fjk variables x

x , x position vectors at points 1 and 2
(D) direction-cosine matrix respectively

(D)
T  

(D) transposed p. specific-weight of the material of member

f(x) a function of variables x J

function value .at position vector Ojk member stress in member j for load set k

fxl), f(x2) function values at position vectors Ojk Ojk lower and upper bounds on 0jk respectively

and 2 respectively k vectors whose elements are jk

(IE diagonal matrix whose elements are E./L 1 2 a values at points 1

jk' jk
subscript indicating the nodal displace- 1 -a2 2

ment number, and also the equilibrium k k respectively e t r and o
equation number rsetvl 1

equaton nmbera parameter such that 0 < A < 1

subscript indicating the member number

k subscript indicating the load set number Introduction

L. length of member .i
The least-weight Plastic truss design, as a

m total number of the members
Mathematical Programming Problem, has been a topic

n total number of the nodal displacements, to many research prograsmis since 1960[l] and many
and also the equilibrium equations

researchers have been engaged in devising buitble

Pk externalt lad thatis parallel to Uik computer methods that will find the optimum. There

is no doubt that this kind of research is very

vectors whose elements are Pik important for the practical applications, but it is

p(t) a path expressed in terms of parameter t also essential to investigate the mathematical
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characteristics of the design problem. stresses and the nodal displacements are to remain

within the prescribed bounds. The problem formulation

In this paper a very important mathematical follows[2]:

character of the truss, namely the connectedness

character, will be shown for the izo-static trusses. objective function:

There is a marked difference between the izo-static m
trusses and the hyper-static trusses. It suffices to Min W = p D. L. A. (Ia)

mention here that the former can be formulated as 
(j J J J

Non-linear Programming Problems where as the latter Subject to:

can only be formulated as Non-linear Combinatorial (D) k =

Problems[21 . Therefore these problems may posses k

multiple optima and to determine the global optimum (IE) 
( D)

T Uk = ak kl,...q (c) (I)

constitutes the most important aspect of the least- F jk A ajk j=l,...,m; k-l,...,q (Id)

weight truss design. A .  A. < A
u  j=l .... m (le)

a.Z < a < A. j-l,..,m; ~,. (ie).3 - .1

As for the least-weight izo-static trusses, this A < jk < k jl,..,m; k=l. q (if)

issue can be settled by showing the uniqueness of the uk Uik < u i=l. n; kl. q (g)
ik- k ik

optimum. It is well known that a convex optimization

problem posseses a unique optimum[3]. The convexity

criterion was firqt applied to the izo-static trusses The total weight of the truss is a linear func-

by A.R.Toakley[4] and independently from him, with a tion of the member cross-sectional areas (la). The

different approach, by the author[21. In both equilibrium equations (lb) and the compatibility

approaches the optimization problem is expressed in equations (ic) are linear constraints, where as the

terms of variable. that are the reciprocals of the member force definitions (Id) are non-linear

member cross-sectional areas. That is to say, the constraints. Due to this non-linearity the least-

minimization problem is transformed to a new space so weight elastic trusses are classified as Non-linear

that a convex formulation of the least-weight truss Programming Problems. The remainder of the constraints

design is obtained, and only by then, the uniqueness are the inequalities that enforce upper and lower

of the optimum is claimed. This transformation is limits onto the variables of the problem.

only possible for the izo-static trusses and not for

the hyper-static trusses. The problem outlined in formulation (I) may be

expressed in a fewer dimensional space where the nodal

The convexity criterion is only a sufficient displacements may be dispensed with. In this paper

condition for the unique optimum[5] , where as the however, it will be left as it is casted in formula-

connectedness criterion is the necessary and the tion(l).

sufficient condition for the unique optimum[6] and

therefore it is the most general way of showing If the nodal displacements are not constrained

uniqueness. In this paper, for the first time, the then the problem outlined in formulation (I) becomes

connectedness criterion will be used to show the a trivial Linear Programming Problem[2]. It can be

uniqueness of the optimum of the least-weight izo- easily solved by the conventional methods and at the

static elastic trusses. optimum either the member cross-sectional area or

the member stress for a particula, load set is

critical for a member.

Formulation of the Problem

This paper concerns in showing the uniqueness of Connectedness

the optimum belonging to the least-weight izo-static

elastic trusses whose members are made of different A connected minimization problem is defined below[63-

materials. The trusses have given layouts and they e £ S (2a)

are subject to sets of external static loads such i s p(t); x - p(O), x = p(l); O<t<l (2b) (2) AI
that the member cioss-sectional areas, the member f(i) < Max{f(i 1 ), f(i 2 )} (2c)
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In relations (2), x is a position vector showing a. f F /A
.jk jk j

any feasible point in solution space S (2a), and p(t) j=l. m; k=l,...q (4)

is an arbitrary path between any two feasible points a 2 Fk/A2

such as i 2and I (2b). f(x) is said to be a

connected function in S provided that there exists a On the proposed path the following relations
1 2path p(t) between x1 and x on which the function hold for a k variables since it is a linear path in

value f(i) is less than or equal to the higher of the the member stress sub-space.

function values at either end of the path (2c).

ajk - Oik + (l-) ojk j-l,....m; k=l,...,q
In order to put the connected functions into (5)

perspective the following comparisons will be 0 < X < 1

made[6] : In relation (2b), if p(t) is asked to be a

linear path then relations (2) define a quasi-convex The following relations are obtained after

function f(x) in S. In addition to this, in relation substituting 
0
1 and 

02  
f the above equations byjk A jko h bveeutosb

(2c), if f(R) is asked to be less than or equal to those of equations (4):

the linear combination of f(il) and f(j
2
) then rela-

tions (2) define a convex function f(x) inS, O = (AF'/A") + (1-A) F/A jl. m; k1 . q(6)

In relations (2), if function f(x) is to be If ajk in equations (3) are substituted by those

minimized in solution domain S then it is referred to of equations (6) then the followine are obtained:

as a connected minimization problem and it posseses

a unique optimum[6]. A. - l(X/A) I (-X)/A} j- ..... (7)

The above non-linear relations define the

Uniqueness of the Optimum proposed path in the member cross-sectional area

sub-space. To prove that it remains feasible in

The least-weight izo-static elastic truss formu- the relevant sub-domain, it is sufficient to show

lated in relations (1) can be shown to be a connected that A. defined in relations (7) satisfy constraintsa
minimization problem as defined in relations (2). In (le). In order to show this, the following relations

o~der to show this a linear path p(t) is proposed in will be first proved to hold for A. :a
the member stress and the nodal displacement sub-

space. Due to this linearity and also to the linearity A < AA + (1-A)A j-l,...,m (8)
of constraints (lc, lf, lg) the proposed path remains

feasible between any two solution points in the Substituting the above A. values by those of (7)

related sub-domain. and re-arranging relations (8) give the following

inequalities:

A. can be defined by re-arranging constraints

(Id): 0 < A(I-A)(A 2)21A. jl ... m (9)

A. = F. /a jal,...,m; kal, .. ,q (3) The above relations hold since all the terms
A kjk

at the right-hand side of the inequalities are posi-

In these relations F.k are the member forces, tive. Therefore the inequalities in relations (8)

which are constants, and can be determined from hold. It can be deduced from relations (8) that A.

I,,..' 1 ad2 Thsntrlymn
equations (lb). are bounded by A. and A.. This naturally means that3 J £L Au .

Tu,.deid
they are also bounded by A. and A.. Thus, A. defined

Let Ok) and (A
2
, a) indicate the values of in relations (7) satisfy constraints (Is) and

the variables at two arbitrary feasible solutions of therefore the proposed non-linear path remains

the problem. The variables at these points must feasible in the relevant sub-domain.

satisfy relations (3), so by re-arranging them the

followings are obtained: Hence, the proposed path is shown to be feasible

., • . - .. -. . .. , ~ ~~~-29:.,,. ,. .,.:.. . .. rj ' .? -_- / . . . .



in the solution domain defined by the constraints of problem being connected or being special form of

the minimization problem (1). To complete the proof connected, such as convex, quasi-convex, pseudo-

that it is a connected minimization problem, the convex[6].

objective function (1a) must be shown to satisfy

relation (2c). In this paper the uniqueness of the optimum of

the least-weight izo-static elastic truss is proved

Inequalities (8) will be used in showing the by the connectedness criterion. Connectedness is the

objective function (la) satisfying (2c). Multiplying necessary and the sufficient condition for the unique

relations (8) by P.L. and adding them on j, the optinum, therefore it is the most general criterion.J J
following expression is obtained in terms of the This general criterion may also be applied to the

member weights: hyper-static elastic trusses so that the global

m m m optimum of these Combinatorial Non-linear Programming
E W. <  Z w2 + ((-1) E w 1  

(10) Problems may be identified[2]. Identifying the global

j=l - j=l j a-4  
j optimum constitutes one of the most important

theoretical aspects of the truss optimization.

The above expression can be also written in

terms of the total truss weights: Although the least-weight izo-static elastic

truss posseses a unique optimum, some Mathematical

W < Awl + (I-X)W2 (11) Programming methods may find difficulties in

reaching the optimum. This may be due to their

From inequality (11) it is apparent that on the suitability to the convex problems rather than the

proposed path the total weight of the truss is less non-convex problems.

than or equal to the linear combination of the total

weights at both ends of the path. This also means If the nodal displacement constraints are not

that the total weight on the path is less than or present then the least-weight izo-static elastic

equal to the higher of the total weights at either end truss becomes a trivial Linear Programming Problem,

of the path: hence the uniqueness of the optimum is apparent

for this case. However, the conventional methods
1 2W < Max{W , W (12) rather than the Linear Programming methods should be

used in solving these problems.

Thus, the objective function of the minimization Acknowledgement. The author would like to express

problem outlined in formulation (I) is shown to sincere thanks to Dr.E.Yarimer of University College
London for his instructive suggestions during the

satisfy relation (2c). This completes the connected- early stages isresrch.
early stages of this research.

ness proof of the problem.
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PARAMETERIZATION IN FINITE ELEMENT ANALYSIS

s. P. Wang and w. D. Pilkey

Department of mechanical and Aerospace Engineering
University of Virginia

Charlottesville. Virginia 22901

Summary When the design modification involves only a
single parameter, the displacement responses can be

- Techniques are developed for expressing expressed as explicit functions of the designstructural response of a finite element model as a parameter. This will facilitate a parametric study
function of design parameters. Analytical in a design analysis. The explicit functional
formulations are derived for the displacement response relationship can be found by various techniques,
as well as for the rate of change of the response including explicit matrix inversion for a came withwith respect to the design parameter values of an less than 3 active dof. the use of LAverrier's
updated design. A 10 member truss system is used to algorithm. or the use of a spectral expansion
illustrate the computations required by these technique.
formulationsfx

The general formulation for expressing responses
Introduction as functions of design parameters is developed in

the following section. A truss example is given.
In optimal structural design, the goal is The derivative formations are presented in the next

usually to find the value of a set of design section. The same truss is employed to illustrate
Parameters such that the structure is optimized in the use of the derivatives. In the final section,
some sense while satisfying prescribed constiaints. various techniques of expressing a response as an
The analysis for the structural response needed in explicit function of a single design parameter are
forming objective functions or constraints is often presented. A frame example is provided.
handled by the finite element method (1). In this
Paper, methods of expressing the response as a Static Response as a Function of the Design
function of design parameters are developed for Parameters
linear finite element models. In particular, the
following three topics will be discusseds When doing structural designing, such am for a

spacecraft structure. a preliminary design is usually
(1) Expression of the displacement response as chosen based on previous experience with similar

an explicit function of the design parameters and of structures. We will suppose that such a preliminary
a set of reduced active degrees of freedom (dof). design exists. Furthermore, let us assume the

structure is modeled by finite element methods so
(2) Computation of derivatives of responses as a that the static behavior of the structure is

function of design parameters. governed by the following system of linear equations
(3) Expression of displacement responses am [K ](Uo) - (P) (11

explicit functions of a single design parameter.

where
The computation of response derivatives is a

straightforward procedure if the derivativeg are (X -system stiffness matrix. nxn
taken at the original trial design( 2). If the a
derivatives at the updated design state are desired, s- system displacement vector. n3l
it would appear that the updated system has to be 0
solved. In this paper, the derivative calculation is (P) - stes loading vector. nil
based on a reanalysis formulation and permits thecomputation of the derivative at any updated design n - number of dof of the discretisedstate without the need to resolve the updated structure

system. This is achieved using an exact reanalysis
formulation (3,4) to express the responses am "e upper cose quantities are referred to as the
explicit bilinear functions of the design parameter global coordinates. In practical design situations,
and the unknown response of a set of active dof. there may be more than one loading vector to be
These active dof are defined as those that are csidered. Here. to illustrate the formlation.
physically contained In the modified portion of the will asum that there Is only one loading vector.
structure. This approach will simplify an optimal
structural design Computation which employs an Thi, preliminary design, oe often than not,
integrated formulation (1,) in which the dsign will not meet all the "esign specificatidii. Thus,
a analysis problem are solved silltaneouely. %%is the designer nowmnaly ooses to modify the design in
simplification results from the analysis equetime order to achieve a feasible design. In theory,being replaced by a system of bilinear equations with optimal dsign procedures can be applied to resize
a reduced mber of unknowns. It is shown that once all of the mmbers of the systm to achiev anthe required infotion for eiact reanalysis is optimal design. In practice, besmer. this approach Isestablished, the omutation of derivatives at am usually avoided due to the omutational difficulty
updated design can be acclishd with little of solving a large-order. nonlinea. pograing
effort. T availlability of thee derivatives prblem. Mother. the designer usually mifils the
permits an eiltlml design using, for olspl, a first structure locally to ipVEG" Its perfomeace. This
order Taylor eupeassIo (1) to linearize the s approach has a minimam a on the project schedult
to be carried out efficiently. due to design changes a d vould make imm use of
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structural components that have been proved in other and
projects.

.-[Bi (A-- (i (7)
Let us assume that the designer chooses to

modify the system locally and uses a design [aKxi - rBi IT f O--I(. JBi  (o)
parameters to characterize the design modifications.
The new finite element equation of motion would where
appear as

[B i - Boolean matrix. cixn
[o+ AK](tJ1 - (P1 (21

Substituting Eq. (4) into Eq. (2) and
where rearranging

(M1 - displacement vector of the modified
system. nIl 'K.JI)U .{PJ -X'o,, [dK] JV) (9)

[dK] - contribution to the global stiffness
matrix due to design modifications, or

It should be noted that in applying Eq. (2), we .4 -,
are making the assumption that the loading vector is {U) =K.] [P) -7 a;rK.1'LAK*J fvj (10,
independent of design modifications. The case
wherein (P is a function of the design parameters can
be handled in a similar fashion. This will be Examine the term r K.' 6.i*]fu. From Eqs. (6) and
discussed in the next subsection. (81

we proceed by condensing the system of (K0]
"1 
(AK*(Ul

equations. Let -

- [K.V t ( i IT (5 [Bi IfU)
Ixi (Ci) c contribution to the global stiffness

matrix due to design parameters 0(i . I t, B- IT [ 6K* I{i (11)
nin

A Define
(U Wi;) - displacement vectors of def that

are connected to the portion of rDi 1 - rBi 3 [i,I
structure defined by parameter
C; xl - n x c, pseudoload matrix (121

- active dof associated with [Y/ ] - ([f' (Di ]. n x C (131
parameters %(,

Also. note that
ci - number of active dof associated

with parameters o(;. ( 1K. (P). - (K01 (14)

Normally. (6K;(oci I1 is a linear function of the Equations (11) - (141 permit Eq. (10) to be written
design parameter Ogi. For this case. as

faK1(oq)i - Oc;(8K'1 (3)
where fUj .iU.} - ._ [Y] (U.) (13

[61K'AI - .6K i . with 0ti- 1.0. Thus by definition Equation (151 is a relation: -p between the modified

system responses, the original system responses (U@ ),
rythe design parameters and the response of the

[AK] = [ L--Ki = q (L 1i (4) active dof associated with all of the design
1s ".1 parameters.

Futhermore. define Let t be the total number of active dof. Then

[(Aix - condensed global stiffness matrix 5

associated with parameter o(, . ctxc t  .C, (11

- (8K .I with all rowe and columns The inequality is needed because sone dof may be
containing only zeros deleted active dof for several design parameters. Based on

similarly, Eq. (IS). optimal design using the integrated approach
will involve (t+ml variables as compared with (n+m1
variables when Eq. (21 is used. When t tc n. this

I i l may lead to considerable computational efficiency.

Furthermore, Eq. (151 is bilinear in the unknowns
in which s..oo... ,,and (0). where

'J-[4-0 with d- 2 1U0) - fU u, u l)1 ... u (17)

note that Equation (131 can be further reduced for the purpose
of reanalymis. Define
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1 0 0 0 0 0 0 0

= lb,] [ (18181 -

where (b] - c; x t Boolean matrix. Then. Eq. (151

can be written as 0 0

fl - (U,) - [W](U) (19a) 0

where (b8 1- [1 0

IN) = Si (Yjb;.1 (19b1 1

Define anoter Boolean matrix rEl. tXn. such that

(G)l - wEJuI 120) 10 00 000
Premultiply Eq. (19a) by [El (El 1 0 0 0 0 0

(U) ^(U ) (21) 0 0 0 0 1 0

or For the loading conditions shown, the solution of the
original system is:

(^ + 6
(whr - (UIi + W ' ( ) (221 0.0070331

where [0.016744

"J - i- (EJ(Yj1(bl (23) 0.008477

Note that. in practice. the various Boolean 0.037951
matrices need not be defined and the product 0.o79.
involving Boolean matrices involves the selection of - 0.007367
the proper rows and columns as when assembling the -03
global stiffness matrix in a finite element analysis.|0.018021
For a given set ofparameter values. Eq. (211 can be | 0 2
used to compute (U) and then Eq. (19a) provides (u). -0.009522
Thus, the desired reanalysis is carried out. l 05
Equation (21) will be used to derive the derivative 0.0393961
of responses as functions of the design variables.

Furthermore.
Example 1

The 10-member truss system shown in Figs. 1 will r~
be used to illustrate the above formulation. -

1.-.- 360 3 360 in which a - 27777.78 and

with b - 9020.029. Then rY(,, I and 1Yj) can be
\computed from (131. The results are

ry,1 - r(_, - (yi]

101 00 6.. -I
[Y, - [(s1 - (z))

E = 10 psi 2 where

Original Design: A = 1.0 in for all members

Fig. 1 Ton Nember Truss 0.104007 0.116914

0.401246 -0.552404

Suppose the cross-soctional areas of member S and 8 0.197507 0.104807
are to be modifed. As shoiw, the system has 5 dofs.

For this system. the fctive dof for member S is 1 -0.493947

(00,Q) - [, U,) "'. while (U(c,) - (U, U2 )
T 

are the (y 1 - 0.104907 (Zl - 0.116914
active dof associated with member S. Thus. c, = 2
and c 1 - 2. Then (U) - Il,,) U(U) I - (U U, U1  ITJY  

-0.401246 -0.447569
and t - 3. Also. It can be readily identified that

0.197S97 -0.104807

[D 0 0.0463502J -o.S06053

0 0 00 10 0
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Equation (15s can be expressed as Note that stiffenina member 5 will increase the

displacement Ug.

In order to modify member a only. set 0(C - 0 and

0(,.-X in Eq. (al. Use the first two relations In

- (Z[l - (Z11{Ij Eq. (a) to solve for U, and UZ . Substitute the

results into (a).

or 0.oo_ 7103 _ 0_z,
(U)= (U

o
l + (d)

For the displacement at dof e

Equation (al expresses the resonse (U) in terms of -s
the original responses (Us). the 2 design parameters 

U 4 0.0393957 4q3q( o e6 (e

or.( t and the unknown displacements at the active 
dof t + O.6'q318K,

U'. Uz and UG.
Equations (c) and 1b) are also plotted in Fla. 2. It

For given values 0', and %C,. the first. second. should be noticed that the stiffness of member 5 has

and sixth equations are used to evaluate (u i' • little effect on Us by itself or when stiffening
simultaneously with member a. In contrast, the

lU . U,37 effects are quite noticeable when softening (reducing
the cross-sectional area) simultaneously with member a.

These values are inserted in Eq. Cal to find the

displacements at other dof. In Fig. 2. the Rate of Chanae of Responses
displacement Us (y displacement at node 61 is plotted

for various values of of,= ,=. Take the derivative of EU) of Eq. (19a) with

respect to

0.07

Us(U -[VI CUl - WW(I (24)

0.06 CHANGE BOTH AfSM8E* 3 ANDo a where X,

From Eq. (.91b

O. !WV)a - [Yi][b i 1 (251
A

, Thus. if M),;i is known. wU))(j can be computed

ei 04 WY CHAW c *WM5( using Eq. (241. From Eq. (191

(A, . V, Ar ) - rW.A ,,f; A(26)

Thus.

-O^ 0.5 a /- of I. + . .V U (27
(Ol i  

-. rI. . " (U

where

Fig. 2 Displacement 0 as Function of Desian Parameter

(i = !Z(Y;ibi] (28)

Example 2 Using Eq. (221

For the special case of modifying only member s ( -((1 + A . [ + rw1'Cu 1 (291

(1(31 (WIg(I + IN) W
(or m r 1). we can find an explicit equation for 

A" + " - "

the modified system response in-erm of the design with (I and . defined in Eq. (231 and (261
paramneters. respectively.

For modifying m r S only. Of - 0. Then, in Equations (291 and (241 define the derivative.

Eq. (al of the previous example. sot d, -a and solve or rate of change. of responses with respect to a

for V& and U, from the second and sixth equations. design parameter at any design state (OCi values ) in

Subetitute the results back Into Eq. (a). The results terms of the parameter values, system characterics.
are and original system r(,ponses.

+ 0.O0i27770,( It should be noted that the classical method of
(I - u + I 0.eoSbe4qzO f y) computing the response derivative (21 is a special

case of the present formulation. Let of - 0 for i -
1 to a in Eq. (241. Theh

or

-S 0.0915 + ((01.Ii)(0

O -0.0393957 * *'q.M9 (1 From (22). we haveS-. O.z4qZe~o

(U) 7(a, (311
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Since fQ.I - Oy. Also - - K i] Thus. -. 083

= """- ry, i 1  "l 0.010053

- -[y; 1(U.; 1 (32) 04 o.o71? 2 J

- -Y!;110 0;)o

Explicit Functions for the Response as a Function
Usina definitions (12b and (l3'1, of a Sinale Desion Parameter

-(K*] .(B )f(AK J(B(U o } Suppose all the design parameters are equal.

-(x, ( ) ( 33)i.e..

Note that *-1. O04,-O( (341

[a X; K K[AXt IThen. Eq. 118) becomes

Tu.(Ul (U.) -oCK(fJu^) (35)Thus.o

(K],j AK'Ko  + 1"¢ -i rAI(7e  where

EXw,,- (,.[b* . (361

Hence Eq. (33) is equivalent to the classical
formula Also. Eq. (22) becomes

-I

+MW1 (U, (37)
(UI)g "-(K*1" " K K-lt gj aI - ([I.l+( A

. 
.. (UF.(7

Exanle 3 where

Return to the structure of Fig. 1. To rA X

illustrate the use of Eq. (28). the rate of change of
responses with respect to the changes in the cross- Substitute Eq. (37) into Eq. (35)
Sectional areas of members 5 and 8 will be
calculated. For this case. Ul- fu,) -OQW-(I1 (. ([)

(WI - atYg) ]fb(,) I + O(L fY(Z)Irb(z ) ] For t 4 3, the matrix inversion of Eq. (391 can be

and carried out explicitly. This permits (U) to be

expressed as an explicit function of . For t 4.
A the inversion of the the "A-matrix" ((I] +o (W]j
W),g, .E]YT(i ][b(;) ] can be accomplished by one of the following

Using the data given in Example 1. peds.

0.10:07 -0.040Levrrier' 5 Algorithm0 .040 -0.1040
, -0.40124 Leverrierls algorithm (61 was developed as an

_1. .1 analytical inverse of the matrix ( I - A) . Let
a - -1*. or of - -1/8. Then

0.197507 -0.19750- o
([I] +$(w )I _ S(81 _ (W*]) (40)

0.110914 -0.116914 0 Applying Leverrier's algorithm to the matrixW'I = -0.552404 0.524041 0 inversion on the right hand side of Eq. (401 gives
(W!, ,] , -'LPd ... + s(PU

-0.44729G 0.447596 0 - ( .

'hes quantities are independent of 0. For iMultiplying both the numerator and denominator
o(,. 1.0. 019- 3.0

A [.0742 -0.24o93 0.104,' 
,+ 4)

WI) - ( 3 (W - 0.167212 .1.2054S5 -0.4012" wbe e the scalars Q1 and matrices [Pi are computed

1.342796 0.9415542 0.40124/ using the recursive relationships

(Ps] - CI).
With this information. Eq. (29) leads to (42)

f '°°'°i where fAj - (W- and for 2 to n

* -Ifu _- -. 002703
tPj3 - IAI(Pj..i ) + Qj.. [11

.002 1 Qj- -tr([A[PjJ.)/i (431
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I

tr - trace of a matrix

When the order of the matrix rw1 is high. (ri. +o(.rW) 1PI - O=lP ]

Leverrier s algorithm may lose its accuracy due to I OOrt

excessive multiplication. In this case. spectral
representation can be used. or 01--i:: :a -

Soectral Decomoosition (fi. +o((v*1) - _ _ d -a] .
I 4 Za

In this representation.
or

(I +atfV')) -Nil (44)+ am

where (q;,) and (7) are the right and left ([I. +"[W* ) -

eiaenvectors of -Q'*. and Aare the corresponding 1 + 2asc
eigenvalues. The vectors (Qfi) and (O;) are normalized
such that

I' + 0401246( 0.4012466(
0.,0124K 1 +.4.1246,j

Use of Eq. (41) or (44) in Eq. (39) permits the 
0,_ 0124_K ___1 ____

responses to be expressed as explicit functions of
the design parameter 1 + 0.9024920(

Examole 4
Example 5

To illustrate the use of Leverrier's algorithm
consider the case of a change in the cross-sectional Continue the previous example, except use the
area of member 5 only. For this problem, spectral representation. The eigenvalues are o1 " 0

and A.- 2a. The corresponding right and left
(w*i = ry,) 1 - ((y) -fy1] eigenvectors are

hu . - B(5, 1(V*) T1/21

[a -a

~ (-J (JJ~) 1 1/21J
in which

a, - y
1 

- 0.401246 Thus. Eq. (441 leads to

a&- I -0.401246 - -a, 1 01)NJT f4-N NO

Thus. (A, +I*1) + +

(;'l- a~ rAl r1/2 l/21r1/2 -1/2

+ I + ____

+ a a]*

I.'. - c: ra / :iz /z-c

Q- -trrAip, 1 - -2a _

fps) A( U 1 + Q,fI1 [' J I + 2&0

This is the ame result AS found in Example 4.

Q2- -tr(W[iP 11)I2 - -tr[ 0 /2 -0 Conclusions

In this paper technique. Ae considered for
Then. for n - 2. Eq. (41) becomes expressin9 the modified response of a line&r

structural system as functions of the desl9n
perameters and the displacements of a reduced set of
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active dof. This should be useful in the optimal
design procedures utilizing local modifications. For
a given number of active dof. the method becomes more
effective an the order of the system increases.
Furthermore, the rate of change of responses with
respect to the design parameters has been derived.
Such a relationship can be used effectively in the
first order Taylor series expansion frequently
employed in iterative optimal design. Finally. when
the design involves only a single paramter. the
responses can be expressed explicitly as a function
of that parameter. This simplifies greatly a design
trade-off study.

To fully explore the potential of these
formulations, computer software should be developed.
This could take the form of a poatprocessor that
relies on an existing analysis code to provide the
information needed in the formulation. With Such a
program available, optimal design by local
modification using the present formulation, could be
further studied.
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/ APPLICATION OF LINEAR CONSTRAINT APPROXIMATIONS TO FRAE STRUCTURES

by

J. A. Bennett

Engineering Mechanics Department

I General Motors Research Laboratories
Warren, Michigan 48090

Abstract
Nature of the Approximations

The use of structural approximation 
techniques

coupled vith mathematical programing methods has The general structural optimization problem is
proved to be an efficient way to handle structural given by
optimization problems. Approximating the constraints
with first order Taylor series implies that the effec- minimize M(x) +
tiveness of the approximation is dependent on the subject to gI(x) K 0 (1)
linearity of the active constraint over some segment
of the design space. This is accomplished by choosing where M is the mass, the gi's are constraints on
either a simple element, such as a truss or shear displacements, stresses frequencies, and member sizes,
panel, or by using an intermediate design variable and x i the vector of design variables, typically
chosen for the particular application, Some struc- member sizes.
tres such a-2-i mle do not -au/iy-eld themselves to If one uses a first-order Taylor series to express
either of these approaches. One approach to this the constraints,
problem is to retain the concept of linear approxima-
tions for the constraints but to accept that the move b1 A2
regions will be somewhat smaller than those used for a '(' - 80() + As
sTote linearized problem. i "

-This approach has been applied to frame models of
the automotive skeleton. The beams were thin-walled It is possible to pose the problem stated in eq. (1)
box and channel sections in which thickness, widths, as a series of approximate structural optimization
and heights were used as design variables. It was problem in which the constraints are evaluated using
found that approximately 20-25 finite element solu- eq. (2) rather then a full structural analysis (I).
tions were required to find minimum mass solutions for After each approximate structural optimization
reasonably complex structures with approximately problem is solved, a full finite element analysis is
500 degrees of freedom and 100 design variables with as
both stress and stiffness constraints. Since the conducted to generate the g 1 o's and-W - s for the next
majority of the analyses are required In the conver- I
gence portion of the problem, the effect of changing approximate problem. The x, are restricted to be lss
the ove limits was minimal. However, if the move than some move limits so that the design remains in
limits were too large, the process did not converge, the neighborhood of the initial design. Thus there is

a relationship between the noullnarity of the eom-
Introduction 7 straints and the appropriate values of the move imlts

which will allow an efficient solution.
The development of structural optimization as a Clearly one desirable goal is to choose as

design tool has continually emphasized the need to quantities to expand the constraints, variables which
provide efficient ways of accomplishing minimm mass will linearize the constraints. For a simple truss
design. It was realised fairly early in this develop- member, for example, the displacement is given by
mant that straightforward application of classical
mathematical progrimniug techniques required excessive 6 " (3)

computer time to be considered for large scale struc-
tural optimization problems. Therefore much of the The displacement 6 Is nonllnearly dependent on the

thrust of more recent work has been to develop more obvious choice of design variable A. However, if one
efficient classes of structural optimization methods, makes the change of variable ; -. , the constraint
The most comon approaches are the approximation now become linearly dependent on the variable 0
concepts (1) and the optimality criteria (2) methods.
Very recently the essential similarity of these 6 -.

methods has been demonstrated (3,4). In essence, all (4)

of these approaches exploit the quasi-linear response Thus for a statically determinste truss problem, the
behavior of many structural Idealizations. This displacement and stress constraints will be linear
permits the effective use of linear extrapolation of functions of the Oi's. although the mass will be a
the constraint behavior in the neighborhood of a known nonlinear function of the Fl's. The assumption is
solution. that for an Indeterminate truss the constraint non-

Much of the literature in the area of efficient linearitie will be slight and fairly large move
structural optimization codes has therefore been limits will be possible. Similarly, for simple plate
limited to structural elements which can be fairly or beam beanding problem, an expansion in the inverse
easily linearized in same design variable such as of the inertia term is effective for displacement con-
truss or shear elements. Signtficantly le expe- straints and in the section modulus for the stress
rience has been developed !zt- structures for which the constraints.
linearization is not so obvious such as frome struc- If one mom considers frame structures, the problem
tures. Much of the existing work with from strut- becomes more complicated since the structure Is now
tures he Involved expressing the section properties dependent on the beanding as wll as the axial deflec-
as functions of a single design variable (5,6), tions of the structure. There Is probably no single
typically for wide flanged I beams. It is the quantity which will render the expanslons for die-
intentio of this paper to explore the application of placements and stress*s of frme structures as close
simple approximation techniques to more Seral thin- to linear as will the reciprocal area variable for
walled beam sections. trusses.
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In addition, the selection of a single independent
variable to describe both the area and the section
moment of inertia usually will Imply some relationship
among the section external dimensions such as has been
determined for wide flanged I beams (5,6). A second
approach would be to consider second order expansions;

the computational burden may become excessive. A
remaIning option is to continue to use the linear
expansions in the approximate problem with a simple
but admittedly nonlinear choice of expansion vari- OUTER (PLATES)
ables. This will require a reduction of the move
limits such that the sequence of approximate problems
will converge to a minimum mass design. If the in-
creased computational cost is not too excessive, this
may be an acceptable approach.

Class of Problems Considered

The type of structures that are to be optimized
are those structures which are found in an automotive
structure. This structure is a complex assembly of
components which are stamped sheet metal (Fig. 1).

INNER (BEAMS)

Fig. 3 Hood structure

Fig. 1 Typical automotive structure

k--- b--,
For modeling purposes these componenth zan be repre-
sented as beam elements or plate elements. The beam (1) BOX BEAM
elements form a skeleton frame structure which carries
the major structural loads (Fig. 2). The plate ele-
ments which are integral parts of the body typically I-w-1
are designed by local conditions. The removable ---
panels such as hoods, deck lids, and doors are treated
as rib stiffened panels. Therefore, it is convenient
to handle most panel structures on a component level t h
optimization and to handle the beam skeleton optimiza-
tion on a global level with a simple reoresentatlon
fore, the two types of models as shown In Figs. 2 and d d

3 arise. The structure shown in Fig. 2 is clearly a
frame structure in which both bending and axial loads
will occur.

o) TUNNEL SECTION

Fig. 4 Typical beam sections

Fig. 2 Typical simplified beam model
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The beam members in this structure are typically an extensive set of approximations appropriate for
thin-walled beaus with exterior to thickness ratios of each constraint type or try to identify a single
the order of 100 to 200. During the early part of the expansion type that is reasonably robust. This latter
design process, the width, height, and thickness of approach was taken in the present work.
the beams are variable. Therefore, it is appropriate Clearly the simplest approach is to expand the
to use thin-walled rectangular sr-tions for that part constraints in terms of each of the physical design
of the design process where the exterior dimensions variajlee, xi, or possibly their reciprocals,
may vary. These types of elements are shown in PI . The reciprocal relationship is attractive
Fig. 4. As the design progresses, the cross sections 1
will take a more contorted shape for manufacturing or based on the reciprocal nature of the relation between
packaging considerations. At this point thickness Is the stresses and the physical design vsriablea for
the only appropriate design variable, simple frame members. On the other hand, for a fre-

The structure is typically subjected to load quency constraint the physical variables would be sore
inputs though the suspension as well as impact loads attractive since
through the bumper, both of which lead to stress and
displacement constraints. In addition, there are w

2 
. K (5)

usually lower bounds on the first bending and tor- af
sional frequencies. These frequency constraints are where m is the nonstructural mass. Since in general
usually stated in terms of the complete vehicle which for the global structure mom, this becomes
has a significant amount of nonstructural mass.
Typical load conditions and constraints are shown in .

2 
a K. (6)

FiX. 5.

Because of this difference in constraint behavior,
SYWIETRIC BOUNDARY CONDITIONS example problems will be run with two different sets

of design variables

1. H-point beaming
3340 N vertical at B-pillar, deflection at 3-pillar 1) - b, h
loss than 0.102 cm t

2. Rear bean Il
1110 N vertical at rear bumper, deflection at rear 2) -t, b -
bumper less tha 0.645 cm

3. Front bumper An alternate approach to varying all dimensions
33400 N rearward at front bumper simultaneously is to note that since thln-walled beams

4. 3q bump both front wheels are being used, expanding in the reciprocal of the
10030 V front wheel, 3800 N rear wheel thickness while keeping the remaining design variables

5. Rear bumper fixed should lead to very high quality approximation*

31200 N forward at rear bumper for displacements or stresses, whereas the approxi-
6. 0l o~ootl ading tauations may not be as accurate when all variables are

6. R ot n daadpng considered. This suggests a two-step procedure in
4450 H d ard at top of A-pillar which the optimization is first run with the recip-

7. cowl loading rocal thickness variable. Once an optimum to this
4450 N rearward at outside edge of cowl problem is reached, the problem is restarted con-

8. 39 bump both rear wheels sidering all design variables possibly with tighter
3440 N front wheel, 11550 N rear wheel move limits. This approach may be extremely attrac-

9. 2q panic brake tive in the situation where the upper bounds on the
9700 N rearward, 6140 N up at front #heql exterior dimensions will be active on several of the
4930 N rearward. 1180 N up at rear wheel major structural members. In this case, if the thick-

ness only design is run with all uembers at their
largest dimension, a design that is quite close to the

ASYMMETRIC BOUNDAPY CONDITIONS final optimum will be obtained at the end of this
step. In the step where all design variables are

1. Torsional stiffness considered, the major size changes will be primarily
1110 N vertical at rear wheel. deflection at rear wheel in those members which are lightly loaded (i.e., the
less than 0.165 cm external sizes can decrease), and the inaccuracies in

the constraint approximations will not be critical to
the convergence. This will be called the combined

COMINED LOADING method.
The selection of an appropriate move lt is

1. 39 bump one front wheel clearly critical to the success of the approximation
2. 3 bupp one rear wheel scheme. If the move limit is too mall, an excessive

number of analyses will be required, whereas too large
FREQUENCY CONSTRAINTS a move limit say introduce instabilities which can

preclude convergence. In addition, move limits for

1. symmetric physical and reciprocal variables are not directly

First a"e c .O hi comparable. For example, if the move limit is a an$
the reciprocal variable is

2. Asymetric 1
First ade 16.0 h ,(7)

Fig. 5 Load conditions and constraints then the mximum change In b isb - I b o I . ,
expansion Approach

The extensive set of constraints discussed in the
previous section suggest that either one mst develop
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Thus if a-.5 for reciprocal variables this Implies a O U
maximum 331 decrease or 1002 increase in the physical( NODE NUMBER
variable since

b b-b I b (.667)
06. +0 0(

(9)
b- b°  -5) - bo (2)

whereas if physical vsriables are used throughout, a
50 change in both directions will result. Since
dimensions more frequently decrease in an optimization
process, there Is some difficulty in choosing compara-
tive move limits. The move limlts of 1 .3 and 1.0
chosen in the examples for the and h expansion
give decreasing limits of .23 and .5, respectively, in
the physical variables, which is quite similar to the 89.0D 12.6
move limits of .2 snd .5 which will be used in the
physical variables examples. (D

Optimization Method
0, 0

The evsluations of these various approaches 
were

carried out using the GM structural optimization code, (a) LAYOUT (DIMENSIONS IN cm)
ODYSSEY (Optimum DYnamic and Static Structurally
Efficieni-SYstem-.. This program allows both con- It
straint approximation methods and full mathematical
programming methods with exact constraint evsluation
to be used as required. The design variab~e may be 076 t .
any integer power of the physical variable. A T. 0 b 10. 0
feasible directions algorithm (CONHIN (8)) is used as i
an optimizer in both cases. A design library of thin-
walled beam elements and trlangtlar plate bending and 1.0 h 10.0

membrane elements Is available. Multiple load condi-
tions and multiple boundary conditions may be applied.

For purposes of derivative calculations, stresses are J--. b---
assmed to depend only on the design variables of the
local element. The displacement and frequency con-
straints are dependent on all design variables. b) CROSS SECTION

LOADING CONDITION I LOADING CONDITION 2
Comparative Examples 40. Wt001 0 IODD Nt

Example 1. This is a seven bar frame problem 0.10 )() t  (D 15 .. OOD Nt
whose dimensions, loading, and constraints are shown
In Fig. 6. The iteration history of an all-variable,
mathematical programming optimization run is shown in FREQUENCY CONSTRAINT: W > 10HZ
Fig. 7. The iteration history is plotted In terms of
function evaluations. Each function evaluation -- VERTICAL DEFLECTION OFNODE( < .2cm

quires a finite element evaluation of all constraints. > .04cm
The optimum mass i 8.18 kg. At the optimum, one
displacement constraint and several stress constraints Fig. 6 7 bar frame
are active.

Figure 8 shows the results of a t only (the actual problem will indicate a feasible minimum has been
design variable Is.!) approximate optimization with a obtained, but when the constraints are reevaluated by

v lthe full finite element analysis, they are not satis-move limit (A) of *25% (.25) followed by an all- fied.
variable approximate optimization. Points identified
with a dot have a maximum constraint violation of 32. p re 9 solts the solutions for an all-vara ble
those with an open circle of between 32 and 102, and approximate solution throughout the optimization. The
those with an coe ciare ofbeteen 3and 10. ad results in this case are quite similar to those of the
those with a closed box are greater than 102. The combined optimization. Move limits of .2 proved to
program does not force sit absolutely feasible solu- converge most quickly and move limits of .5 did not
tion, so a 3% maximum violation has been taken as an converge. Fifteen to twenty total function evalua-
acceptable design. Using the approximations usually tions were needed to find the solution. it does
produces a final design that is not strictly feasible appear that this approach could be slightly more
but close enough for practical design considerations. efficient since the convergence process only occur@
The transition betueen the t only and the all-variable once. Figure 10 shov similar results for the
segments occurs after the flattening in the curve I 1 1

ire segment Is convering. p' t combination. This choice clearly gives better

i 8indicates that with move lmits of .1 and apprximations for the higher move limits than doesPllsre8 idictestha w/h mve lmis o .Iend the -, b, It expansion. However, there to a very
.2 (102 and 20%) that the optimum was obtained in 25 t
and 15 function evaluations, respectively, as compared little difference in the number of function evalua-
with 70 for the full optimization (Fig. 4). Rowever, tions required for convergence. Even though the move
for a move limit of .5, the program was unable to find limits affect the site of the first few steps, the
a solution. This is primarily caused by the nonlin- moves during the final convergence are quite small and
esrlty of the constraints In that the approximate
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are not greatly affected by the move limits. Since
the firial convergence process usually required the 20.0-
majority of the function evaluations, there Is not a - CONSTRAINT VILTO < 1 16
uignifteant reduction In the number of function 111.8 o CONtSTRAINTI VIOLATION < 10%
evaluations by using the larger move limits. a CONSTRAINTI VIOLATION > 10 -

Tho previous examples have all converged to
approximately the same minimum sees In that the U.0 ALL 'jARIAWLP
maximum scatter was less than 2% of the full optimiza-
tion masa. Figure 11 presents a comparison of the
final designs between the mathematical programming 14.0
optimization and the combined optimization using b and
h as design variables with A-.2. It is clear that the y

final dimensions are quits different in some cases, i
although the mass distributions are basically eimilt'r.
These types of differences were observed in the re- 00
sults from all of the varying schemes and are Indica-
tive of the well known flatness In the neighborhood of
the optimum of statically Indeterminate problems. 80-

V.00

0CONSTRAINT VIOLATION < to% . ,

a. CONSTRAINT VOAIN>1%FUNCTION EVALUATIONS

Fig. 9 7 bar fra~ie
U.0 -ALL VARIABLES

V 12.0 &
VF - CONSTRAINT VIOLATION < 3%

In 0 CONSTRAINT VIOLATION < 10 a
11.01 a CONSTRAINT VIOLATION > 10%

I ONLYALVAIBE

14.0 A-I6
I,0- 11

0 W 20 30 40 50 60 70
FUNCTIONEVLAIN 00

Fi. BAR FRAME. MATHIEMATICAL PROGRAMMING SOLUTION

20.00

28.0 ~6.0 , . U

CONSTRAINT VIOLATION < 3% a 2 4 6 6 10 32 34 a
V00CONSTRAINT VIOLATION < 18% FUNCT ION EVALUATIONS

8CONSTRAINT VIOLATION > 10%

OWL* Fig. 10a I bar frame
AU. VARIABLES

I ONLY 1 111..0

*CONSTRAINT VIOLATION < 3S
16.0o CONSTRAINT VIOLATION < 10 %

V; a* CONSTIRAINT VIOLATION > 10%6

Ito0 14.0- ALL VARIABLE1S

8.0 12.0-

6*0*FNCIO E. VOLUTIONS~*3.

Fig. 8 7 bar frame 
60

6.0

FUNCTION EVALUATIONS

Fig. 10b 7 bar frame
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Com bined Optim ization. lit, b. h IFig. 7) 22o .0 - W S UNt VoLA t oN < 3 ,
o CONSTRAINT VIOLATION < 10

1.80 .165 I.O 3.73 200.0- U CONSTRAINT VIOLATION > 10.
2 1.61 .096 LO.00 10.00
3 1.17 .110 7.81 10.00

2.42 .201 10.00 5.49 *8 . O AU. VARIABLES
5 .14 .Ob 1.50 1.32

.22 .076 1.28 1.28 I ,h
7 .8 _ .0 7 6 5 .3 1 5 .1 3 .

e.1 8.25 160.0-

1.X

Mathematical Proqramming, lit, b. h(Fia.8) U3

1 1.74 .205 8.39 2.42 ' 120.0
2 1.67 .1.3 7.31 6.76
3 1.19 .138 7.41 7.15

2.09 .268 9.01 1.28 '000 FULL OPTIMI
5 . ,2 .076 1.0 1.50
6 .17 .078 1.00 1.00-MINIMUM
7 1.21 .095 5.83 5.74

TotcI 8.18 60.0

60.0
0 2 4 6 I. 10 12 14 0 18 20

Fig. 11 Final optimized sizes for 7 bar frame FUNCTION EVALUATIONS

Fig. 12b 33 bar frame

Example 2. This example is based on modeling the
load-carrying skeleton of the automobile by beam 220.0- COSTRAINT VIOLATION < 3S
members as shown In Fig. 2 and under the load condi- 0 CONSTRAINT VIOLATION < 10%
tions of Fig. 5. This example had 77 total design 200.0 - CONSTRAINT VIOLATION > 10%
variables and 154 degrees of freedom. The all-
variable, full optimization approach required 200 VARIABLES
function evaluations and produced an optimum mass of 180.0 AU.
78 kg. Results for combined and approximate optimiza- t. 6, 6
tions using both physical and reciprocal variables are 160.0 1.2

shown in Fig. 12-12d. In general the results are A.

similar to those for the seven bar frame except that 140.-
smaller move limits vere required. In addition, the 0.
combined approach appeared to converge better than the gn
all-variable approach. Further reduction of the move 120.0-
limits would improve the convergence at the expense of FULL OPTIMIZATION
more function evaluations. Approximately twenty 100.0 MINIMUM
function evaluations were required to obtain a minimum
mess feasible solution. Although there are some
convergence difficulties, these seem quite acceptable 0.0

in light of the order of magnitude decrease in the
number of function evaluations with the approximation 60.0
methods. Currently the combined approach with move 0 S 10 . IS. 20 25
limits of .25 and .1 are routinely being used on FUNCTION EVALUATIONS
problems of this type. Fig. 12c 33 bar frame

220.0- 220.0- CONSTRAINT VIOLATION < 3%
* CONSTRAINT VIOLATION < 3% o CONSTRAINT VIOLATION < 10%

200.0 - • CONSTRAINT VIOLATION > 0% 200.0 a CONSTRAINT VIOLATION > 1O209.0- 2o CONSTRAINT VIOLATION > 10S20.0

380.0 - AU. VARIABLES 30.0 - I ONLY ALL VARIABLES

A .25 I b.h

160.0- / 6 0.0- 6.2

140.0 140.0-

U) M)120.0- < 10.0

FULLL OPTIMIZATION
.30.1M . - 10 

0 . 0 -
M I N I M U M ,

00.0 -0.0-

6o.0 ,0.0 ,
0. 5 1 S 20 25 0 9 1; IS 2 25

FUNCTION EVALUATIONS FUNCTION EVALUATIONS

Fig. 12a 33 bar frame Fig. 12d 33 bar frame
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Summary

It is clear that use of the approximate methods
can lead to acceptable results even when the con-
straints being approximated cannot be strictly lin-
earized in the design variables or some Intermediate
variable. Minimum mass designs are obtained for frame
structures in fifteen to twenty finite element solu-
tions, which is approximately twice the number re-
quired for more linearized problems. The number of
finite element solutions required ^ppears to be inde-
pendent of the number of design variables. For a full
mathematical programming approach, the number of
function evaluations is known to be dependent of
function evaluations. Therefore, the efficiency
improvements realized from the approximatlon methods
increased as the size of the problem increased.

The second example, a fairly realistic model of an
automobile structure, clearly indicates that it is
possible to obtain optimu designs using all variables
necessary to describe the physical dimensions of a
bean cross section. Although only one reelistic
automotive structural example was given, we are using
these approaches routinely on problems of up to 500
degrees of freedom and 150 design variables.

Finally, while reciprocal design variables should
be used for thickness types of physical variables, it
does not appear to be necessary to use reciprocal
design variables for the other physical variables for
thin-walled sections for this general class of prob-
lem.
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APPROXIMATE BEHAVIOR MODELS FOR OPTIMU4 STRUCTURAL DESIGN

U. Kirsch and B. Hofman
Department of Civil Engineering

Technion - Israel Institute of Technology
Haifa 32000, Israel.

Sumary lent to a simple iteration procedure.

Efficient reanalysis models, which provide high Two conflicting factors should be considered in
quality explicit approximations for the structural choosing an approximate behavior model for a specific
behavior, are introduced. The presented algorithms optimal design problem:
are based on a series expansion which is shown to be (a) The computational effort involved, or the effic-
equivalent to a simple iteration procedure To pre- iency of the method.
serve efficiency, only methods which do involve (b) The accuracy of the calculations, or the quality
matrix inversion have been considered. lOnly the decom- of the approximation.
posed stiffness matrix, known from exact analysis of To preserve the efficiency, the presentation is limited
the initial design, is required to obtain the approxi- to methods which do not involve matrix inversion. Only
mate expressions. Two approaches of accelerated con- the available decomposed stiffness matrix, known from
vergence are proposed to improve the quality of the exact analysis of the initial designis required to
approximations: obtain the explicit expressions. However, since the

a) An approach where a-scalar multiplier, used for proposed models are based on a single exact analysis,
scaling of the initial design, is chosen prior to the accuracy of the approximations might be sufficient
the solution as the accelerating parameter. only for a limited region.

b) An approach where information gathered during Two approaches of accelerated convergence are
calculations of the series coefficients is used proposed, to improve the quality of the approximations:
to improve the convergence rate. (a) An approach where a scalar multiplier, used for

Numerical examples illustrate the efficiency and scaling of the initial design, is chosen prior
the quality of the proposed approximations. A special to the solution as the accelerating parameter.
attention is focused on reanalyses along a line, a Several algorithms for selecting the value of
problem typical to many optimal design procedures. The this multiplier are proposed and their merit is
computational effort in this case is considerably demonstrated.
reduced, since only a single independent variable is (b) An approach where the accelerated parameters are
involved calculated from results obtained during the

solution process. Information gathered during
calculation of the series coefficients is used

1. Introduction to improve the convergence rate.

In most optimal design procedures the behavior of Some numerical examples illustrate applications
the structure must be evaluated many times for succes- of the proposed procedures. A special attention is
sive modifications in the design variables. This focused on reanalyses along a given line in the design
operation, which involves much computational effort, space, a problem common to many optimal design pro-
is one of the main obstacles in applying optimization cedures. The efficiency and the quality of the pro-
methods to large structural systems. Reanalysis posed approximations are demonstrated.
methods, intended to analyze efficiently new designs
using information obtained from previous ones, can
broadly be classified as [1]: 2. Problem Statement

(a) Direct methods, giving exact solutions and appli-
cable to situations where a relatively smll pro- The displacement analysis equations for a given design

portion of the structure is modified (for example, variables vector (11 are
only a small number of elements are changed). [K] { R =R (1)

(b) Iterative methods [2,3], suitable for cases of
relatively small changes in the structure. The where[K]. stiffness matrix corresponding to the
known solution of a given design is usually used design {R - load vector whose elements are
as an initial value for the iterative process. assumed to be independent of the design variables;
Problems of slow convergence rate or even diver- and Or) - nodal displacements computed at {1). The
gence may arise for large changes in the design. elements of the stiffness matrix [K] are some

(c) Approximate methods [4-8], usually based on series functions of the design variables W. Assuming a

expansion and require less computational effort, change {All in the design variables so that the

One problem often encountered is that the accuracy modified design is

of the solution may not be sufficient. Under I
certain assumptions, some approximate methods X iX) - (a) (2)

are shown to be equivalent to iterative procedures. the corresponding stiffness matrix is given by

In this study "analysis methods for optimum ** *
structural design, based on explicit approximations of
the structural behavior in terms of the independent
design variables, ar vresented. Once the explicit where [AK] = the matrix of changes in the stiffness

model has been introduced, it can be used for multiple matrix due to the change {A}.

reanalyses of designs obtained by successive changes
in the variables. The presented algorithm are based The object in this study is to present explicit models

, n a series of expansion which is shown to be equiva- for efficient calculation of the displacements { * }
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corresponding to designs {X1 , obtained by changing Eq. (13) becomes
the value of the design variables. It is assumed that
the displacements G ) are known from analysis of the rA = ((l - [B] + [B]2 . [B]3  ...){r) (IS)
initial design. Also, (t] is given in the decomposed
form The coefficients of this series can readily be cal-

= [* T* (4) culated. Defining
where~ [ = [ON [U] (4) Bir

where [U] is an upper triangular matrix. 4r 1 [B]€r) (16)

Approximations along a given line in the design space r2 - [Bfrli (17)
are often required in optimal design procedures. This etc., the series of Eq. (15) becomes
problem is common to many mathematical programming ** = *
methods such as flasible directions or penalty function r + "r"2 } +
A set of lines (or direction vectors ) in the design For the given triangularization of Eq, (4), the cal-
space are determined successively by the optimization culation of the coefficient vectors Erq ,{r, t...
method used. In each of the given directions it is e 2
usually necessary to evaluate the constraint functions, requires only forward and back substitutions. The cal-
or to repeat the analysis, many times. A line in the culation of {fI) for example, is carried out as
design space can be defined in terms of a single follows. Subsituting Eq. (12) into Eq. (16) and re-
independent variable Y by arranging gives

xi = ({X + Y(AX} (5) [KJrI = -[AKEr {Rli (19)

where {*} is the given initial design, {AX) is a given
direction vector in the design space, and the variable We first solve for {P1 by a korward substitution

Y determines the step size. Approximations along a []T{*
line require much less computations since only a single1
variable is involved. {}rd is then calculated by the backward substitution

In general, the elements of the stiffness matrix are [U]{ i} = {P} (21)
some functions of Y. One common case is that the
modified stiffness matrix can be expressed as The coefficient vectors {r 2 },{r 31 etc., can be cal-

[K] =[K] f(Y)[AK] (6) culated in a similar manner.

In truss structures where {X} are the cross-sectional It is instructive to note that the series of Eq. (15)
areas or in beam elements where the moments of inertia is equivalent to the simple iteration procedure [7,8]
are chosen as design variables, the elements of the *rk) = [ ]
stiffness matrix are linear functions of Y and Eq. (6) ](22)
becomes

[K] = [K] Y[A] (7) where k denotes the iteration cycle and

If the elements of [K] are functions of aZ (Z1 being {*(o)) = {) (23)

the naturally chosen design variables and a,b are givenconstants) we may use the transformation gvl In the case of approximations along the line defined
n wby Eq. (5), the expression of Eq. (15) will become

X. = aZ? (8) explicit function of fri in terms of Y. Assuming the

and obtain the linear relationship (7).The expression of relationship (6), we obtain

Eq.(8)is suitable for example, for standard joists [9].
Tn cases where such transformations are not possible fri = ([I] -f(Y)[B] + f2(y)[B]2 . ...){r} (24)
(for example, in frame elements where the stiffness
matrix is a function of both moments of inertia and If the linear dependence of Eq. (7) holds, this expli-
cross-sectional areas), still linear approximations cit expression becomes
may be used for the nonlinear terms of the stiffness * 2y2*3 *
matrix [10]. 1r = ([I]-[B]Y[]Y[8] ...){ri (2S)

or (see Eq. (18))

3. Explicit Behavior Models fr} = {4i+ ly + 4IY2 + 26)

The analysis equations at {X} are This equation can readily be used for multiple re-

[K] {ri (Ri (9) analyses along a line. Also, it can be shown that

Based on Eq. (3), Eq. (26) and Taylor series expansion of the displace-
ae nq ((10) ments are equivalent [7,8]. Other approximate methods

([] A)er - {R) (10) can be used [7,81, however, these usually involve

Premultiplying by [ ]- and substituting matrix inversion.

{ }= ]I{R) (I) While the methods discussed so far are based on a
ria (11) single exact analysis at C)}, it should be recognized

that better approximations could be obtaineA if
BI [K]I[AK] (12) results of two exact analyses (at {) and {(i) were

yields considered. Assuming for example, quadratic and
([I] + [B])M r) (13) cubic interpolations, respectively, we find

Pre ltiplying by ([I] [B])- and expandng (r) 2{7) + ) *
(( -, - [B] - and exai - ... (14)
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;r){ { rl )2 exact displacements at IX isyr 4 {; Y + (3ery -3{r-*l -2 y )c
+ (2(r)-2r+ + r a c

c r

2 +Yr } )Y ( .- (39)
ar

Th dravesc ty canTh resuiltb is (29) b sevearnlanlh rto / (nThe derivatives { can readily be computed by several This result indicates that the error in the approxima-
methods [1]. One possibility is to differentiate Eq. (1) i,**with respect to Y. The result is ions at Udc depends only on the ratio r /r (and

not on [ ,the distance between 61 and {X 1). The
r K

combination of approximate behavior models and scaling

in which both (r], and [K] in the decomposed form of can be used to introduce efficient optimal design pro-
Eq. (4), are known from the analysis. Thus, solution cedures [101. It will be shown in the next section

3r how selection of the scaling multiplier a may improve
for {-S} involves only calculation of the right hand the approximate behavior models.
side vector of Eq. (29) and forward and backward sub-
stitutions. S. Improved Approximations by Scaling

The modified design 6X' can be expressed as (see4. Behavior of Scaled Designs Fig. 2)

Scaling of the initial design {X) to obtain a modified = + (A} = ) + (AX }  (40)
design {X a }  is given by a a

{X } = a{X} (30) and the corresponding stiffness matrices are (Eq.(31))

where a is a positive scalar multiplier. If the [K ] = [K]+[4K] = [KCL]+[AKa] = a[K]+[AK ] (41)
elements of the stiffness matrix are assumed to be
linear functions of the design variables then Sbs1itutingin Eds

anrearngn yields
[K] a[K] (31) ([I] +1a [ it]-[AK] (9)) r e p (42)

and the displacements of the modified design are Substituting [AK ] from Eq. (41) into Eq. (42) gives
(Eq. (1)) a= 1{ }(32 (I] []a 1 .. ..

Ir 140 [I] +i [K] I[AK]) a(l r} (43)

The significance of this relation is that a given Defining
design {11 can easily be scaled by modifying O so 1-a 1[B] - (] - [K] [K] = + B] (44)that any desired displacement be equal to a predeter- + [ +
mined value,,an operation called scaling of the design. b into Eq. (43) and expanding ([I]+[B 1(The line a{X} is called a design line), substituting inoE.(3 n xadn [][a ')i

we obtain the following series for er in terms of O-
In optimal design problems it is often necessaryko (see Eq. (15))
find the design {Xc} along the design line a{X} , ( ]+[Ba]-[Ba] + ...)(r} (45)
with a displacement r equal to its limiting value = .LJ[a
ru . That is (see Fig. I) For a = I we find [Ba] = [B] and the series of Eqs.

r =r u (45) and (15) become equivalent. Different direction
ar vectors {AXa) may be selected in the plane of {11 and

or a r (34) for various a values. While it is usually
u difficult to predict which a will provide improved
r convergence, some possibilities are summarized in

In cases where r is calculated by an approximate Table 1. In cases a,b,c, the value of a is chosen so
behavior model (such as Eq. (15)), we may evaluate the that the resulting direction [AXaI is perpendicular
accuracy of the displacements of the approximated *

design {Xd} as follows. {Xci is given by to {X), X , and to the bisector of angle e,
respectively. The criterion in cases d,e is chosen

{Xc} = arXj (35) such that the elements on the principal diagonal of
[AK ] or the second term in the series of Eq. (45) be

where a is determined from equal zero. In both cases the multipliers a. are
I * u chosen separately for each displacement. Reiults
,r r =r (36) obtained for different a values will be compared in

or a the numerical examples of section 7.
r7)

r(u ) The scaling multiplier a affects both the direction vec-in wc :tor (AX I and the step size IAXaI , where (see Eqs.in which, r is the approximated value of r at the (30) and(40))
point (Xl. The approximated displacement of IR I is

c
i({% I) * ru and the exact displacement at this (AXa } = rXI - a{X) (46)
point is (Eq. (37))

*r u The smallest step size is determined by (case ar(X a) 2 r -•- r (38) Table 1)
r

-hat is, the ratio betweea the approximated and the Q{X} {AX }  0 (47)
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or, after rearranging large k values.

or, (48) Dynamic acceleration

x}T{x _In cases of slow convergence rate dynamic acceleration

methods, which make use of previous terms in the series,
and the corresponding step size is can be employed. If the iterative process has a slow

convergence rate, successive errors will generally
It, (I - CII2ix)h (49) exhibit sa exponential decay in the later stages of the

iteration (see Fig. 3). Aitken's 62 process [13]Another parameter which represents the step size for a is one approach to predict the asymptotic limit togiven direction is the angle 6, where which the predictions for each displacement r- is
co TtXl (0 tending. Assume the extrapolation expression
cos1 r 0()a + bekc (60)

Evidently, for any given direction AX I a better con- where a, b, c are constants and k is the iteration
vergence will be obtained for smaller 8 values, number (or number of terms in the series). The final

It is instructive to note that a scalar multiplier 8 solution (k-) is determined from the three successive

can be chosen instead of o such that (Fig.2) estim-tec
r

k)  = a + be 
-kc

{X =a {Xl (51) r

Defining r.( k+l ) . a + be - ( k+l)c (61)3

[B (0-l)[I] + 8(B] (52) r(k+2) =a + be(I+ 2)c

3
we may obtain the series The result is

] B([I + - + 2 [B] + ... ){r) (53) r k) rI!+2) - (k+l
Sail- [B 5 r a - 2k) k + l )  

r (62)

Comparing Eqs. (52),(53) with Eqs. (44),(45), it can r 2a + (
be observed that identical results would be obtained
by both series if a = 1/8. In this case the directions or. alternatively
{AX,) and (AXSI are parallel, and the convergence (* - k +2)  + k+2) rk+l))
rate will be identical for any given 8. r a = r. +s.(r -r (63)

where
6. Convergence Considerations _!k+l) !.k+2)r k.r

Problems of slow convergence or divergence may be en- s !k) l Ik+2) (64)

countered in applying the series of Eq. (15). The j3 -
series converges if, and only if [11], If Aitken's acceleration is applied at the wrong time

lim [Bk] = [0] (54) the denominator of Eq. (62) could be zero or very
small. In such circumstances the method will either

A sufficient criterion for the convergence of the fail to yield a prediction or else give a predicted
value which is grossly in error. The "wrong time" mayseries is that be interpreted as either too soon, before an exponen-

[13[ < 1 (55) tial decay is established, or too late when rounding
where II NI is the norm of [B]. It can be shown that errors affect the predictions.

whe 1 is t () oJennings[121 
proposed a modified version of Aitken's

Pa]) :SI (6) acceleration, used by several authors [14,15). While
in which ( ) u of matrix [*, the prediction of Eq. (62) is calculated for each dis-]) is the spectral radius o x[a placement r separately, a common acceleration para-defined as the largest eigenvalue IXl meter is intloduced for all variables in the modified

p([D]) - il - x xil (57) method. The result is
i rj -(r(k 2)} - I ({r(Ck+)}-{r(k+l)}) (65)

From Eqs. (55) and (56) we have I

P([])< 1 (58) iwc

It shoyld be noted that the existence of a norm such A1  _(r(k)}- _(k+l)})T_(_(k+l)_-_k2)}_ (_56)_.

that NI > 1 does not preclude the convergence of the I ({ Mr fr _fr(nI)()
series. "A1  ({rt')-r('+l) })T ({r(k)}-2{r( +l)1+{r k 2))

Some procedures have been proposed to predict the or

eigenvalue Al. One possibility, based on the use of (r(k+2 ) M(r(k+l)))T({r(k+l))-{r(k)y)
Rayleigh quotient, is [12] (67)

kI L {}T I( k 0 r{ {rk } (59) The convergence rate is governed by the magnitude of
A T * - - A1 . This method is particplarly effective when only

{ r{) one eigenvalue of matrix [8] has modulus close to

where (r Iare the vectors of the series (see Eq. unity. It is possible to apply the acceleration after
(18)), %ettr estimation would be obtained for two or more iterations and to repeat the procedure

frequently.
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7. Numerical Examples 8. Concluding Remarks

Ten-bar truss. The truss shown in Fig. 4 is subjected Approximate behavior models for efficient reanalysis
to a single loading condition (all dimension1 are in have been presented. The algorithms are based on a
kips and inches) and the initial design is {X} = {6.0. series expansion which is equivalent to a simple itera-
The following three cases of changes in the design were tion procedure. A single exact analysis is sufficient
solved: to introduce the series coefficients and matrix inver-

Case 1: {AXIT = 14.0,4.0,4.0,4.0,6.0,6.0, sion is not required throughout. The proposed approxi-
1.2,1.2,1.2,1.21 mations might be sufficient only for a limited region,

in the neighborhood of the initial design.
Case 2: {Ax} T 

= {-3.0,-3.0,-3.0,-5.0,9.0,9.0,9.0, Two approaches have been proposed to improve the quality
9.0,9.0,9.01 of the approximations:

Case 3: (AX]
T 

= {16.0,18.0,18.0,18.0,18.0,18.0, a) An approach where a scalar multiplier, used for
36.0,36.0,36.0,36.0) scaling of the initial design, is chosen prior to

the solution as the accelerating parameter.
The angles 8 for the three cases (Eq. (50))are 11.30, Several algorithms for selecting the value of
30

°
, and 11.50, respectively, this multiplier are proposed and their potential

Results obtained for cases 1,2, by Aitken's 62 method for improving the series convergence is demonst-
(Eq. (62)) and the modified acceleration method (Eq. rated. It is shown how the scaling multiplier
(65)), assuming k=2,3,4, are given in Table 2. affects both the direction vector in the design
While the approximations for case 1 are excellent, some space and the step size.
errors can be observed in case 2. The iteration his-
tory for the latter c-se, with Aitken's 62 method b) An approacn where the accelerated parameters are
applied after iterations 4 and 6, is shown in Figs. 5 determined from results obtained during the solu-
and 6. It can be seen that no convergence of the tion process. Information gathered during cal-
vertical displacements could be achieved without culations of the series coefficients is used to
Aitken's method. Applying scaling by the five methods introduce extrapolation expressions. The two
of Table 1 combined with Aitken's process (k =2,3,4) methods of Aitken's 62 process and a modified
for case 2 may improve the convergence, as shown in method of Aitken's acceleration are presented.
Table 3. The best results have been obtained by It is shown how these methods provide high quality
methods b and d. The effect of a on the spectral results in cases of poor convergence rate or diver-
radius (Eq. (59)) is illustrated in Fig. 7. The diver- gence of the series.
ence for a-l is explained by the relatively large
X11 value (IX1 1.5). Assuming o=1.96, the value of In the typical problem of reanalyses along a given linein the design space, the methods discussed in this
11 is reduced to 0.75. study involve much less computational effort. Multiple

reanalyses along a line can efficiently be introduced
The effect of scaling on the convergence is demonstra- in terms of a single independent variable.
ted in case 3 (Table 4). Applying the modified
acceleration method (k=2,3,4), no convergence could
be obtained for u-1. Assuming a-4.94 (method c, Acknowledgement
Table 1), the convergence is fast; a solution very
close to the ex ct one is obtained for three terms in The authors are indebted to the "Fund Lor the pro-
the series. SAsilar results could be reached with the motion of research at the Technion" for supporting
criterions of vethods a,b in Table 1. this work.

Fort -seven-bar truss. The truss shown in Fig. 8 was
or the following data (all dimensions are in References

kips and inches):,
Initial design {X} = (0.S. (1) Kirsch, U., Optimum Structural Design - Concepts,

A. = 0.5 (i-l..... 8) Methods, Applhcations, McCraw-Hill, New York, 1981.

AX = 0 (i=9,10,27-30,37-40,45-47) (2) Kirsch, U. and Rubinstein, M.F., Structural Re-
analysis by Iteration, Computers and Structures,

AX = 0.2 (i=11-20,41-44) 2, 497-510, 1972.
AX. 2 0.4 (421-26)
X (3) Phansalkar, S.R. Matrix Iterative Methods for

AXi  -0.15 (1=31-36) Structural Reanalysis, Couters and Structures,

Notation of the displacements is as follows: rl,r 3,... 4, 779-800, 1974.

are the horizontal displacements and r 2 ,r 4 ,... are the (4) Noor, A.K. and Lowder, H.E., Approximate Techniques
vertical ones. Results obtained by Aitken's method of Structural Reanalysis, Computers and Structures,
and the modified acceleration method (in both cases 4, 801-812, 1974.

k=2,3,4) are given in Table S. It can be noted that
despite the different order of magnitude of the (5) Noor, A.K. and Lowder, H.E., Structural Reanalysis

various displacements, relatively small errors have Via a Mixed Method, Computers and Structures, S,

T been obtained. To illustrate the effect of the step 9-12, 1975.

size Y, the displacements r39, r 4 1, r 4 3 have been (6) Moor, A.K. and Lowder, H.E., Approximate Re-

calculated along the line X} = (X}+Y{A} for analysis Techniques with Substructing, Journal
Y=0.2S, O.S0, 0.75, 1.0. Results obtained after four of the Structural Division, ASCE, 101,
iterations (k=4) are shown in Fig. 9. The effect of Paper 11523, 1687-1698, 197S.
Aitken's 51 method on the iteration history for Y-1.0
is illustrated in Fig. 10 and the evaluation of 1X11 (7) Kirsch, U., Approximate Structural Reanalysis
is demoastrated in Fig. 11. The final value A 1- 0-99 Based on Series Expansion, to be published,Sexplains the slow convergence rate of the seriel. Copte Methods in Applied Mchanics and

Engineering 1981.
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(8) Kirsch, U., Approximate Structural Reanalysis for
Optimization along a Line, to be published,
International J. for Numerical Methods in Engrg.
1981.

(9) Clarkson, J., The Elastic Analysis of Flat
Grillanes, Cambridge University Press, 1965.

(10) Kirsch. U., Optimal Design based on Approximate

Scaling, to be published, J. of the Structural
Division, ASCE, 1981.

(11) Wilkinson, W., The Algebraic Eigenvalue Problem,
Oxford University Press, 1965.

(12) Jennings, A., Matrix Computation for Engineers and
Scientists, John Wiley 4 Sons, 1977.

(13) Aitken, A.C., On the Iterative Solution of a
System of Linear Equations, Proc. Roy. Soc.,
Edinburgh, 63, 52-60, 1950.

(14) Lawther, R., Modification of Iterative Processes
for Improved Convergence Characteristics,
International J. for Numerical Methods in Engrg.,
15, 1149-1159, 1980.

(15) Atrek, E., Note on the Modified Aitken Accelerator
for use in the Residual Force Method," International
J. for Numerical Methods in Engrg., 15, 1857-1872,
1980.
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Table 1: Various Possibilities for the Selection of 0

L Criterion for Determining a Condition L

T**

a tAXI perpendicular to a~x} a{;}T{AX 0 w W

b {AX C} perpendicular to {Z ~ {XIT (I

{6X} perpendicular to the Xa~ *X=rX}
bisector of 0 {X} {X)

K ,ii
d AK =0 .Kii == ..-... =0 a. i 1 0

a a K..
ii T* * T * {~ r

e second term in the series 0 (1-a.) r. + B {r= 0 a. = 1 + 1

2 1 [ (1 1 +
r.

1

Table 2: Results (xlOO), Ten-Bar Truss.

Case Method r1  -r 2  -r 3  r4 r5  -r 6  -r 7  -r 8

Eq. (62)± 0.086 0.440 0.094 0.453 0.071 0.207 0.073 0.219
1 Eq. (6 S)t 0.086 0.439 0.094 0.453 0.071 0.207 0.073 0.220

Exact 0.086 0.440 0.094 0.453 0.071 0.207 0.073 0.219

Eq. (
62
)t 0.290 0.813 0.310 0.824 0.237 0.284 0.243 0.294

2 Eq. (65) 0.275 0.818 0.295 0.827 0.225 0.278 0.231 0.287
Exact 0.290 0.876 0.310 0.887 0.237 0.303 0.243 0.313

k = 2,3,4.

Table 3: Results (xl0), Ten-Bar Truss Case 2 Eq. (62),for Various a Values.

Case a r r2  _r 3  _r4  r5  _r6  _r7  _r 8

a 1.70 0.291 3.041 0.309 19.000 0.237 0.194 0.243 0.214
b 2.26 0.292 0.878 0.309 0.889 0.237 0.304 0.243 0.314
c 1.96 0.291 0.915 0.309 0.929 0.237 0.335 0.243 0.350
d separate 0.290 0.877 0.310 0.887 0.237 0.303 0.243 0.313

. e separate 0.290 0.756 0.310 0.757 0.237 0.222 0.243 0.217

Exact - 0.290 0.876 0.310 0.887 0.237 0.303 0.243 0.313
_t

k = 2,3,4

I"I See Table 1.
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Table 4: Effect of Scaling, Ten-Bar Truss, Case 3 (xlO)

a =l a-4.90
t ~~

J * 
4
) Eq. (65)q. (65) Solution

1 9.928 -0.762 0.035 0.035 0.035
2 -155.200 -0.150 -0.137 -0.137 -0.137
3 -8.372 0.859 0.040 0.040 0.040
4 -157.600 -0.019 -0.143 -0.143 -0.143
5 7.561 -0.632 0.029 0.029 0.029
6 -94.430 -0.870 -0.056 -0.056 -0.056
7 -7.079 0.665 -0.031 -0.031 -0.031
8 -97.040 -0.756 -0.061 -0.061 -0.061

k- 2,3,4

Table 5: Results 47-Bar Truss (xlO0)

r. r.S2"2

r. Eq (62) Eq. (65) Exact .L Eq. (62) - Eq. (65 Exact

5 1.34 1.31 1.31 1.31 25 3.63 4.07 4.04 4.04
6 0.32 0.24 0.24 0.24 26 -4.51 -3.82 -3.84 -3.84
7 1.56 1.49 1.49 1.49 27 3.17 3.61 3.57 3.57
8 -1.21 -1.19 -1.19 -1.19 28 -0.02 -0.78 -0.78 -0.78
9 3.87 3.50 3.50 3.50 29 0.99 2.20 2.16 2.16

10 0.14 0.08 0.08 0.08 30 -12.94 -9.84 -9.83 -9.85
11 4.04 3.73 3.72 3.73 31 0.19 1.62 1.59 1.58
12 -1.96 -1.92 -1.92 -1.92 32 5.94 3.19 3.19 3.20
13 6.33 5.79 5.79 5.79 33 -4.78 -1.64 -1.63 -1.67
14 -0.56 -0.85 -0.85 -0.86 34 -27.64 -19.78 -19.64 -19.78
15 6.74 6.39 6.38 6.39 35 -3.89 -1.15 -1.16 -1.18
16 -2.25 -2.28 -228 -2.28 36 12.94 -9.84 -9.83 -9.85
17 7.76 7.48 7.47 7.48 37 -3.C1 -0.65 -0.68 -0.69
18 -2.26 -2.71 -2.71 -2.71 38 -4.95 -4.14 -4.15 -4.15
19 7.73 7.43 7.42 7.43 9 -2.56 -0.20 -0.24 -0.24
20 -1.48 -1.SO -1.50 -1.50 40 0.42 -0.46 -0.46 -0.46
21 6.42 6.00 5.98 5.98 41 -2.56 -0.20 -0.24 -0.24
22 -3.29 -3.21 -3.22 -3.22 42 5.94 3.19 3.19 3.20
23 6.58 6.08 6.06 6.06 43 -2.56 -0.20 -0.24 -0.24
24 -0.90 -1.21 -1.21 -1.21 44 11.45 6.84 6.84 6.85

k -2,3,4.
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SWEIGHT OPTIMIZATION OF MEMBRANE STRUCTURES

// Bj~rn Esping
Linkiping Institute of Technology
Dept or Mechanical Engineering

Div of Solid Mechanics
S-581 83 Linkbping, Sweden

1. Sunary For a single stacked triangular membrane element theK variables can be visualized as
AIgorithms to find the minimum weight design for a 3-

dimensional composite membrane structure are presented. t - thicknesses of the plies (tl, ... tNL)
Constraints are on strength and displacements. Vari-
ables are plythicknesses, angles of orthotropi and node 0 - angle to the reference direction p (for the layup
point co-ordinates in a FE approximation. Analytical angles a.)
derivatives with respect to the variables are derived
for a constant strain triangle. c - co-ordinates of the nodes (RXI, Ry, RZI,

To solve the optimization problem a sequence of strictly R R

convex subproblems are created. 06oxef around each
preceding design point stabilize the algorithm. Each 3
subproblem is solved by using the duality theory for Z
convex programming. In this article the interest is Global system
focused on the presentation of the analytical deriva-
tives for the constant strain triangle. It begins with
a brief formulation of the optimization problem and its
solution A more detailed presentation is found in (1). (RH .RZ

2._ Formulation of the Optimization Problem If

The problem is to minimize the weight (w) of a 3-dimen- X
sional composite membrane structure subject to Composite stock

- displacement (d.) constraints and P3

- strain-stress (Ci, oil Tsi) constraints Local

under multiple load conditions. (Ts is the equivalent system

stress Tsai). 
p t2

There are three kind of variables in the optimization

- thicknesses of each ply Z of the composite stack for 12 p
each element e (tte)

- reference directions for the material properties for Fig 1 Design variables
each element (e e, V

- co-ordinates of the nodes (c) Instead of using the angle, 4, directly as a design
variable, a vector, v, may be used. The vector, v, is

Besides from the implicit constraints above there may then projected on the element to give 4.
be explicit constraints like v - reference vector (v , v , vz). (Notice: it is no

- mn-max sizes of the ply thicknesses limitation to set one oY the components to one)

- min-max values of the reference directions

- min-max values of the co-ordinates

There may as well be some practical linking restric-
tions, for instance

- the thickness in a certain area, a gtoup Oe temen t,
is prescribed to be constant or to have a linear
variation

- the reference directions in a g9oup o6 e.ement6 is 2 3
prescribed to be either constant or vary linearly (to
avoid kinks at the element boundaries)

- the structure is supposed to be symmetric or the co-
ordinates in a gtoup o6 nodeh are supposed to vary Fig 2 Projection of the reference vector
linearly

an Let t, 4, v and c denote the vectors of t9 , 4),vanand c.. e linking restrictions can be epressed

- some thicknesses, reference directions or co-ordina- 
dj

tes are fixed
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t - to + NIa such displacements.

1 0 The FE problem can be formulated
v V 0 + N 2Y (2.1) Ku - p (3.3)

Let q be a chosen vector such that
where t , , v and c are vectors of constant terms.
O=(. ( 0 nO)T an

8 y - (y ... , Yn2)T are the d(
S"Inew d u u q(3.4)

zndependertt vaZab£&. N1 and N2 are constant matrices Differentiate (3.4) with respect to and use (3.3)

where at most one term in each row is non zero. ad.

i  (3.5)
The optimization problem we consider can mathematically = iK ube forulte as follows:
be formulated as follows: For displacement constraint q is independent of the

P: min w(a,y) design variables - O.

subject to: Let

di(a'y)< d 5
x l . md v " K q (3.6)

ci(n.y) < C max im ..,m E  or

o(CiY) < a. i = , .. , ma Kv - q (3.7)

Tsi(a, y) < TsT
x  

i - 1 .. , rts v is derived by solving (3.7). q may appear as additio-

min max nal load case in the FE-calculations.
. < O. < a So
J - - So

ymin < max I
-- Y _Y< V1 ., n2  3d. a T IK

D-T-" v v(3.8)

3. Gradients
but K is assembled of the different element stiffness

The optimization algorithm used here will need infor- matrices k . Thus

mation about the gradients of the weight function Vw NELEM
and the constraints Vd., Vei, Vai, VTsi with respect to K - Z k (3.9)
the design variables. 1 e3l e

The load vector p can usually be split in one "fix"
The derivatives with respect to (a , y) are derived by part p. and contributions from the different elements
the chain rule Pe' thus

aw a at. NELEM
etc (2.2) P=P+ (3.10)

3 2. 1 e=l

Let E be an arbitrary variable, i e 
t 
te, Oe' Ve or Let ue and v be the node displacements for the e:thC.. e e

F element.

3.1 Weight Function Combine (3.9), (3.10) with (3.8)

The total weight of the structure w is the sum of the d. = T ke
weights of the separate finite elements w - v - E u- v(3.11)

NELEM 
a e

w(t, *, v, c) - w e(t. C, v, c) (3.1) 3p 3ke
e1 For .nd see Chapter 5.5 and 5.2.

Differentiate w with respect to Notice that ak 0 and 0e

aw T& -e+0Onyi l' O

e or - v. where v. is one of the components of the
T_ . Ea- (3.2) referenci directian vector for element e or if c.

aw where c. is a co-ordinate for one of the nodes of ele-
is derived in Chapter 5.3.

3w ment a.

Notice that 40 ony if { - te where t~e is the is independent of E - Ti es
le le In many cases p i ineenet0. This is

thickness of one of the plies in element e, or if & - a
" c. where c. is a co-ordinate for one of the nodes of always true if C - 4. or V..

element e. 3.3 Strain and Stress Constraints

3.2 Displacement Constraints Consider a given strain constraint i f i is one

For this section see for example ref (3). of the strain components (X , ey, Yy) at a given ale-

max ent e in a given load case.
Consider a given displacement constraint d< din. d e

is the displacement of a given node in a given direc- Now, let q be the vector such that
tion in a given load case or a linear combination of

7-28
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ri qT u  
U 

q  
(3.12) = C Ct  (3.20)

Vector q consists of the corresponding row in matrix Ct is the constitutive matrix of the material.
Q in Chapter 5.6.

Differentiate eq (3.20) with respect toEand notice that

Differentiate (3.12) with respect to and use (3.3) C is independent of , i e 1C1/

i .3p T 3E
- ( - uT *)K-lq * u (3.13) C X (3.21)

with An equivalent normalized dimensionless stress frequently

v . k-1q (3.14) used for orthotropic materials is Tsais number Ts.

or Ts02. H 22 2 + (12)2]
1
/2 (3.22)

Z = 1 + 2 0FIF 2  F12
Ky -q (3.15) where, depending on the sign of oI and 02. the constants

v is derived by solving (3.15). q may appear as additio- F, and F2 are the stresses of failure in uniaxial ten-
nal load case in the FE-calculations. sion or compression.

i P v _ uuT K v+uT 1 (3.16) is the stress of failure in pure shear and p is a'- F R -3v + 21 2

with (3.9) and (3.10) constant usually around 10.

ac p T 1k lqe Differentiate
P e v T ek , T a .( . 7a-. T e + e &(3.17) Tst 1 201 101 202 102 101 02

eRe (

where qe is the vector for the e:th element. qe e a 
2 Tst d F

- 2  
F 2

0 only if - c., where c. is a co-ordinate for one aj 10 2T12 IT12

of the nodes of element e. The derivatives ape/1, pFIF 2  E 
+  

2 9EF12

3ke /3 and aqe/aE are derived in Chapters 5.5, 5.2 and
5.6. where 1/I, I2/I and 1t12/I are evaluated in (3.21).

In a membrane the strains are constant through the 4. Method for Solving the Optimization Problem
thickness. In case the membrane is a composite stack of
orthotropic materials the strains and stresses in the A sequence of strictly convex subproblems P(k) are
directions of orthotropy in each ply are the governing created. Each subproblem is a first order approximation,
ones for failure. based on gradient information of the original problem.

"Boxes" around the iteration point, i e the optimum
Let (k) (k) of the preceding subproblem are created to

stabilize the algorithm.
x' Ey, Yxy: strain components in a given element for a

given load case derived according to (3.12) 1 a
and their derivatives according to (3.17)
(x, y are the element local co-ordinate 1 O(k) (J 2a k)
axes) T% - -

and 
Y
( W _ k) < YJ< y(k) + h(k) (4.1)

/. y h!k) is chosen such that h(k) _ 0, when k -, but h(k)
C'l i  i j i

1 31 j
TI *must not approach zero 'too fast". The weight function

T (w) is made linear in the variables (a, y) by a Taylor
Strains c - (e1" C2- Y12

)T 
in ply t in the directions expansion around the iteration point (-(k)

, 
Y(k)). w

of orthotropy is indeed linear in the variable a which means that
derivatives with respect to a only depend on y.

, . Tt I (3.18)
The constraints, on the other hand, are made linear in

Differentiate (3.18) with respect to the variables (y, z) where

k at ITt c a(k) y(k)
C- -- £ + Tt - (3.19) yj ----- and z. = - (4.2)

Wj ,
ra nd aTt/a& are derived in Chapters 5.1 and 5.2. khj

3TI/K + 0 only if & - f or & - v. where v. is one of Variable y. is, except for the constant a. j, the recip-

the components of the reference direction vector for rocal of the thickness variable a3 . Deformations and

element a or if c. where c. is a co-ordinate for strains-stresses are often close to linear in y. When
of convergence is reached y. - land z. -0. To make the

one of the nodes of element a. J yd (k)z2
eT problem strictly convex, small terms c. a are added

lStresses a (O, 02- T12) in ply I in the directions to the weight function. k) are small positive par&-
of orthotropyo ometers. Constant term are dropped in the expression for
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Expressed in variables (y, z) the subproblem P(k) 51k,: max $(0f n a l l y b e c o m e ss 
u j c t o~() . a~k 3w (() 2subject to:

F(k): !Ln + .( h! k )  j + ~k) z2)
y~z aa Yj j a 

J  J > 0

subject to Because L is separable, yj(X) and zj(X) are easily cal-
.)gi + . <8 m if 6. culatede.

aa a j j- min2
•j'j -yjn if -j> min 2

im, m md + m. + m  + mT e. e. e.

min < max .

yj < yj < yj j = n yj( ) if -a -2 < 6. <_a- "ax'' 1 max.)2 - - m- rn2

z. )z<z - -, ... n2a
z

r i n < z. < max j . n e.
J ( J- ( yaaX if 6< .max< 

2  
(4.6)

where all derivatives are evaluated in 
(c% (k) y(k) and m 

y j  
)

gi represents the different constraints, for j = 1 ... , nI (S. - Ai aij)(k) il a

y. -max ma,. } z.
in  

> f z
m in

,pa af a.>- a a aF
a [)

cax z.(X)= if z1s i n <  '" max
= n {2, a

a.

mi mmin (k) z 
ax if p < - f. - 2c. zjz x (4.7)

zjn= max {-I, (d-)- m

a for j 1, ..... n 2  (Pj 
=  . b ij)

max (k)Y. -Y.
zmax min {1, n 1. (4.3) It is also very easy to calculate the derivatives of

( . a ay.(A) + b..z.(A) - d.(8

Problem p(k) can as well be expressed i (Xl i E b ij ( i (4.8)

nl 2 2 with y (X) and z(X) as in (4.6) and (4.7). If A is the( ) m n E + Z (f~z + jz ) J J 5k ) ,
y -z j.1 Yj j-1 J optimal solution of , then we get the optimal solu-

tion (y, z) of P(k) by simply letting yj yj(A)
subject to a a
n1 n2  z. - zj(X). D(k) may be solved by an arbitrary gradient

E a..y. + Z b..z. < d. i I, ... , m method. References (1) and (2).
j-l 'aa J j'l aJ J - i

5. Derivation of the Stiffness Matrix, Weight, Load

y E Y z E Z Vector, Strains and Stresses and Their Derivatives
for a Triangular Composite Finite Element of the
Constant Strain Type

It can be shown that if the sequence of solutions to

the subproblems P(k) converges to y. - 1 and z. - 0 for Locally in Chapter 5 we drop the subindex e of the
(k)

,  
(k)c J design variables.

all i then the sequence (i ,y onverges to a point
which satisfies the Kuhn-Tucker condition of the origi- 5.1 Stiffness matrix k

nal problem P. The subproblem F(k) is solved by using 
e

the duality theory for convex programming. The The co-ordinates of a node i can be expressed in global
Lagrangian is co-ordinates Ri . (RXi , Ryi , RZi)T or in local co-

nI e. n2  ordinates ri - (r x, r . r

L(yz,X) - 1 + E (f.z. + C.z?) +
j-1 Y i-I a J 1 a The transformation is

I nI  n2  Ri - + Lr, (5.1)

+ A i( E ij j j1 b.z. - di) (4.4)
i-l jl j-l where

The dual objective function is L ( (x, y, 5) (5.2)

0(0) min L(y. , X) (4.5) and , , are the unit vectors of the local x, y, z

ye, SEZ axes expressed in global co-ordinates, i a

is concave in A. R 12-R (5.3)
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FZ 0

~i

'3 and

-1 I

2

F (2 * r 0 0r r
(. D -ry3 r y3 1

[(rx3 -rj -r3 0 rx2 (5.16)

and A is the area of the element
Fig 3 Global and local co-ordinate systems

A = -der F1 , r.2 r y3  
(5.17)

^xh and h fiR3 - R1  
(5.4) 22

IIxhlI 3 1 A is the constitutive matrix connecting the stressresultants N - (Nx, N y, N xy)T to the strains c

2 × (5.5) - (Cx' C y, Yxy, e

Notice that C
-  

L 
T .  

N= Ac 5.8
- LL

The stiffness matrix ke may be written A NL T (5.19)

k= FL, L, Lj MkMT fLT, LT, LTJ (5.6) E 1

where tt is the thickness and C, is the constitutive

where matrix for ply t.

0La0) coa2 09 si n 2 0 iOCO
IL, L, LU - 0 L0 i o ol/L 0[ T. sin2 P, Cos2 -sin, cos, jand 

T -2sin* cosp 2
sini cos , cos -sin2 

4
j (5.20)

= Io0o0 0 00g i-. the angle from the x-axis to the first main axis

0 0 1 0 0 of orthotropy of the material in ply Z. , can be

0 0 0 O 0 expressed as
I000u

0000 10 - + B (5.21)

00000 where Ot is a fix angle from a reference axis p to the

0 0 0 0 1 first main axis. The reference axis p makes an angle 4'
0 0 0 0 0 0 (5.8) with the x-axis.

rhe "degrees of freedom" are supposed to be in the
following order Y 3

u (uX, U 1 , zl UZI, u Xr 2 ' 2' U2 u y 3 , Uzs)T (5.

k is the stiffness matrix expressed in the local co-
ordinates

k - H 
T Al'H A (5.10)

1 2 X
where P3

H - GF
1  

(5.11)

and rioooo' r
G - 0 0 0 0 (5.12) t2

010001 t

and

F and ?1  I r 0 (5.13) Fig 4 A composite element

x3 ry is either given explicitly or derived from the pro-

jection p of a vector v on the plane of the element
the inverse (see Fig 2). * is then the angle from the x-axis to the

vector p.
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Instead of using p we introduce a vector q which is
perpendicular to p and in the x-y-plane.

Fig 5 q-vector
, xv Fig 6 Kinks of the reference direction

q - -(5.22)
11 2-vII 0& aO VP the e e o etC.t0o o6

sin - - i (5.23) etement e

arcsin (-j) (5.24) (Notice: At least one of the components Vx, Vy or vz is
x fixed.) Consider one of the components, e g vx

< W=> < 7<r--
-1< ix 2

References (4) and (5). ek - fL, L, LjMA-M fLT, T, LJ (5.34)

5.2 Derivatives of the Stiffness Matrix k
e ak T aAH -H A (5.35)

= the thickneut oj pty I. o etement e. X x

The thickness appears only in the expression for A, so 3A N £ ( C )3 T +')Tr C -T (536)

3k x 91 x x

t- [, L, U' H.LJ .T L, , LJ (5.25) 3T _'T MT (5.37)
L , L (5.25) aT1 a 2

Ak HT A H A (5.26) 
3Ta

at. - I for-. See (5.31.)

3A TT C T (5.27) With * - arcsin (-jx) see (5.24).

at9.  T " .  5.7 1 x
*_ 1 ! (5.38)

*the an'f' )6 4e~eAence dbiection 60m etement e _4 - -(53X q
$a oppears only in A. with

e .fT, L, M a W LT, T, LT  (5.28) 2-4 (5.39)

-k - a ((XV) X

-+-" +-(5.29) avvJ -

A 2 T I xv) x a (5.40)HT. H A (52) zXV1IK -x v1 x

ML 3T 3T as
-(t-T2 T T I

51- E -2(co2Tintj ) +(o2£-i2£ -TLn~ (5.30)J "(.

-~ ~(5.31) a
T( 1xv) sX Ix (5.42)~T 251111jt cost 2sin* . cos*t 2 i 2) x&T 2sin~jt cosout -2@ifl*t cosft -(coB2  2* 11

{2(c052*t..sin2*'t) 2*-sn2(cos2*,s 2*) -sn cos*) TV-. 0 (5.43)

x 0 i1
* i usd a a(5.33) a-)(Xv

is used as a design variable (insteadofv) when there
are o constraints on continuity of the derivative of ake ak ethe material main axis of orthotropy between different and are calculated similarly.
finite elemnts. The min axis can make kinks in the y a
elemnt boundaries. As long as the geosst~tg i6 not
c#Aotd i a the co-ordinates are not variables) link- v is used as design variable (instead of ) hen con-
ing of the variables *e inside a group of element can tinuity of the derivative of the mtarial main axis
avoid this. is wanted between the elements. The reference direction
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vector v, within a group of elements, may be linked and (5.
the main axis keeps straight even if the geometry is -

=  x x z x c. (5.52)

changed. J I i

V 1 a 1 a(xxh) - a ;-h1 (5.53)

a x "xh) -ax x h + x x*= (5.54)

3h _ a (3-1)(5.55)

Those derivatives are in the same order

Fig 7 Reference direction vector 0r
E- C., o-oA .ta o4 the node o e ement e 0-1 0 0 0 0 0 1 0

c, represents one of the nine global co-ordinates of 0 0-1 0 0 0 0 0 1
tile element ( RXI, RYl' RZl RX2' RY2 , RZ2 , RX3 , RY3' ZI

A a a aTahej BLT T T T= lxl x - ) (ixh) (.6
'9- aL - kI M JL , a IlTC11xhIl 2c. jBe

I T 5

+[ L Lj L M LT. L T, LTJI T+ 3k (T 3H A) T + 1 T31Be ac S.. )W((HA+H A

+ L, L, LI M ak MT [LT
, 
LT, LTI (5.46) + HT 3A HA+ H

T 
A H 3A-.H k5.57)

TC c. ac.

acL . "cj' ac See (5.2). (5.47) 3S (5.58)acI-i-ac- i-" G 3F2c (5.58)

I a1-R2-" (R 2-l ) -(.1 1 l - _z-jR 1 _. l R- 1 a57 (5.59)

a a R 2X-RIIR-RI~ IF,]r 0 ac.
aT (R2-R1 -~ 2- 2Y-Rl

R a J Iwith

F I PZ.- E (5.60)

for c. = RIX (x-co-ordinate of node No. 1)

Be 1 1 - (5.61)

a - (5.49) a ,

1- - 7 (5.62)
The derivatives of ( 2-i) ith respect to c. where c. 3

are the co-ordinates in the order above becdme ee is derived in (5.15)where F 0

-1 0 0 1 0 0 0 0 (5.50) F 1

0 -1 001 0 0 0 T-r

Il~~2~1I = 43r Pr(563

* -'11-- " - (R x-e1x) + (R -l) - i 3 x r 3)

(2X-1 - + (,-11 ,)) I (%,-%,) With (5,1) the local co-ordinates hecom ri - T (R -R)

i i .

II'3 1I Pr - L' -R + Lr T~. 'r' (5.64)

11 12-Rll I ((5.5.1)
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where a and (R R are derived above * 04 V ok v , the %e eence ditOction
ac-. ac.-ft1) areJ J

and we is not dependent on these variables, i e

NL T 3 T T 3 w aw aw aw
EA e ( 47

c. C 1 -) (5.65) 3- a - - (5.75)

J x y 9y

aT 9T z (5.66) ci, co-oLdinat t oK the noda o6 etement e
c.= B$ Bc.

Bw NL
a.__.9 e= ( I p t 1 ) (5.76)

3 i is derived in (5.31). a Z=I X

BA
for - .See (5.72).

a __ m" (arcsin(-_x)) = 1 qX (5.67) fe

ac. ac. x a
Sq5.5 Load vector Pe and its derivatives

aqx 1 (; x) x  x a

C ( xv)) x JJxvlI (5.68) Load cauhed by ei.genweght - the load is distributedacoV1 JxJ2 equally between the nodes, i e

as ()

Np e e

0 (5.69 (5(569

)x v (5.70)

J J (1) 1 (5.78)

for -. See (5.53).

I where g is the gravity vector

-11xvll = ( x v)(;xv) (5.71)

If * is either fix or the design variable, irstead of v, (5.79)

then aTk/acj = 0, which means that the reference 
direc-

tion in the global system will change when the co-ordi- The derivatives with respect to become
nates change.

Drpe 1 e 1

A _ 1 (r 2  B r 3 + e. (5.80)

c detF 1  2 c y3 + rx2 ;c (5.72) *9---3 *¢ g 3 e B¢

I aw
where are derived in Chapter 5.4.where Drx2/acj and 3ry3c. are derived in (5.64).

In most cases g is independent of &, i e Dg/aE 0 but

5.3 weight We •g g is dependent of the co-ordinates c. in a quasi-

The weight of element e becomes static problem like a structure rotating with a con-
stant angular velocity w around a fix axis.

NL
we - ( P k t )A (5.73) A'ea toad6 (e g wind) - the load is distributed equally

t-I between the nodes

where Pe- PC(

. density of ply No. X. in the element()
t Pe

A - area of the element(1

(1) (5.81)
5.4 Derivatives of the weight we

The area loads are supposed to be proportional to the
= tV, the ply thickness area and directed perpendicular to the surface. Only

the projection of the area load intensity (a) on this
w e .direction contributes.

(5.74)

2. Pe ) .. !(a ) (5.82)

The derivatives with respect to become
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a||

e 1 3A 1 3E

1
+ iA(a ac (5.83)

where 2- and are derived in Chapter 5.2.

(a -Laz) + a - (5.84)

In most cases a is independent of E, i e aa/E = 0,
but a can very well be a function of the co-ordinates,
i e a = a(c).

5.6 Strains and stresses

The strains c = (EX, Ey, xy )T in the directions of

the local co-ordinate axes are derived from

= QT Ue (5.85)

where

QT = HMT LT , 
L
T , 

L (5.86)

and H, M and L are derived in Chapter 5.1. The deri-
vative of Q with respect to & is

S L al, THTf3F T & MH + FL, L, U (5.87)

where 3L/3 + 0 only if = c. which is derived in

(5.47) and 3H/3& + 0 only if F = c. which is derivedJ
in (5.58).
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ABOUT DETERMINATION OPTIMAL - WEIGHT STATICALLY INDETERMINATE
BAR STRUCTURES OF COMPLEX STRESS BY USING EXPLICIT FORMS

OF THE CONDITIONS

Emil Halmos
Traffic and Telecommunications

Technical College
Gydr, Hungary

/

'besigning minimum-weight bar structures are usually made only modified only if these conditions aren't fulfilled. If required this step
by implicit functions of the conditions. In this essay we formulate can be repeated several times. We determine the structure weight by
the conditions as an explicit functions of the cross-sectional charac- replacing the convenient from the point of view of strength vector to ,
teristics in order to have better applicability of mathematical prog- which results the starting value of weight reducing process.
ramming algorithms. For this purpose we decompose the large-sized The algorithm set up on the basis of the above mentioned taking
structure of optional geometry into substructures. With the help of into consideration both the gi(t) -0 and the objective function W(t) =
this decomposition we can substitute the dimensioning of the whole Min results an iteration method, which, after all, by the continuous
structure for dimensionings of several small and easy handling struc- changing of the structure's to variable creates a construction of opti-
tures. Then we move back the dimensioned large structure within mal weight, the weight of which cannot be reduced any more.
the appropriate degree of tolerance used in practice. The aim of this essay is to determine the relations, schematically

The form of the stress vector of a bar we trace back to algebraic ennumerated above, with the help of which the dimensioning task is
summing of some displacement vector components. So we get a for- attributed to a non-linear optimization problem.
mula which is suitable to produce the functions of the conditions. The main advantage of the model is that the tension constraints
both at the structures having rigid connections at the nodes and at can be formulated as an explicit function of the cross-sectional charac-
some special cases as the trusses. teristics of trusses and thus the task can be solved by the aid of the

I- coalready known optimization methods.
Intgoduction Finally we add that our essay is a generalized development of the

In this essay we deal with the optimum dimensioning of statisti- basic principle worked out in the essey (4) (5).
cally indeterminate trusses. The dimensioning of trusses - as mentio- Thus the dimensioning method can be developed more broadly and
ned in the title - is a design process, in the course of which the most applicated also for the mechanical model of complex stress, which
economical resolution is chosen from several structures adequate to will be discussed in Chapter 1. (1)
the functional requirements.

The economical condition of our investigations is the structure 1. General Characteristics of the Mechanical Model (1)
weight.

On the basis of the dimensioning model we can calculate those va- In the course of discussing this topic we try to find connections
lues of the structure's cross section characteristics which ensure the between the nodal displacements, the stresses and the external load of
bearing of stress induced by an external load and result a structure trusses, placed in plane and loaded in their own plane. The sets of
the weight of which is the least of all the possible versions. equations, describing the equilibrium of displacements and stresses are

A more precise definition of the design - process of the trusses is formulated considering the following reducing conditions:
as follows: It is an iteration - succassive approximation - method, - A trussing is a complex of rod - members jointed by prismatic rods
which is carried out from a to starting point of the n-dimencional - The rod - members are of constant rigidity and the distribution of
design space to the top t point containing the dimensional variables stresses arising under the influence of different loads is steady.
of the minimum - weight structure. Consequently it can be ascertai- - The interconnecting points of rod-members are the nodes and the
ned that in this stage of the design - work the iteration must be external load is transferred to the construction at these nodal
carried out with the help of an algorithm suitably composed for a points. The members joining at the nodes are connected rigorously.
computer, instead of using the traditional ,,design iteration" method. - The internal stresses of the rod-members are unanimously decided

The following schematic outline is added to the above mentioned: by the loads operating on the rod- ends(nodes).

- The nodal displacements are superposed by the displacements of
4 nothe rod members in the nature of rigid - body and by the deforma-

tion of the flexible construction.
yes yes - Only differentially little displacements are supposed, so the struc-

.1 r-, 0 ture - deformation doesn't react on the clearance of force of the
structure.
So as to make the following statements unambiquous we lay down

here some fundamental conceptions and markings which will be used
regularly during the treatment of our subject.

Accordingly the structure is examined in such a right - hand sided
fig. I. (x; y; z) co- ordinate system, the rod - members of which meet each

other in the (x; y) plane. The position of rods in the plane are given
I The to values of the original structure by the (u, v .w) self co-ordinates attached to the rod-members in the
2 The defning of Y(t) st fi o following way: The u axis points towards the direction of the cent-

roidal axis of the rod and the v and w axes point towards the main
4 The modification of design variables inertial directiom of the prismatic rod's crossectional area.
5 The defining of the structure's W(t) weight The position of the rod-members can be unambiquously determi-
6 Is the W(t) Min ondition fulfilled? ned by the cosines of the angles closed by the correspondent axes of
7 The evaluation of design and technological considerations the co-ordinate system.
8 The structure of minimum (optimal) weight. The motional characteristics and stresses of the structure in ques-

On the basis of the outline it can be proved that if the starting da- tion we consider a special version of the general case, because out of
ta of dimensioning satisfy the constraints gi(t) < 0 the structure is the six motional characteristics values and stress values - from the
convenient from the point of view of combined strength. It has to be vector pairs summarized in the following chart - there ar only 3 ones

each in our model.

7-37
' . .. ..G PS



|I

Stresses Vector Pairs Rigidity of Rod Since IRI 0 , ICl 0 , system 2.1 has a unique solution.
Belonging Together System (2.1) can be rewritten as

I Forces in rod Nu; u 0 < AE< ATy =q
direction u(2.4)
Bending in the Mww E <oo RY - AX= 0

2. (u, v) plane_ ;and using the previous relations we get
3. Twisting Mu; u luG = o Y=SAC-Iq, (2.5)

Bending in threw S = r R- . InthisexpressionC - I can be written as a function4.(u, w) plane ' 'I w E=hrS ntn4. Bof ICI.

So our investigations relate to the stresses and deformations con- As the elements of t vector occur in S and in C as well, the X vector
taining the frst two lines of the chart, where is a function of the t variable. The t variable cannot be expressed from
u - the tensile or compression strain resulted by the N force of rod the Y(t) in an explicit formula. It is the consequence of the above

- direction mentioned characteristics of the function that there are other struc-
v - the displacement resulted by the T shear force turcs, too, with the same geometrical arrangement but different from
I0w - the angular displacement caused by the Mw bending moment the point of view of strength, which are suitable for bearing the given

with the w oxis. external load. Out of these structures must be chosen the structure of
Summing up what has been said it can be ascertained that the minimum weight.

chosen mechanical model can be regarded as inflexible against the
twisting moment and in the (u, w) plane against the bending moment. 3. An Explicit Formulation of Stress Function
Its motions are produced in the (u, v) plane by a translation of u and
v direction and by the rotation around the w axis. 3.1 Disintegration of the Structure to Equal Partial Systems

The indexes shown in the chart refer to the co-ordinate axes, but
because of the already mentioned reductions they can be disregarded On the basis of the non-linear programming task described .q the
without offending against the unanimity of the treatment. Introduction and the detailed characteristics of the mechanical noc

It is why the deformations in question and the stresses, which they it can be admitted that both the computation technique and the sv
are induced by, can be replaced by vectors ture analysis require such formulas which can bo set up by functio

expressed in an explicit-form. This is why we deal in brief with the
X = ue + v c2 + e3  and introduction of the functions used for solving the task.

We want to determine a function - relation between the stress -
Y = N e I + T e2 + M e3  and cross-sectional characteristics of the rod elements. So similarly to

the already mentioned (4) (5) model the analysis of the whole structu-where e I 1; e2; e 3 are unit vectors, pointing towards the direction of recnbddudtohealyiofhesutrelmns vddre can be deduced to the analysis of the structure elements devided

(u v w) co-ordinates, while u, v V and N, T, M, are the scalar compo- into units. The moving off nodal points and the rod-elements connec-
nents of the X, reap. those of the Y vectors. ting to them are regarded as such units. (We remark that the units have

the same mechanical characteristics as the whole structure has.)
2. Stress Function of Trussing (2) (3) Illustrating this let us examine the simple structure given below

(fig. 2.)
In order to determine the tensions and the nodal displacements let

us consider the following equation:
(01r ~ , 2.1)

where q
A -matrix related to the nodal displacements, 

'f1

AT -the transposed of A, Y +
R - elasticity matrix of the construction elements.
X - vector of the nodal displacements,
Y - vector of the tensions,
q - vector of the load conditions. 12 q2 ,

The system of linearly independent equations (2. 1 ) consists of the
equilibrium and the compatibility equations of the structure. Because n4
an elastic truss is considered, the determinant of R, denoted by IRI is (V 0
not zero, i.e. Ill * 0.

Let us define now the following matrix: rig. 2.

C = AT R-1 A. (2.2) which contains two moving off nodal points and according to this we
decomposed it to the sum of two part-systems. As a straight consequ-

sis a symmetric, squre matrix and it can be verified that the ence of this attlitude, the rodelement connecting the two nodal points
determinant of C is not zero, Le. ICl * 0. It is clear that (2. 1) is the occur in both part-systems. Further on we examine how the basic
Kuhn-Tucker system for the following quadratic problem: equation regarding to the two part-systems is connected with the basic

min j yT R Y (2.3) equation system of the original structure.
According to the points of view detailed in the previous chapter,

mbuet to AT Y = q, using the markings of fig. 2. we set up the basic equation system of the
f,,+ , r-- r ism co,,,,z - 'a-r"+ is whole structure.

whene the funscionIYT RY is strictly momve. ThuaLYT R- lis also woesrcue
2 2

strkt con- mm a the ow of A ar linearly independent, C is a
positive deffnlie matrix IQl >0.
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examined. The beginning and end of the rod are also transformed

Rot 0 - YI + 0 = according to this on the basis of the basic principles given is the pre-
__ i _ _vious chapter.

0 R12 0 0 A12 .01 2  0 Y2 0 Making use of the partial results received hitherto the scalar compo-
nents of Ytt) function can be determined. The forming of C.a I 4a

and S A products are necessary for this. Therefore we are analysingo 0 Ri3  0 AI 3QI 3 -Q31 Y3 0 13  0 0 the C. matrix in a more detailed way.

By way of illustration we examine the example of the nodal points
0 0 0 R34  0 A34Q34  Y4  0 0 marked by I and 3 then we generalise the received results.

i i ""'1 So the matrix of rigidity of the part-system belonging to I nodal

_a 1 2A' 2 ,, 13A13  0 0 0 X1 ql 0 point is as follows:
13 11

31 T 34 34 QT AT l2 13 0 11L-o0Q A3 0 0 2 01; 12 2 13AT -

When dividing the whale structure into parts we observe the basic
principle, according to which the ends of the rods connecting to a mo- R 1L A13QI 3
ving off nodal point are fixed rigidly, so the matrix equation descri-
bing the whole structure breaks up to equation systems of the same =_Ql'I1100 +QT AT R-A Q -+ T T I12*l2"1" + I. IA3RI3A 1 3Q-1 3
type, independent from each other. 0  1 2A 1 2 12 1313 13

RoYI 0 0 Having performed the operations pointed out in a quadratic form

just like this we receive for the nodal point 3 the

o R1-, 0 A1 2Q12 2 0 0 C3 Q 1 R 3 1Q3 1 +Q 4A3 4 3 4  34 3 4

0 0 R13  A13QI 3  0 0 result. On the basis of the received expressions we can make two gene-

ral remarks regarding the structure of the C.a matrix.

-Q& QJ 2AI 2 Q13 A 13  0 X 0 - The Ca matrix consists of two kinds of quadratic products indepen-
_ dently from the number of rods connecting to the nodal points.

R 0 3 a3 a 0 - The connecting rods are distinguished by their direction examined
1R31 0 -Q31 in the surroundings of the nodal points. To be more exact the rod

directioned towards the nodal point is with negative sign in its own
0 R34  A34 Q34  Y4 0 0 nodal-point-system. Consequently the structure of the matrix pro-

- -duct determining its own rigidity differs from that of the rods with
Q3 e3 A 0 X2 0 positive sign.

L I L LJ 3.2 Definition of Rigidity Matrix
So the Qjk matrix of the co-ordinate transformation. After derivating the components of C matrix and clearing up its

, .i physical contents we are to examine the chiracteristics of the CC mat-
Qjk cos c - sin ri 1 ix, which characterises the rigidity of the rods being connected at one

... . . .nodal point, resp. the rigidity of the node itself.i C cost a, 0

----- - - In the preceeding we could see that two possible versions containing
O 0 0 the elements of C matrix can be determined for one rod member.

shaped ortogonal matrix, and a factoring with it results the ae angle ro- C'o=T y 0 0

tation of the rod-element's self coordinate system around the e3 vec- =a SQ=Co C I Cox -C 0 0 0 Mxz

tor.
The relation between the two systems is provided with the reserva- - C 0 0 0

tion that the displacements of the nodal points before the breaking up OYX 
0

yz
are equal to the displacements that can be determined by the

X= C- Iq 0 0 Coz Mzx Mzy 0

equation. The difference is indicated by the 41; 42 artificial loads
operating at the nodal points of the partunits, which can be calculated
on the basis of

~= C~X ~ (a 1.2 V,,=iTATSAQ=Co+Cl= Co. -C05  0

connection, on condition that they induce the same displacement as
the real loads did before decomposition. Ca-can be determined on the -C y C 0 0 0 M

basis of the factor- and the springmatrices of the part systems.

The double direction of the rod-member, which connects the two 0 0 C0 Mz M 0
moving off nodal points, depending on which nodal point system is
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where C', denotes the rigidity of that rod (one of the rods being the mentioned multiplication).

connected at the i nodal point) which is directed from i to j accor- b) Continuing the analysing of the characteristics of coefficient exa-

ding to the i < j relation, Ca is valid in case of opposit direction of mined within the a) point we change the expression in the following

the same rod. The relation also contains the definition of the inter- way:
relationship between the respective nodal point systems. The contents (E - 12-L E 2 E - -
of the matrix elements are detailed below. '2) E - 12 -2/ w2

Cox= AE 2 i2 + I - 12 2 cos2al where

12 / J I
X = -is the slenderness of the rod member

w2E . ..

I 2 2) ] ik = = is the critical tension aising when the rod buckles.
C1y= - 1 L + I- 12 - si,2

The critical tension only depends on the quality of the material and

the geometric data of the rod. The geometric data can be characteri-

AE ~ sed by the slenderness ratio. It can be easily ascertained that if we put

COz A= 4i 2  the rod material far from the centre of gravity of the cross-section the
load capacity of the rod will grow. This is restricted by the validity-li-
mit of the Hooke law, so we calculate with the

CCX -ox LEI -L 12 s'in2a Ioxy 2 1Oxy2 2\ =2 /;Ep=r value, where

.2 6-k-= 6-p is the limit of elasticity of the material.
S=M AE 6 - I sin c, In this way the material is utilized up to the limit of buckling as

concerns stability and by fixing the (i) radius of inertia

Myz = Mzy= ' 6 i1 cos, a _

In the expressions of string rigidities the Cox, Coy and Coz mean the most favourable material arrangement can by provided, then by

the components of string rigidity vector co-ordinate system of the determining the A (cm 2 ) independent variable the necessary moment

trussing. Coxy = Coyx is the centrifugal string rigidity calculable in of inertia can be computed on the basis of

the (x; y) plane for both axles.

Finally we construe the Mxz = Mzx and My z = Mzy elements as the Imin = A i2 (cm 4 )

.2
statical moment of the force-giving 6 . value calculated for the x and After these preliminary remarks the rigidity of any nodal points of

y axles. 
I  the trussing can be determined by a simple mechaninical summation if

The identity of the certain elements refers to the symmetry related we take into consideration the already laid down condition regarding
to the principal diagonal. the signs of the rods. Accordingly it is a symmetrical quadratix matrix

Some special characteristics of the problem follow from the general with the shape
result defined for the Ca. Here we call the attention only to two of
them.
a) In the course of examining the elements of Co, matrix it can be C = C C4  C5

ascertained that if the I - 12 -L- value of the coefficient sin2 a, C4  C2  C6

cos2a, sin 2a is equal to I, 'he CO contains the rigidity characte-

ristics of the rod member with an articulated joint at the two ends. L C5  C6  C3

It results from the I - 12 = I condition that the certain elements of which we determine by the following summa-

tion

12~ ~' m m
12 CI Z C~ i = I Ai(kil+ki 2 cos2 ai)

i--I i~l
The physical contents of this is easy to see if multiplying with the

tensile rigidity (which can be uniformly factored out from the matrix) m m
E= E C~y= Z A i (ki l +k 2 sin2

i12- 0

which is true only if in the lattice mesh structure connected with C = in

ideal joints the flexural rigidity exerted against bending is JE = O. 3  X Iz i A= k

It follows from the foregoing that Cla 0 (after the performance of
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The elements ofq vector denote the x. y directioned componentm Ine ari

m4  1 A. k. sin 2ai  of the already defined artificial force and its turning moment around
i i =I i =I Zxe

We can get the final result by performing the S A matrix multiplica-

m m tion. Similarly with the setting up of the C matrix we get two alterna-
C5 = 1 I1 A i kiIl sin ai  tive solutions depending on the direction of the rod members taking

Z 2 into consideration the structure of S and A matrices given for the no-

m m dal structures in : 3.1 chapter resp. the partial for the products as
C6 2 Myzi=  2 1 Aiki liCOsai the result of factoring them

i=l i~l A

SQ = - cos -sina 0
The constans used in the relations are the following: __=---_____

6.
kii22 i2

2l2 2- sine a 2-L2 cose a 12-
k _E 6"p i

2
i
2

2

i _12 - - 12-2 sin - 122cosa 4ei
2  - 12 -i 12 1

li 7p_k3i 4- AE
E SAQ=-- cos a -sina 0

i is the serial number of the rods being connected to the nodal 12 2 2
12i- sine 12- Cose -12-Ipoint and the summation has to be carried out for all the rods 12 12

(m-number) being connected to the node.

3.3 Definition of the explicit function of condition -L2- laie - 2cose -2i 2

For the explicit formulation of the (2.5) th equation determined
in the 2. chapter it is necessary to have the explicit forms of The results reached in this way are substituted into the Y:= SAX

X C- I and S A products. relation. For the sake of lucidity only the components of X are used
As a first step with the help of symbols used in the previous chap- for establishing the function. In this way, depending on the direction

ter we determine the C- inverse matrix in the following shape of the rod member we get the following result:

cI - 1 C1(t) C4 (t) C5 (t) r=sQx'= N' andr- - "

C4 (t) C2 (t) CO T'

tC (t ) -C L] r[j
where The N; T; M components of the r and r"vectors are the following:

C I(t) =C2C3 -6 C4(t) = - (C4C3 -C5C6) A

C2 (t =CC 3 - C2  C5 (t) = C4 C6 - C2C5  
I -X' 2 sn )

C3 (t)=CIC2 -Ci C6(t)=-(CIC6 -C 4 C5 ) T = 22 (X'l sina+X'cose-X')

Examining from the point of view of the vector variabletit can be M' =612 (-X' 'in a- X co sa + ! X '3 )

proved that both the elements of the adjungated matrix and the 12 3

I C(t) I determinant of the matrix are the functions of higher degree of AE
the independent variable different from the linear. N" I T Cos e - Sin a)

By using the C- I matrix the replacement-components of certain
nodes of the trussing can be determined if we solve the following mat- JE
rix equation: T"= l2T(X''sine+Xcose+X 3 )

X =I IC tt)I C(t q

C4 (t) O q The X' and " values are the displacement vectors of the two
connecting nodes of the rod element.

3CS(t) C6 (t) C3 (t) V trussing generally connect two moving off nodal points. In accordance
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with this the Y (t) vector can be defimed as the resultant of two parti- M2max E
al systems of different character. Utilizing the two alternative funda- 62 1 e = I e 1 x3 Imax
mental relations we set up the stress function of the rod connecting
the moving off nodes by producing the following summations: relation is valid, where

e - is the exterior fibre distance of the cross-section.

Y(t) =Y (t) +r'(t) N N +N The value of e is also given with the knowledg- of the radius of
inertia elready discussed in the 3.2 chapter, consequently it can be

' + T" determined on the basis of1 +[ 1 6Mmax =+ M1 !6' E [ x'l +x'j) coso - (x'+xH) sine + e X3ma

Substituting in the expressions determined for the respective com-
ponents we get the results as seen below: The summation is performed only covetng the tensions of the same

signs and we require the equation

N-A=E-EXi + X') cos n - (X'+X) sin I 16max I 6meg

T = 12 !- F(X'I +X") sinX + (X +X ) coso - (X'+X) l for the greater tension-as regards its absolute value) Omeg is charac-
3 LP 3  2] teristic of the material of the trussing and means the tension which

2 can be allowed in the materiatwithout damage.
M = 6-[(X' I +X') sin- (X'+X )cosm + (3X 3 -- !X3 ) After these preparations and using them we put down the equipon-

2 3derate of condition of the rod member connecting the two nodal
points

With this we have reduced the producing of stress function to the
algebraic summation of the displacement components of the nodal 6 (t) = I C' Pi [Z(t) cos a - Zji (t) sin -1 +
points.

The case when one end of the trussing is rigorously fixed i. e. can- + Ia" nI P[zi (t) cosa - Zi(t) sinot + Zi (tt) -
not move off can be considered as a special application of the general
formule. In such a case-depending on the direction of the rod in ques- - IC' I IC"m < 0
tion by substituting the values of X or X" for zero we get the stress
function resp. its appropriate components. which has been determined on the basis of the displacement compo-

The tension which comes into being as a result of the loading can nents substituted in the 6 "max expression and the arrangemrnt of
be determined on the basis of the unindirectional complex stress of
the rod member. On the basis of the normal power influencing on the 6'maxl - 6' 0
rod the megS

! = E= L W + x',) cos a - (X + s The contents of the used narkings will be detailed as follows:

IC' I and IC" - the determinant of the matrix of rigidity
concerning the two end-points of the rod member

tension comes into being. The 62 tension emerging under the influen-
ce of the bending moment must be added to it. Zi (t) qm; + C4 (t);y + C (t)'

The effective stress is the greatest moment loading the rod, in the "z
cross-section of the capture, which can be calculated from the sum of
the components of thet moment which is on the left side of it. The Z2i t) = (t)qx + C(t)q, + C(t)'q
resultant force which is on the left of the cross-section is T' resp T",
depending on the location of the origin of the co-ordinate system - Z3it) = C (t) + C (t) q + C3 (t)qz
i. e. on which end-point of the rod we suppose it is. The moment of
the T force supposing that both ends of the rod are rigid means the product-sums. The expressions with " index are accordingly

T' I T" I equal to the above expressions.
Sresp. _E

Pi -' is the constant referring to the i-th rod.

By adding them to the adequate M' and M" concentrated moment
values we get the In connection with the addition of Z'3i (t) we call the attention to

the fact that when setting up the function we supposed the (xi) >
= ' IE 2 (1 IE, (x') inequality. Inversely it is obvious that Zi (t) must be taken into

M -+M' = 6- - (- x3--x 3)  "-3 reap, consideration in the expressions of gi (t)' and in this case Zi (t does

not occur in the function. Here we mention an already discussed spe-
M=2 + M" -6 - I cial version of the task. - i. e. one of the two end-points of the rod

+ 2x~i -_x _I xi -memeber is fixed, consequently unable to move off. In this case the

equiponderate of condition can be formulated in the following simpler
expressions, from which it is easy to see that their size is decided by form without making any difference between the 'and" signs.
the rate of the X3 angular displacement. So from the point of view of
the tension-maximum the gi (t)=Pi 1 ZIi (t)cosa - Z2i (t)sin + Z3i (t) - 'C meg =0
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Summarizing the characteristics of the scalar function determined For solving these problems the linearized centre-method is used,
for the gi(t) 0 inequality we can state that only one gi (t) i -- I, 2 ... worked out by P Huard (16). Namely according to this method in the
m) function belongs to each occuring t vector. The function defined course of optimization in each step we perform only one simplex pro-
in this way unambiguously contains all the stressing and dimensioning cedure and one minimalizatton along section. This makes possible thatvariables of a given structural solution. The Z I (t); Z2(t) and Z3(t) the method is well applicable also in case of a great number of inde-
expressions occuring in the function are the quadratic functions of pendent variables and, on the other hand, because of the already men-
the independent variable so the non-linear characteristics of the gi(t) tioned mechanical characteristics of the task it is well adjusted to the
function are determined by the IC I = IC(t) I determinant function, special characteristics of the task.

We got computational experiences in cases of different structures
4. Algorithms Suitable for Definition of Optimum Weight and different load conditions. One of these solved problems was a mi-

nimum-weight design of a bar structure being part of a Hungarian
The problems occuring in practice generally lead to a nonlinear IKARUS bus.

conditional extreme-value task solution when a minimum weight of
statically indeterminate structure has to be determined in case of con- References
tinuons independent variables.

There are three basical groups of computer technique methods app- ( 1) Gallagher R.H., Finite-Element-Analysis, Springer-Verlag Berlin
lied this time: Heidelberg New York 1976.
a) They transform the non-linear programming problem into a linear ( 2) Pestel, E.C., Leckie, A., Matrix metjods in elastomechanics,

one. (6) (7) (8) These procedures are based on the fact that the McGraw-Hill, New York (1963).
steps of approximation are approaching to the solution being on ( 3) Szab6, J., Roller, B., Ruidszerkezetek elmdlete 6s szgmitisa, Mi-
the limit of permissible range. szaki K6nyvkiad6, Budapest (1963).

b) Using the gradient methods (9) (10) (1i) they decide such directi- ( 4) Halmos, E., Rapcsik, T., Minimum weight design of the statically
ons passing along which the value of the objective function is gra- indeterminate trusses, Mathematical Programming Study 9,109-
dually reducing, -1 19 (1978).

c) The third group of non-linear programming solutions is based on ( 5) Bernau H., Haimos E., Dimensioning of Statistically Indetermina-
the so called ,,penalty" function technique (12) (13) (14) (15). te Lightweight Structures of Complex Stress on the Basis of Mi-
A common feature of these procedures is that they transform the nimum - Weight Conditions, MTA SZTAK[ Working paper
objectional extreme-value-tasks into non-conditional ones. MO/ 17. (1980)
Summing up the solution-methods of the enumerated non-linear ( 6 Reinschsnidt, K.F., Russel, A.D., Application of Linear Program-

programming tasks it can be proved that the application of inearing ming in Structural Layout and Optimization, Computer and
formules and grandient methods is justified first of all when the func- Structures, Vol. 4(855-869). Pergamon Press (1974).
tions of condition of the structure to be optimized can be well app- ( 7) Farshi, B., Schmidt, L.A., Minimum weight design of trusses,
roached by means of a linear function. The application of correctional Journal of the Structural Division I (1974).
functions are effective when neither the objective function nor the ( 8) Moses, F., Optimum structural design using linear programming,
functions of condition are linear. Journal of the Structural Division 12 (1964).

The bus carcass elements are of mixed construction i.e. they con- ( 9) Avriel, M., Nonlinear Programming, Analysis and Methods, Pren-
tan structural elements of both compression-tension and complex tice Hall, Englewood, New Jersey (1976).
load. So there can be found characteristics of two kinds: either charac- (10) Bazaraa, M.S., Shetty, C.M., Nonlinear Programming, Theory and
teristics approaching to the linear or other ones different from it at a Algorithms, John Wiley and Sons; New York (1979).
great extent. (II) Gill, P.E., Murray, W., Methods for constrained Optimization,

Academic Press, London-New York-San Francisco (1974).
(12) Fiacco, A.V., McCormick, G.P., Nonlinear sequential unconstrai-

ned minimization techniques, John Wiley and Sons, New York
(1968).

(13) Pierre, D.A., Lowe, M.J., Mathematical programming via augmen-
ted Lagrangians. An introduction with computer programs,
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(14) Biggs, M.C., On the convergence of some constrained minimizati-
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THE UTILITY OF NONLINEAR PROGRAMMING METHODS FOR ENGINEERING DESIGN

K. M. Ragsdell, P.E.
School of Mechanical Engineering

/ Purdue University 0-foao 04.6
West Lafayette, Indiana

U.S.A.
\ i/Abstract

Aerein is considered the relative merits of modern confirm his findings directly. In 197h Eason and

optimization methods fcr engineering design applica- Fenton [31 reported on a comparative study of twenty

tions. The design and implementation of two major com- codes on thirteen problems. Dr. Eason did his testing

parative experiments is reviewed in detail These stud- on one machine, and included in his test set the
lea took place at Purdue University. 1i--irst, an in- Colville problems plus several problems from mechanical

vestigation of the merits of general purpose nonlinear design. The major contribution of the Eason study is

programming code swith major funding from the National the introduction of error curves, which allow con-
Science Foundationwas conducted over the period 1973 venient comparison of codes at exactly the same error
to 1977. The second, an investigation of the relative criteria. The major shortcomings -re the lack of dif-
merits of verious geometric programming strategies and ficulty in the problem set and the failure to include

their code implementations with funding from the Office the more powerful algorithms. There have been other
of Naval Research,.was conducted over the period 1974 to important studies reported [4,5,6,7,8,9,10,11), but the
1978. The various major decisions associated with such work of Colville and Eason have had the most profound

studies are discussed; such as the selection and col- impact on the work reported here.
lection of problems and codes, the nature of data to be
collected, evaluation criteria, ranking schemes, presen- Major Objectives of Study:
tation and distribution of results, and the technical The major goal of this study was to discern the

design of the experiment itself. The statistical impli- utility of the world's leading NLP methods for use in

cations of the results in light of the experiment design engineering design. A secondary objective was to de-

are examined; as are the effects of various experiment sign the experiment and present the results so as to
parametersenhance the utility of the results and conclusions in
straints, degree of nonlinearity in the objective 

and
an industrial environment. Theoretical convergence

constraints, and starting point placementA rates were and are of little importance to me. I

The NSF Study ,wanted to rate the methods in a manner that would allow
Ta typical designer to choose the appropriate method or

In this study we considered methods whi h address possibly class of methods for his particular problem.

the nonlinear programming problem (NLP): It seemed desirable to include an many current indus-
MINIMIZE: f(x) ;xER

N  
(1) trial problems and codes in the experiment as possible.

Industry supported the work by contributing codes, pro-

subject to: g (x) O J=l,2,3,...,J (2) blems and by direct financial support ofvisits in the
summers. I spent two summers in industry during the

hk(X) 0 k1,2,3 ... ,K (3) study helping to formulate problems and collecting codes.
The companies who contributed most to the study are

and <x.x (u) i=1,2,3,...,N (4) Whirlpool Corporation, Honeywell Corporation, York
x i 1Division of Borg Warner, and Gulf Oil Corporation. The

given x 
(0 )

, an initial estimate of the solution, x*, a same person, Eric Sandgren, performed all of the numer-

Kuhn-Tucker point. ical experiments, and all calculations were performed on

Before coming to Purdue, I, as most others inter- the same machine using the same compiler, a CDC-6500 at
ested in nonlinear programming, was aware of the pio- Purdue University. Furthermore, the student was not in-

neering work of Al Colville of IBM [11. Colville sent volved in algorithm development. The major steps in the

eight problems having from three to sixteen design vari- study were:

ables and a standard timing routine to the developers of 1. assemble codes and problems.

thirty codes. Each participant was invited to submit 2. qualify codes via preliminary test set of 14

his "best effort" on each problem, and the time required problems.

to execute the standard timing routine on his machine. 3. apply 24 qualified codes to full 35 problem

One can only marvel at the economic wisdom of Colville's 
test set.

decision to send the problems around rather than collect . el e proble
the codes and run the tests himself. Unfortunately, were successful.
this approach contains at least three flaws. Eason [2] 5. compile and tabulate results for 24 codes on

has shown that Colville's timing routine does not ade- 23 problems.

quately remove the effect of compiler and computing 6. prepare individual and composite utility

machine selection on code performance. Accordingly, the curves.

data collected at one site in the Colville study is not Results are presented graphically, as seen in Figure 1

comparable to data collected at another. Furthermore, and hopefully in a useful form for engineering designers.
each participant ws allowed to attack each problem as
many times as he felt necessary in order to optimize the
performance of his code. Thus another investigator Major Conclusion:

could not reasonably expect to produce similar results
with the same code in the absence of the special in- We were able to confirm the major conclusion of
sight which only its originator would possess. Finally, the Colville study; that is, that the Generalized Re-

and possibly most importantly, no two participants re- duced Gradient codes are superior as a class to the

ported solutions to the same accuracy, which in our ex- others tested. Sandgren [121 shows that the trends are

perience is a major difficulty in fair comparison, statistically significant.

These shortcomings cast a very real shadow on the valid-
ity of the Colville results and conclusions. Quite un- The OR Study

fortunately from the scientific point of view the In this study we considered methods which address
Colville experiment was not repeatable, so that it was the prototype posynomial geometric programing problem
essentially impossible for latter investigators to (GP):
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formulations are preferable and under what
MINIMIZE: go(x) ; xcR (5) conditions.

subject to gk(x)_l k=1,2,3,...,K (6) 3. Which GP algorithm/formulation combination is

and xi>O i=l,2,3,...,N, (7) most likely to be successf.il for a given pro-
where the posynomial functions gk(x) are defined as: blem.

T k  N a4. Whether a criteria can be defined by means of
gk(x) - tsk at  1 x (8) which GP problem difficulty can be gauged.

n=1 n

with specified positive coefficients ct and specified In designing this experiment, we attempted to rec-

real exponents ant. The term indices t are defined as: tify some of the inadequacies of previous studies. In

SO = 1 (9) particular we did the following:

sk+1 = Tk + 1 (10) 1, Used a large number (42) of problems, with

randomly generated starting points (up to 20
T, =T (11) per problem).

This problem is in general a non-convex programming 2. Results were obtained at several precise

problem which because of the nonlinearities of the con- error levels.

straints can be expected to severely tax conventional 3. Execution time is measured such that starting

nonlinear programmdng codes. However, despite the ap- point generation and extraneous I/0 is ex-

parent difficulty of the primal problem, there are cluded.

structural features of the generalized posynomial func- 4. Designed the tests such that formulation

tions which can be exploited to facilitate direct effects can be separated from algorithm

primal solutions. in addition various transformations effects.

can be employed to give equivalent formulations. The 5. Finally appropriate statistical tests were

additional formualtions which we considered in this used for the comparisons.

study are: The Major Conclusions of This Study are:
1. The Convexifiel Primal 1. the convex primal is inherently the most ad-

This formulation results from the trans- vantageous formulation for solution.

formation xi=e i;il,2,3,...,N. 2. a general purpose GRG code applied to the

The new functions of z become convex func- convex primal will dominate even the reputedly
tions. best specialized GP codes currently available.

2. The Transformed Primal 3. the differences between the primal and convex

The additional transformation, w - ATZ + primal formulations lie mainly in scaling and

tnc gives this formulation. function evaluation time.

3. The Dual 4. trensformed primal solution approaches are not

The relationship of the dual and primal likely to lead to more efficient OP solution
is well known, than the convex primal.

4. The Transformed Dual 5. the dual approaches are only likely to be com-

An alternate way of formulating the dual petitive for small degree of difficulty,

program is to eliminate the linear equality tightly constrained problems.

constraints by solving them for the dual vari- 6. posynomial GP problem difficulty as measured

ables in parametric form. Using this device in solution time is best correlated to an ex-
the dual variable 6t can be expressed as the ponential of the number of variables in the

slum of a particular solution and a linear corn- formulation being solved and is proportional
bination of T-N-l homogeneous solutions of the to the total number of multi-term primal con-

1+1 dual constraints. straints.

Major Objectives of Study: Other Experiments
The goals of this study were to determine: Schittkowski (13] has recently completed an exper-
1. Whether the constructions resulting from GP iment which is similar in many ways to the Sandgrenstudy. He gives results for the latest successive

theory offer any computational advantages over quadratic programing algorithms [14] and has proposed
conventional WP methodology. a model (15] for the conduct of future studies. Inaddition the recent comparison of "reduction methods"

2. Which of the various equivalent GP problem of 0. Van der Hoek [16] is examined. Finally the work
of Root 117] and Gabriele [181 is considered In light
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if gtructural applications. In particular Gabriele's 10. Schuldt, S. B., iabriele, G. A., Root R. R.,
modification of the Generalized Reduced Gradient method Sandgren, h. &nd Ragsdell, K. M., "Application of
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viewed. zation", Journal of Engineering for Industry,
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Abstract Optimization Problem

-A recently developed optimization technique of great practical The optimal structural design problem is stated as follows:

polenlial will be presented. 7Iw technique is based on two (PI) Find the vector of variables V which minimizes an

de%'lopments. First. it utslizes a successive Quadratic Programming objective function F(Y) -ubject to the constraints

algorithm originally presented by Han and implemented by Powell

for solving nonlinear constrained optimization problems. A Quasi- gtY) 0..............m flat

Newton method is used to approximate the Hessian matrix, resulting h (Y) 
< 0 m +l....m (Ib)

in near- quadritic convergence to at least a local optimum. Second, I

the procedure uses the work of Berna el al.. who developed a Where F.g . .,.,, b denote real-valued functions of

decomposition procedure for the Han-Powell algorithm. The the vector Y in N-dimensional Euclidean space R

procedure partitions the original design variables into independent in the specific case of element size parameter optimization

and dependent variables, eliminates the dependent variables, and thus using an elastic finite element model, the vector Y contains both

yields a muct reduced Quadratic Programming problem to be solved the element size parameters and the joint displacements. In this

at each iteratin. case, the equality constraints Ia) are given by the system

Results oLained with the technique for a number of standard equilibrium equations:

test problems. which include the 10 bar truss, the 25 bar truss and 2)

the 72 bar truss problems. are in agreement with previous results g = K ] { u 1 - { P }

and show a general reduction of the number of cycles to where K = structure stiffness matrix

convergence, especially for the optimal structural design problems u - vector of joint displacements

'ith stress constraints oul),. P = vector of applied joint loads.

Introduction The inequality constraints I lb ) are of the iorm

The general optimal Structural design problem is to minimize h s - s or s -S (3)

a measure of the cost of the structure subject to applicable I iL iI

performance requirements. In most of the literature, the cost where S5 L and Siu are upper and lower limits on the

function is taken as the weight tor volume) of the structure, the behavior variable si. For structural optimization, the constraints

design variables are separated into element size parameters pertain to element stresses and joint duplacements. In the former

(e.g..cross-sectional area) and structuic configuration parameters case, the controlling stresses in element i can be computed as

te.g., joint coordmates), and the performance requirements include
behavior constraints on the stress in each element and on the s II.] Ti a { u I (3at

displacements of certavA joints, as well as the usually implicit where P1 modulus matrix

equality constraints arising from the joint equilibrium equations. T' = coordinate transformation matrix of element I

One popular approach for solving optimal structural design a.' = branch-node incidence matrix of element

problems is to formulate them as a sequence of mathematical

programming subproblems . Numerous papers l i - It] ) use The eQuality constraint equations t21 are hi-linear in the

a variety of such mathematical programming techniques, variables Y, as the element stiffnesses k entering into [KI are

The purpose of this paper Is to introduce and illustrate a linear lunctions of the element size parameters. The modulus

recently developed optimization technique of great practical matrices nfi for certain element types, e.g. trusses, are independent

potential. The technique is based on two developments. First. it of the element size parameters, which can be demonstrated as

utilizes a fast successive quadratic programming algorithm originklly folows:

stated by Han (121 and implemented by Powell t[13]-[201) for at In a basic local coordinate system the element force. R, .

solving nonlinear constrained optimization problems. The algorithm s R k ,IJ u I EA/ , a

uses a Quasi-Newton method to approximate the Hessian matrix, R. = E k J T a { u } [ A./I..] T a [ u } 14)

resulting in near-quadratic convergence to at least a local optimum, where E Young's modulus

Second. the technique uses the work of Berna et al.[21], who

developed a decomposition procedure for Powell's algorithm which A * cross-sectional area of element I

partitions the original design variables into independent and

dependent variables and eliminates the dependent variables, thus Li  length of element i

yielding a much reduced quadratic programmng subroblem at each b) The controlling bar stress s. is

The technique is first deravea and then illustrated using S, : R/A I /At l [ EA./L JT a I u 5

problems previously presented in the structural optimization X EI iT. a I I T-i f~ I si In 15

literature. The examples all deal with the simplest structural where f1 EIL

application of the technique, namely element size parameter I I

optimution for trusses. Extensions of the technique. including The inequality constraints are thus lInsa- functions of the

additional structural types I plane frames and systems of finite joint displacements u. and therefore of Y.

elemens Is combined with conf-iiralion optimnization. will he The non-lineatrity of equations S in the variables Y and the

presented in Islae papers. very large number of constraint equations makes tht direct solution

- .. . _ .... . .. . . . . . . . . . .. .. .



of ( P1 infeasible or economically impractical. One Step that MAY Reduced Quadratic Problem Formulation
be taken to reformulate ( PI ) so as to reduce the problem
dimensions is to take advantage of symmetry and repetition of Bern el al. have suggested a decomposition procedure

identical components to link together some design variables Y as a whereby the optimization problem (P3) can be solved more

function of distinct design variables X L to set I efficiently [21]. In Berna's work the design variables I AX )
are partitioned into two subvectors. the vector { AA I of

I Y [ L I { X 1 (6) independent variables and the vector (Au) of dependent variables.
The necessary conditions for solving the quadratic

= 1.2 ............ n, approximation problem (P3) are as follows :
j 1.2 ......... n (I) Stationary condition of the Lagrangin function of the

n << n quadratic approximation problem (P3):

T11 T"
It is to be noted that only the element size parameters A AA ]A

may be linked together by Equation (6) : all the joint [H " (10)
displacements must be retained as distinct 4~sigu variables in )J [IU
X. Further steps in reducing the problem dimensions will be
introduced later.

(2) Satisfaction of the linearized original constraint equations:
The design problem now becomes : 9 A + )

-- AA +.--- Au + g = 0

1 P2 i Minimize F) X 0 2AT buT

Subject to gi X ) - 0 (7) (11)
hI X :- 0 )h 6h

- AA + - Au + h < 0

The general form of the vector I X ) is J A u
T  a A

T  ut
(3) Complementary slackness and nonnegativity of the Kuhn-

where I A } vector of element size parameters Tucker multipliers:
I cross-sectional areas for trusses a r h h

I u } vector of joint displacements qTAA + Au + h =0L ur  J(12)
The Lagrangian function of problem (P2), which will be used

later, is Z 0

L X.w.q F)X p V *gX q .h X (8) It is easier to present the remainder of the derivation if the
where p P1 are vectors of Lagrangian and Kuhn-Tucker following notation is adopted

multipliers, respectively. HAA* ._..._ Hu

Quadratic Problem Formulation AuA' 6PUA uu, a u 6uO

Han 112] has suggested that the nonline optimization GA AV"~ uGoAkg
problem (P2) can be solved by generating a sequence of points {h b h
xk which are the solutions to the following quadratic A U
approximation programming subproblem: F = F F 8F

(P3) Minimize A A u a u
VF( Xk T .) AX + /2 ( AX )T * Hk AX Using the above notation. the necessary conditons given by

subject to : Equations (10) through (12) are as follows (rows and columns of

g(xk ubg( xj kt
T . AX 0.0 (9) the coefficient matrix are numbered for later reference):

hi Xk Vh( xk T ) AX ) 5 0.0 (1) (2) (3) (4)

k-I k (1) H AA H AnG A hA .A_
where AX ==Xkl Xk ()HAA A u AT hAF

VF -- F u

ax (3)HGA H 0 0h -

V X (41 b A  h u 0 0 i4 } 1-3'

The n x n matrix H kis i...eded to he an approximation of A
the Hessian matrix of the Lagrangtian function of problem (P2). In TrJ
Han's original work. the Hessian matrix is updated b3 the Davidon- T hiA hn I 0 and q > 0
Fletcher-Powell E22] method. Powell has used Han's method to
solve optilization prc-lems with nonlinear constraints [13]-[203

with the Hessian matrix approximated by a Quasi-Newton method. The size of the coefficient matrix in Equation (13) is
Powell ,uggests an emprical rule so that the updated Hessian matrix extremely 'large. The major contribution by Bern. et. a. is the
remains positive definite or positive semi-definte. A Quasi-Newton proceft for elimmatng the dependent variablea Jul efftcienltj;
method which was simultaneously presented by Broyden. Fletcher. rMlntmg in a Much reduced quadratic programming problem. The

Goldfarb and Shanno (BSOS) 122] has been used . his study. redfction is accomplished in two steps.

Numerical results have proven that the efficiency of Han's metlod The rows and columns in Equation (13) are first rearranged
can be improved by Powell's modifications E[13]. as thom-
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(2) (3) (1) (4) Const'Oeing the Step Size

(340 o GA o ~Au =~g1In optimal structural design problems wich include both[u 0 1 .8 stress and displacement constraints, the optimal solution is usually

uu HuA hu  -F found at an iterior point of the design space such that the total

GT H h AA -F J (14) number of active constraint equations is less than the total number

(4) h 0 hA  0 
h  algorithm (13] may not converge.

u A To control the step size of the independent design variables
and to stabhze the algorithm, a constraint of the form

AAI 112 { AAT) . i AA ) f-f 19,

hA hu 1 . A. and , 2 0 may be added to the problem (P4).

~h Adding coistraint (19) to the problem results in adding a

Next a reduction or condensation is performed on the first diagonal matrix w'[I) to the Hessian of the reduced quadratic

two matrix columns of Equation (14). producing : problem, where w ( _ 0) is the Kuhn-Tucker multiplier for the

1 0 M 0 Au in above constraint. Rather than chasing twe can treat v as an

~ Iadjustable parameter. to be increased if we wish to reduce the step
1 M) N size and decreased if we wish to allow for larger steps. A

0 0 Q AA minmum value of zero for w releases the step size constraint
c ,mpletely.

0 0 QT 0 :5 No automatic adjustment algorithm for w has been developed
to date. but one similar to that used by Reid [23] and Westerberg

Th terms appearng in Equation (15) are defined in [24] could be devised, Such an algorithm would increase e if the

Appendix A. actual change in the Lagrangian function for the step taken is

The conditions that the quadratic programming problem mut significantly different from the value predicted by the linearized

satisfy are then given by the last two rows of Equation (15) Lagrangian function, hold v fixed if the linearization is moderately

0] acceptable. ind decrease r I to zero perhaps 4if the linearization

(16) is excellent. The addition of a diagonal matrix to the approximated
H.ssian matrix H, also stabilizes the algorithm. The updating
procedure assures that ihe Hessian matrix H. remains symmetric

The original complementary slackness :oaditions. Equation and positive definite see Appendix C ). but in the limit it ma%

(12). become make Hk nearly singular 4 positive semi-definite). We have on

*1Q AA _ h 0 occasion found it effective to have a small diagonal term in the

Again. nonnegativity of the Kuhn-Tucker multipliers In approximated He3siam matrix to control the conditioning.

Equation (12) gives q > 0
The reduced QPP is. therefore

(P4) Minimize Inconsistent Constraints
AT T AF( AA ) T.q AA1/2*AA*H *AA

(1 7A In solving the reduced quadratic programming problem (P4).

subject to inconsistent constraints y exist aons the set of linearized

A constraint Lquations ( Q -* AA S ). This inconsistency arises

Q • AA h h from using the linearized constraints to substitute for the original
c3ustratnts. when the initial guess or an itermediate solution is too

The correspodil Lalyamgnm function is T A tar from the optimum solution. Powell (13] introduced a dummy

T L I AA, i I - 1 AA 2 AA * H *AA*s variable I ( 0.0 5 1 I. ) to the quadratic programming
(Q AA - b ) I problem to solve this problem

The optinization design problem( P4 4 can now be solved in By adding thi aroble m to the reduced QPP Equation 4W

terms of the independent design varables [ AA ). The results, can e rewritten as follows:

* AA)aend Is of problem P4 can venbe ued tocalculate
the vectors A )and p in the firt two rowsofthe Q
Equatio (15). thus completing the solution of the quadratic 0T 0 1 C
approximation subproblem. Q, 11 0 Ol 1VI Sl

Active Conatraints T

In applying the reduced quadratic programming technique he C l a constant
1 presented above to ToPumil structural design. the number of %'here C - large negative constant

comtrait equations Q A < h may be 10 to 100 limes larger A
than the number o independent design varible I AA I. To hi ( 0.0

further reduce the problem dimensions, each iteration only th 0.0
critical and potentially critical constraint equations are included, so h a 0.0

that only about 5% to 30% of the original number of constraint and feasible solution can always be found for Equation

equations is usel in each iteration. (20).
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Implementation We are currently extending the algorithm and software system
to handle additional structural types, as well as configuration

The complete algorithm for applying the reduced quadratic optimization combined with parameter optimization. At the same
programming tchnique to optimal structural design is described m ie eaeepoieadtoaltcnqe ofrhrices

Appndi B.A oduar oftar sytem is eig dvelpedto time. we are exploring additional techniques to further increase
Appendix B. A modular software system is being developed to speed and capacity, such as the use of sparse matrix techniques for
implement the techi que. The main feature o t ste is at the elimination of the dependent variables.
only the subroutines for generating the matrices k I. T and If and An interesting consequence of the optimization technique
their derivatives need to be compiled with the system for each described is that the solution of each quadratic approximation
different structural type. subproblem may not be a feasible one unless the optimum is

Examples reached. Specifically. a trial solution given in terms of the currentvariables { A ) and { u } is not in equilibrium with the applied

Three truss examples previously reported in the literature have joint loads P.
been chosen to test the accuracy and efficiency of the program.

Example I is a ten bar planar cantilever truss shown in
Figure 1. previously used by Schmil[S3].Khan[ 251 and others. 30
Design and loading data are given in Table 1.

Example 2 is a twenty-five bar transmission tower truss. 6 Q 4 ( 2
shown in Figure 2. previously studied by Schmit[3.Arora[4] and

others. The design data and the two loading conditions applied are
given in Table 2. The elements are linked into eight groups as in
Reference [3J 3 1 1 3 360'

Example 3 is a seventy-twc bar space truss, shown in Figure

3. previously studied by Schmit[33.Arora[4] and others. Design and
loading data are given in Table 3. The elements are linked into 0 (_)
sixteen groups as in Reference [3]. X 3

For each of the three examples, two cases were investigated:
Case 1, using element stress constraints only and Case 2. with
displacement constraints included.

Figure 1. 10 Bar Truss

Results

The results obtained for the three examples are shown in
Tables 4 through 6. showing the final areas, the total weight, and
the number of cycles to convergence. The optimal results for Case
2 of the th-ee examples are compared to published results in Tables
7 through 9. Z

It can be seen from the tables that the technique presented
converges in all cases to the same optimum point as the previous
studies. It can also be seen that with one exception (Venkayya [I1 '7

on Example 2 ). the present technique requires fewer cycles to
converge to an approximate optimal point than the fastest of the 10
previous methods. 75 7 4

Conclusion 2 -5

A fast optimization technique for optimal structural design4 is10.

has been presented. The speed of the technique derives from two 1 24

key factors: first, the dependent design variables are eliminated or 2,

condensed out of the quadratic approximation subproblems. and
second, near-quadratic convergence for the independent design 2011S
variables is obtained, The technique appears to be particularly
attractive for large-scale optimal structural design problems, since 20

all joint displacements (a subvector of length equal to the number X
of degrees of freedom times the number of loading conditions) are
eliminated, resulting in a reduced quadratic programming
subproblem involving only the distinct element sizing parameters as Figure 2. 25 Bar Transmission Tower
design variables.

Results obtained with the technique for a number of standard
test problems are in agreement with previous results and show a
general reduction in the number of cycles to convergence.

'Defined as maxl, l/mam PI S 6"
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20

120' Table.2.,DesignData for=25.bar- transmission tower

4
LYmodulus of Elasticity 10 IDksi

(D Material Density 0.10 lb/In3
xE t5s lits 40 ksI

Lower limit on cross-sectional areas - 0.10 in
32

Z 0.01 in

10 9 Upper limit on dlisplacements = 0.35 in
14 Number of loading conditions = 2

17 
.....dt Mgnitude of loadiKips)

13 2 Load

2 ~~cond._ Nod Y2

63 -0.5 0.0 0.0

(D4 -0.!5 0.0o 0.0

0.0 -20.0 -5.0

602 2 0.0 '20.'0 _5 0

01* Stress constraints only
Stress and displacement constraints

60

6d

Tab8le .DeinData for 72=bar truss=,,=

Figure 3. 72 Bar Truss 4 =
Modulus of Elasticity 10I ksi

3

Taoi 1.DsgnDt ori a tusMteri1alDensity 0.10 lbin
... Strs liit .125ki

4.. . .. r2 ,I. k

Modulus Of Elasticity 10I ksi Lower limit on Cross-sectional areas 0.10 in
3Upper limit on displacements 0.25 in

-0.10 lb/in Nme flaigcniin
MaeralDn:ity 

.Tb251.5

2 magnitude of loa d ikipsi

Lower limit on cross-sectional areas *0.10 in .- =.*===

Lipper limit on displacements * 2.0 in Load
Numb~er of loadin codiin- I cond. Nd

......... ?e = .=...= =.===....~..... ====*===.~=*.==.

Magitude of load (Kips) 1 15.0 5.0 -. 0
.......... ........ ................ . ==. . .

Noe 1 0.0 0.0 - 5.0
.................- *=.. . - 2 2 0.0 0.0 -5.0

0 0 0iD 3 0.0 0.0 -5.0
30.0 -10.0 4 0.0 0. -5.0

........... ......... ....... ..=........ - . . .

Ttle 4. oplistel t0 bar truss Table 7 Optimum designs for ten-bar truss

.......------- l area ( I=n.-.................. ......

r,,a rea in I..............................==== . . . -

S-.= Group cetBMur(1Shi ArOra &Khan & Ti

Member nmber cae I Case 2 No. NEWSUMT .. CONMIN.,Farshil?) Venkayya(i)iiaugl4l ,Willmert(25)PAper
.......... - ...... -.................... ........

7,Q379 30.7928 1 30.6700 30.5700 33.4320 30.4160 30.9800 30.7929

2 0. 1000 0.1000 2 000 0.3690 0.1000 0.1200 ... 0.1000 0.1000
3 81 2.65 3 2.7600o 23.9700 24.2600 23.4000 . 24A1690 23.9655

43.9379 10C7038 4 14.5900 14.7300 14.2600 14.9040 1.00 14.7038
5 0. 00 0000 00 5 100. .10 0.000.01 0 0.1000 010

6 000 01000 6 0100 0364 0.-1000 0.100 .. 0.4060 0 1 000
7 5 7447 8.5321 7 a6.5760 a6.5470 9.3880 I.6960 * 7.5470 a .5321

9 5.5690 20.991t9 a 21. 0700 21.1100 20.7400 21.0840 . ~ 21.0460 20.9519

95 5690 20.9014 9 20.9600 20.7700 19.6900 21.0770 .. 20.9370 20.8014

I.9 0.i000O 0.1 000 10 0.1000 0.3200 0 .1000 0.1860 ... 0.1000 0.1000

Final weight f111 W5318 57 64W51ghttlblSO7B.85 5107.30 59.0 0490 * 5066.98 5076.64

--- v-- 4 .... .------ N=. .- umber of

..data not available
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rabl. 5 Opt im. 25 ba I transmisson to er Table 8 Optimum designs for 25-bar transmission truss

2 Final area In..? I
Final area( in ......

..... =~--- Group Schmit 8 Miura(3) SchmIt & arora & khan & This
G. ip M ."ie' No. NEWSUMT CONMIN Farshf(2) Venkayyatl) Haugl4) WillmertI25)pper
No numhrs case I case 2 ====== ==== .. == . .. =... .

......... - 01I00 0.1660 0.0100 0.0280 0 0100 .0100 0.0100
1 0.1000 0.0100' 2 1.9850 2.0170 1.9640 1.9420 2.0476 1.7550 2.0415

2 2 3 4 5 0.3761 2.0415 3 2.9960 3.0260 3.0330 3.0810 2.9965 2.8690 3.0011
3 6 7 8 9 o.4709 .OO11 4 0.0:00 0.0870 0.0100 0.0100 0.0100 0,0100 0.0100

4 10 i 0.1000 0.0;00 5 0.0100 0.0970 0.0100 0 0100 0.0100 0.0100 0.0100
5 12 1. 0 1000 0.000 6 0.6840 O.6750 0.6700 0.6930 0.6853 0 8450 0 6836
6 14 15 16 17 0.1000 0.6836 7 1-6770 1.6360 1.6800 1.6780 1.6217 2.0110 1.6248
7 18 19 20 21 0.2771 1.6248 8 2.6620 2.6690 2.6700 2.6270 2.6712 2.4780 2.6716

8 22 23 24 25 0.3801 2.67f6 Final
- - -----. weIght(lb) 545.17 548.47 545.22 545.50 545.04 553.94 545 03

Final weiqht (lb) 91.13 545.03 Number of
- - - - ---- I tter-at Ions 10 9 16 7 12 9 8

Number of Iterations 3 8 .... ...... .....------

Table 6. Optimilm 72 bar truss
--------- . .Table 9 Optimum designs for 72-bar truss

2 ........................ ==..==- . ===.==...===. . .

Final area ( in ) Final area ( In,'2

r o "p Member Group Schmat 6 Mtura(3) Schmit A Arora & Khan A This

No. nimhers c.s- I case 2 No. NEWSUMT CONMIN Farshi(2) Venkayya(l) Haug14) Wllsert(25)paper

1 2 3 4 0. 188 0. 15A5 1 0.1565 0.1558 0.1580 0.1610 0.1564 0.1519 0.1565
2 5 6 7 8 9 T1 I I12 0. 1000 0.5493 2 0.5458 0.5484 0.5940 0.5570 0.5464 0.5614 0.5493

3 13 14 15 16 0. 1000 0.4061 3 0.4105 0.4105 O.3410 0.3770 0.4110 0.4378 0.4061

4 17 11 0 1000 0.5590 4 0.5699 0.5614 0.6080 0.5060 0.5712 0.5317 0.5550
5 19 202 1 22 O. '904 0.5127 5 0.5233 0.5228 0.2640 0.61to 0.5263 0.5814 0 5127
6 23 24 295 26 27 28 29 30 0. 1000 0.5289 6 0.5173 0.5161 0.5480 0.5320 0.5178 0.5273 0.5289
7 31 32 33 34 0. 1000 0.1OO) 7 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
8 35 36 0. 1000 0.1000 8 O.100O 0.1133 0. 150 0.10OO 0 .1000 0.1583 0.1000

11 78 39 40 0. 1987 1 2521 9 1.2670 1.2680 1. 070 t,2460 1.2702 1.2526 1.2521

10 41 42 43 44 45 46 47 4R 0.1000 0.5214 10 0.5118 0.5111 0.5790 0.5240 0.5124 0.5244 0.5241
11 49 50 51 52 0 1000 01000 11 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0. 1000

12 53 4 0. 10OO 0. 10OO 12 0. 1000 0. 1000 0. 1000 0. 1000 0. 1000 O.iooo 0. 1000
17 5, 56 97 51 0.2941 1.821 13 1.8850 1.8850 2.0780 1.8180 1.8656 1.8589 1.8321

I4 59 6) 61 62 63 64 65 66 0 1000 0.5119 14 0.5125 0.5118 0.5030 0.5240 0.5131 0.5259 0.5119

15 67 689 70 0.1000 0.1000 15 0.1000 0.1000 0.1000 0.1000 0-1000 O.tO00 0.1000
16 71 72 0.1000 0.10OO 6 O.10OO 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

F-al wiiht fIb) 96.677 37962 *e ght(lb) 379.64 379.79 388.63 381.20 379.62 387.67 379.62
------- =====-======== -- Nu-ber of
N-mbr- of iterations 3 8 Iterations 9 8 22 f2 12 10 8
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Appendix A. Terms Appearing in Equation (15 X (
The terms appearing in the condensed Equation 1I5) are

W 'r W T j ......
obtained as follows: A un

Define: a .- 1
j 

o' 2 * T
Gi = iGu I T11

u. if 6T 2 0.2 a

G2 G u T GIT ( gO/(u_8TY) otherwise

Cuuu 2 * Huu * G I n W A)

Then: (I =y . - L -

M,1  G G A

M2 -G2 HuA- Cuuu G A

HG T GAT H * + -1)AA Au I A A G2  u A tWu 1 1 at WU  )
•C *

utin A
QT = h A hu G, * GA WA

S-F HA * H A G GA G 2 * uuu g GA A ,2

G 2*Fu viii Update Hessian matrix H k see Appendix C 1

-h b u GI g Step 2 ReductiownCondensation, and setup of Quadratic
-GI * *gProgramming probl T

Gi) Compute matrices Tani Q ( see Appendix A IIn = -G Fu +C uu . I ii Compute vectors 0 and 1; 1 see Appendix A I

2 2 Cd uuu )n Select critical and potentially critical constraints fot
problem (P4i

Step 3 Optimization
i) Solve problem (P4- for vectors I A .

16L



ii) Backsubstitute in the first two rows of Equation 15S) H H

for vectors ( Au) and p [AA Au ~ T AT
A uAx-+ GA' "+L"°A' q H

IJwhere W A  and Wu are defined in Appendix B and n k

iS 4er k s prmt. following formula. used by Berna. is implemented in the

,,, = 0.0 1 ........ in present method to update the reduced Hessian matrix in each

10 For I = I ...... in #teration . By using this formula. the number of arithmetic
= max { f 0.5" .(,. * ,

I ,I ,r 
= 

mx *.m (IP 0.5operations performed in updating the reduced Hessian matrix is
iii) For i = n- ...i

,, = max 1 91 . 0.5 - ( reduced dramatically.

iv) Select the Jprgest value of a. 0.0:a! 1.0, H H - * G GT *H * G 
T  

G.
a) If *(A,17.,) > 4 k go to b) AA Au 3 T I uA 3 uu

if *(. l ) 4(A~u~p) or WGWL g r A A 3 A
L(Au.im. ) < L(A.u, ) go to vi) i)W W .63 z u ub) If q,'(A ,Y ) < 4H(A,u,,p) go to vi) G G3T * I ) I W * j W ) T G-

c) Go to v) of Step 5 T u J T
m' m lr G3 13 2/ WA G3 u

whercl(A.uP) = F(Au) - 1igI(A, it)i + iniax(O..hi? ( WA. G3 Wu )TJ

i=1 i2m,+1 -whereG = Gu andG = G, G A

k  isn ( 'P(AJ,ui~s'J) J 0.1... k- } r - number of independent variables

A + a AA u 
= ti + a u z - number of dependent variables.

vi) Set A A.u = uJ

Step 5 Check for convergence

i) Let r)
r  

X 1 Ilg1 (A,u)I
F

ii) If , 5 0 print result and go to Step 6
li Adjust the step controlling parameter w
iv) If k < maximum number of allowed iterations. go to

Step I
v) Print error message and go to Step 6

Step 6 Stop

Appendix C. Updating of the Hessian matrix

In Powell's work [13]-[20]. the Hessian matrix was updated

by the BFGS rank 2 method. In that updating method, the Hessian

matrix H is initially set equal to an identity matrix, and in each

iteration on the quadratic apprximation subproblem the Hessian

matrix is updated by the following formula:
T sT

yy TH ss HkHk 1 H *H-

kl < y.s > <s Hk s >

where y L ( Xk - L Xk

a AX

Instead of keeping the full matrix Hk. Berna suggested the

following expression to update the Hessian matrix:
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MODIFIED SUMT FOR STRUCTURAL SYNTHESIS+

Manohar P. Kamat* and Preecha Ruangsilasingha**
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and St,-:e University
Blacksburg, VA 24061

SUMMARY as well as the sequence of its values Is very crucial
to the success of the algorithm. In fact, a severely

Flacco-McCormick's SUNT algorithm offers an easy ill-conditioned problem will occur if the choice is

way of solving nonlinearly constrained problems. How- inappropriate. Furthermore, as a constraint boundary
ever, this algorithm frequently suffers from the need is approached, the Hessian of the penulty function be-
to minimize an ill-conditioned penalty function. An comes more amd more ill-conditioned. Ill-conditioning
ill-conditioned minimization problem , however, can be of the Hessian is also likely to occur as a result of
solved very effectively by posing the problem as one a poor scaling of the variables; this being especially
of integrating a system of stiff differential equa- true for large scale problems. It is this ill-condi-
ttons utilizing concepts from singular perturbation tioning feature of the method that inhibits the deter-
theory. mination of reasonably accurate solution of the

original nonlinearly constrained problem. Some of the

This paper evaluates the robustness and the re- ways through which this method can be made viable are
liability of such a singular perturbation based SUMT those that resort to measures to overcome the ill-con-

algorithm on two different problems of structural ditioning and permit a smooth passage to the optimum
optimization of widely separated scales. The report solution.
concludes that whereas conventional SUMT can be bogged
down by frequent ill-conditioning, especially in large The last decade has seen the emergence of some of
scale problems, the singular perturbation SUMT has no the most sophisticated and robust algorithms for
such difficulty in converging to very accurate solu- unconstrainted minimization including those that are
tions. known as the self-scal:ng algorithms 121-[51 and those

that utilize the techniques of singular perturbation

I. INTRODUCTION (61-[7] to solve ill-conditioned minimization pro-
blems. The accuracy of algorithms based on the singu-

Most problems of struccural optimization involve lar perturbation theory usually improves as the pro-
the extremization of an objective function of design blems become more and more ill-conditioned. In light
variables subject to a set of constraints which are of of this it is only natural t, test the effectiveness
the geometric and behavioral type. The constraints of such an algorithm in the context of structural
which stem from limitations on stresses, displacements optimization problems that use the interior penalty
and the allowable member sizes are implicit functions method for solution.
of the design variables and are often very highly non-
linear. II. DESCRIPTION OF THE METHOD

Perhaps one of the easiest ways of solving such a The objective is simply the unconstrained minimi-
nonlinearly constrainted problem is the penalty zation of a function f of an n-dimensional vector x
method. In this method, an auxiliary objective func- which will be assumed to be twice continuously differ-
tion which is a function of the original objective entiable in a open convex set containing the point x*
functions and the constraints is constructed. An such that Vf(x*) - 0. Furthermore, to allow for poe-
appropriate unconstrainted extremization of this sible ill-conditioning of the penalty function in the
auxiliary objective function then yields an approxi- vicinity of constraint boundaries or because of poor
mate solution of the original nonlinearly constrained scaling of the variables it will be assumed that the
problem. Among the basically two distinct kinds of Hessian of f, H- f"(x). has a large condition
the penalty methods, namely the exterior and the number.
interior or barrier function methods, the latter is
the most often used for structural optimization pro- Following Boggs [61 the approach is to convert
blems. This is because the method often btegins with the minimization problem into one of integrating a
an initial feasible solution and the successive solu- system of 'stiff' differential equations. The rela-
tions are never allowed to leave the feasible domain tion between the two problems is evident upon an ap-
with the result that any immature termination of the plication of the steepest descent to the minimization
process still guarantees a quasi optimum solution but problem. Accordingly
one which is always feasible. The same is not true of
the exterior method. lk+l - k - akl(!k). k - 0,1... (1)

In the context of the interior penalty method the with xD being the initial guess.
algorithm that is most commonly used is the Sequen-
tial Unconstrained Minimization Technique (SUNT) pro- Equation (1) may be viewed as Euler's method for
posed by Flacco-McCormick [1]. The algorithm involves integrating the system
the use of a sequence of penalty parameters which con- d (x(a)) - -Vf(x()) with x(O) -
verts the constrained problem into a sequence of ( -f with () (2)
unconstrained problems using the last solution as the

initial guess for the next unconstrained problem. The By definition a differential equation of type (2) is
choice of the initial value of the penalty parameter said to be stiff if its linearized form has eigen-

+This work was partially supported by NASA Langley Research Center under Grant No. NAG-l-139.

*Associate Professor

*Craduate Student
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values that are widely separated. Expansion of the dx dxo dx
right hand of Eq. (2) in a Taylor series about the op- d - - + E -- +

timum solution x
* 

and retention of only the linear de de da

terms yields + e[x 1 + +

d - -f'(x)(x - x*) - -H(x - x*) (3) d1  dZ * +

a- ..- _h ,O;y
Clearly if the condition number of H is large 

the sys-

tem of differential equations (2) is stiff. This is- + E[bs 1 + bjlyj +
plies that j has a few eigenvalues or at the very
least a single eigenvalue that does not contribute where the matrices g I - [/f],Lh [ag/t]. etc.,
significantly over the domain of interest. This in evaluated at x - i_ and Z - I haee as their i-jth
turn implies a separation of the system into singular component the derivative of the ith component of j. or
and nonsingular components; singular components being h with respect to the jth component of x or
those that vary rapidly in a narrow region called the
boundary layer. Collection of the coefficients of like powers

of c results in
A method for accurately integrating stiff differ-

ential equations of the type (3) is sought but one dx0
which permits a large step-length for little computa- 0 --- (zO; ) ; 0(0) - (6-a)
tional work. Singular perturbation theory has been 

e :

used by several investigators [81-[ll] to integrate 0 -h(Xoy ;c) ; o(0) = (6-b)
such systems and the resulting computational methods

have the property that their accuracy actually in- and
creases as the equations become stiffer. This is in
sharp contrast to the Levenberg-Narquardt type methods -l +
[12] for direct minimization of f which utilize the d- T s~l yZ1 ;XO) (7-a)
Newton's method or quasi-Newton methods that are based J:
on a Taylor's series model of the function f. Boggs dyo (7-b)
[6] claims that models based on singular perturbation d-- h-!l + 1yZl ; 1(0) - 0
theory are better able to 'smooth the geometry' than
for instance Powell's method [1121 which uses a combin- It is immediately obvious that an inconsistency will
ation of the steepest descent and quasi-Newton direc- arise since Eqs. (6-b) may not be satisfied. This is
tions where each direction is computed using the en- resolved by the introduction of inner variables which
tire system. are important in the boundary layer. The inner vari-

ables are expressed in terms of the expanded
a. Numerical Integration Technique for Stiff Differ- scale 't - since it allows for easier computation.
ential Equations This gives Enew composite solution approximation valid

in the boundary layer.
Consider a two variable set of first-order dif-

ferential equations in the singular perturbation form I
dx x

5
() C xl(n) + (r) (8-a)

-- =  & ( _ , ; E ) ; x ( 0 ) = (4 ) i -o i- o

-h(1,; Y(0) =_ (5) L*(0) - yi(e) j+ yi(r) (8-b)
i-0 i-0

Above equations are in the singular perturbation form
because as e + 0 the system reduces to a combination with
differential and algebraic system and an inconsistency
arises in attempting to satisfy the initial conditions Lim X* X1 -0 = '1- ... - 0

L(O) - T1. The order of the differential equations T- O
drops to that of the x components. The y components
are referred to as the singular components (inner Thus Eqs. (1) may be written in terms of r as
variables) while the x components are referzed to as dx
the nonsingular components (outer variables). -j-,= (xy;) ; x(0) - (8-c)

The solution is first assumed to be a simple ex- dy
pansion in the outer variables as a power series in c T- h(x,y; Y (0) -_ (8-d)

(5a From Eqs. (8)x - I (a)-fT (5-a)

- dx d3o 2 d 1  40 S-+ E +a-+ "'"+
Y YI

( a) 2-T (5-b) T; £a- 7- T-
id 1  dzo 2d dz - dTl1- 7dy- dZ"- + e2dI+ 410+ dY 1+

Details on the conditions for the existence of such a T- +e T 0. +c W

solution may be found in references [91 and [10.
Similarly

Next, Eqs. (5) are substituted into Eqs. (4) with
the functions jL and h expended about the point x(a) g(x,y; C) -j(.O() + (), AO(a) + YO (t); E)
and zo (a) as a power series in c. Thus

+ g'(Y (a) + T (I)) +
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_1(XZ; C) = h(xO(d) + _.T ('&, .2O(a + ID(-C; c)

+ £f1(Xl(O) +Xl(r)) gular and nonsingular components is undertaken

+ hI+ hY(y 1(n) + 1 (0))" - i - l,....nI J (13-a)

where ,, h* and h
e 

are evaluated at x
and

Substitution of the above expansions into Eqs. yj- zj
(8) followed by a collection of the coefficients of
like powers of E yields in the limit as t +0 the fol- i i - lj...f, j C J (13-b)

lowing equations hi f

dXl (9-a)

0 d 0 0 The system now has the form

: d_ 
x( C)

d-_h (o(o) + AOCO; yo(O) + !O(T)) (9-b) --- &(x y)

dZ( a)
and d " -

44 d and the system is regarded as being stiff. Thus,-- 0 ( solely for the derivation of expressions for the boun-

dary layer terms the mall parameter c is introduced9(%(0) +1()I () + ()) (10-a) as

_ g(2o(0) ' o(0),0) dx
1 )  

(14-a)

dZ
d1y d 2 !(xY; F)/C (14-b)

hl*X h*Y -r)+ hax(O
d-- _ _I( -

(  
", (10-b) Proceeding in a manner very similar to the one out-

+ hql(O O)-h - h1(0)  lined before Kiranker [11] derives the following ex-
pressions

Where use is made of the known outer solution from d 0
Eqs. (6) and (7). Equations (9) and (10) have to be d - &(oX.-VO;E) , xo(0) -_ (15-a)

solved subject to the boundary conditlons

2!(0) + Xo(O) . 1 0 - h(Mo,!o c) (15-b)

So(O) + 10(0) = _
11(0) +11(0) - 0 - -S - h [j+ h-a -X % -Y
z1(O) +1 1(0) - o (15-c)

and in the above equations are evaluated at x -
0 anhZ.YO. Z- 1" ha,-- + J (15-d)

b. Miranker's Method for c-Independent Minimization To determine the initial conditions ex (0), ?tiranker
Problems 1111 proceeds with an E-independent dZermination of

the boundary layer terms using Eqs. (15). It can be
In the case of applications of the singular per- easily verified that _ (O) 

= 
0 and under reasonable

turbation theory to ill-conditioned minimization pro- assuptions dt and f can be shown to be negligibleturbetlon theor toi'he derivestne annexpressionpfo-
blem, the parameter e is not available. Miranker [111 [11,61. Miranier [11) then derives an expression for
has developed an c-independent method. In this case y0 and incorporates this into an expression

the differential equations are considered to be of the for a.l(O) yielding

type
S f(,() ; z(O) _ (11) -() ; - _ ) (16)

where c is taken to be unidentifiable. The system is
solved namerically by taking a steplength a of any where the division is element-wise.
self-starting method like the Euler's Method. The re-suiting. and . are compared by testing the inequali- The rest of the details of the final basicties algorithm for a step from zero to a when the asympto-

tic method with the two term aproximations is used my

I >i-.il be found in reference [13].

where 0 is a given tolerance. If the tolerance is not
exceeded by any of the components of _, the value of z
is accepted. On the other hand, if the tolerance is
ezceeded by a net JiJ2....Jm), a > 0, the integration
is rejected and the following classification into sin-

a.8-15
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c. Modification for Function Minimization: Basic
A hkl - A:I ) OA I - 1,2...n, ec(O, 1 (24)

The basic algorithm for function minimization of e - 0.5 is found to be satisfactory.
general functions like the penalty function P(A), will Assume
be considered next. For the constrained optimization jx' components of YP kpcorresponding to
problem -- nonsingular part

Minimize f(A) (17) = components of Vk corresponding tol

singular part

Subject to G (A) > 0 j - 1,2 .. m (18) = h2_ • - (25)

Hj(A) 0 j - lm5l,...M 3. For a one term approximation the following differ-

ential algebraic system of equations must be solvedFiacco-McCormick a logarithmic quadratic-loss penalty

function Is given by = ; () = k
&(O.YO ; 0() Ax (26-a)

m 2
P(A) = f(A) + r F inG + I H (19) 0 h(4,y;); y(0) Ak (26-b)

J -l J-M+l ) -- Y
The integration model is assumed to be a Using - Ak

a. sinzo() =A_ as the initial guess apply one

dA(a) step of the quasi--Nlwton Method to obtain
da = VP(A)k 

k0L0) = Ak - H VPk (27)

--y -y-y

and at the beginning of the kth interaction the fol- b. Apply one step of Euler's Method to the differen-
lowing information is assumed to be available. tial equation (26-a) to obtain _O(a)

Ak S the current approximation to A*, A* Ak ka k(A k (0

being user supplied; 
-x - x -x-0o 28

VP k Vp(A
k
) c. Application of one step of the quasi-Newton Method

to Eq. (26-b) yields

H- an approximation to [P"(A) ] -  
Y(d - YOM(0) - H (ao(O) (29)

Bk = an approximation to [P"(Ak)] In the above equations the subscripts x and y de-
note appropriate partitions of the matrices corres-

Ak an upper bound such that 1Ak+l - Ak 1 k ponding to singular and nonsingular components. The
matrix H is update# by tke Iul BFGS update [14].

A being user supplied (assumed to be unity a irectjon is computed suchin this study). that 16'1 A and I e
The above information Is updated for the (k + 1)th 4. Test <

k
, 9pk) ( 0 i.e. test for a feasible direc-

step. Two additional pieces of information which re- tion. If the test is not satisfied, then set
main constant throughout the entire process are the k
error convergence criterion, err and the factor c 1 /le + vPk/.wk,) -- (30)
which is used to control the function change; A is _
accepted if

(20) 5. Compute A
k+ l  

Ak + 6k and apply test (20). If
) cP(A

k
) successful, go to step 8; else go to step 6.

the basic steps of the algorithm [6] may now be 6. Test the point Ak+l = Ak + kl, I - 2,4,6,8,16,32
briefly outlined as follows: or until (20) is satisfied. If satisfied, go to step

8; else go to step 7.
1. Apply one step of the quasi-Newton method to com-

pute 7. get e _ - (Vpk/Ipkl)Ak and repeaj stet 6. If

Ak+ k (21) the test-is still not-satisfied, set a - A /2 and go
A- " - - HIk (21) to the next iteration.

k~ k kIf IAk + l - Akl < Ak and (20) is satisfied then go 8. Update Ik, R, and A .
k Is updated uing the

to step 9T else go to step 2. procedure out~ined by Powell [12] which requirls an

estimate of -. 8 k in turn, is updated like H using
2. Apply one step of the steepest descent method and the BFCS updAte [f41.
separate the system into singular and nonsingular com-
ponents. 11. APPLICATION TO OPTIMIZATION OF SPACE TRUSSES

k+l . k _k Vk
A - A - --9Pk(22) In this section the application of the singular

perturbation based procedure outlined in the earlier
where sections and the SUMT algorithm proposed by Fiacco-

1  if IVP kl 4 Ak  
McCormick [1] is examined. Both the programs share a

k lot of features in common. They both use the same
jk/lVpkl if IVPk I Ak (23) penalty function - namely the logarithm quadratic loss!P I A interior point penalty function. They share an iden-

tical finite element program to analyze stress and dis-
and then test placement constraints and both use the same technique
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to evaluate the gradient of the penalty function or
analytically. In view of the limitations on space the
details on the analytical evaluation of the gradients 9 25,000 + a )-0 if 0 < 0

of the penalty function will be omitted since they are for I 1,2,...,4
available to the interested reader by consulting ref-
erence [131. The only difference between the two
algorithms is in essence the unconstrained minimiza- g5 >0.3 - v5  0 if v5 ) 0
tion of the penalty function. In one case the method orfor minimization is Fiacco-McCormick's modification of

Fletcher-Powell's Method as reported in [1], whereas g5 " 0.3 + v5 ) 0 if v5 < 0in the other case the method for minimization is one
based on the singular perturbation theory.

a. Evaluation Basis g6 - 0.4 - w5 )o 0 if w5 > 0

or
The primary interest in evaluating the two

algorithms on the various structural optimization pro- 96 - 0.4 + w5 ) 0 if w5 < 0
blems is not necessarily to select the one algorithm
which is the better of the two but rather to observe and
these techniques for their robustness and reliability,
especially in handling problems which may be Ill-con- gj - AI - .1 > 0 ; for J - 7,8,...,10
ditioned as posed. - 1,2,...,4

The initial choice of the penalty parameter, r
0 ,  

Results for the 4-bar truss problem are presented in
and the sequence of its successive values is very cru- Table 4. The second problem is a 25-bar transmission
cial since an inappropriate choice may result in a tower. The sketch of the 25-bar tower is shown in
seriously ill-conditioned problem. It is therefore Figure 2 and defined in Table 5. This entire figure
natural that the sensitivity of these two algorithms as well as the loading conditions for this problem are
be examined for several different values of these reproduced from Ref. [151. The two independent
penalty parameters. loading systems are shown in Table 6. The modified

objective function and the constraints for the 25-barThe initial value of penalty parameter is calcu- tower may be constructed in a manner similar to that
lated according to of the 4-bar truss. In this case (assuming symmetry)

there are a total of 51 constraints, 25 of which are
0 a(A) stress constraints, 18 of which are displacement
r 100 (31) constraints, and the remaining 8 are the minimum gage

In gl(A) constraints. Table 7 summarizes the results for this
i I- problem.

where 'a' is a specified percentage. The parameter The results for the two problems are sumrized
a' will be set to 10, 20 and 50. in the next section. The convergence criterion in

each case was assumed to be
The next value of r is obtained by

k+l ( a
r - r /ratio (32) RSIGMA - Ir I An gJ(A)< e0

where ratio is again a preassigned parameter. Fiacco-

McCormick [1] recommends a value of 16 for this para- where h was assumed to be lxl0-3
, 

the constraints
meter, however, for the purposes of this evaluation a j(A) h ving been suitably nondimensionalized.
range of values between 10 and 50 is assumed.
Finally, the sensitivity of these algorithms to the In the tables to follow, NFUN represents the
initial guess is also examined with the proviso that total number of function evaluations, NGRD represent
every initial guess be feasible, the total number of gradient evaluations and NTIME

b. Example Problems represents the normalized CPU time for a given pro-
blem. Method I is the modified SUNT algorithm; Method
II is the original SUNT algorithm.

In order to evaluate the sensitivity of the
algorithm to the scale of the problem, two problems c. Conclusions
with rather widely separated scales are chosen. One
of these is a four-bar truss shown in Figure 1. This The two separate computer programs used for the
space truss defined in Table 1 is reproduced directly implementation of the two algorithms were by no means
from Ref. [15] subjected to a single load system as production programs. No attempt was made to include
shown in Table 2. Displacement lines are specified in features like extrapolation which may be hastened the
Table 3. convergence to the final solution. For the two pro-

blem considered it was relatively easy to come up
The modified objective function for this problem with an initial feasible guess. Hence, the need foris the implementation of sophisticated features like the

4 10 extended penalty function [16] did not exist. Like-
P(A,r) - p Ai Li + r I In Sg(A) (33) wise no attempt was made to economize on the gradient

L-1 J.1 calculations by restricting such calculations only to
those constraints that are active. All such features

where p is the specific weight, A, and Li are cross and a few others can always be Implemented to enhance
sectional area and the length respectively of the ith the effectiveness of the respective programs.
member, g1(A), I - 1,2,...10, are the constraints de- Ro-;ver, as indicated earlier, the major thrust of
fined beldv: this study was to attempt to make the SUMT algorithm

more robust and more reliable through the use of the
i 25,000 - > 0 singular perturbation theory.
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The results for the 4-bar truss as well as for [7] Boggs, P. T. and Dennis, J. E., "A Stability
the 25-bar transmission tower clearly demonstrate that Analysis for Perturbed Nonlinear Iterative
the modified SBU1T based on Voes algorithm is much Methods, Math. Coup., 30, 199-215 (1976).
more robust and has little difficulty in converging to
very accurate solutions. Several more cases 6or many [8] Aiken, R. C. and Lapidus, L., "An Effective
other values of a, ratio and intial guess [A) may be Numerical Intergration Method for Typical Stiff
found in reference 113). The modified algorithm Systems", AICIE Journal, 20, 2, 368-375 (1974).
appears indeed to be much more effective for large
scale problems wherein a greater likelihood for ill- [91 Hoppenstadt, F., "Properties of Solutions of Or-
conditioning 'xists simply as a result of the greater dinary Differential Equations with Small Pars-
probability for the variables to be poorly scaled in meters", Comm. Pure Apl. Math. 24, 807-840
such problems. Whether such Ill-conditioning is due (1971).

to the poor scaling of the variables or an
inappropriate choice of the penalty parameter, the [101 Flaherty, J. E. and O'Kalley, Jr., R. E., "The
modified algorithm has a much superior performance as Numerical Solution of Boundary Value Problems
compared with the conventional SUMT both in terms of for Stiff Differential Equations", 31, 137, 66-
CPU time and equivalent function evaluations. 93 (1977).

Based on Bcggs' experiments with mathematical [11] Miranker, W. L., "Numerical Methods of Boundary
functions (6] it :an be safey said that there is very Layer Type for Stiff System of Differential

little to be gains! in carrying the asymptotic expan- Equations", Computing, 11, 221-234 (1973).
sion through the second terms. The extra computa-
tional effort Is likely to outweigh the improved step- (121 Powell, M. J. D., "A Mew Algorithm for Uncon-
length prediti.nq. This is likely to be much more strained Optimization", Nonlinear Programming,
adverse for very large scale problems. J. Rosen, et al [eds.], Academic Press, New

York, 31-66 (1970).
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VT. RESULTS
Table 1 Table 2

Design Information for the 
6
-Bar Truss Loading System for 4-Bar Truss

Material - 4luminum FDirection and Magnitude of Load (lb)
Stress Limits - 25000 psi Node
Sodulus of El Lcicy E - 107 psi x yz
Specific Weight - .1 lltiy 

3  I - _ _ p_ j x -

Lover Limit on Member Sizes (A4) in - .1 in
2  

10,000 20,000 -30,000
Displacement Limit - An speciffJ in Table 3 - _

Table 3
Displacement Limits

Nod Displacement
Node

- I .z

L 5 None h .3 (inch) * .4 (inch)
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Table 4
Results for the 4-Bar Truss

I.
M Final Value of Element Areas (in

2
) A0 - {1} in

2
; a - 10; Ratio = 10

K Final Value # Of Element Aes(n)A 3 n;a=1;Rto=1

E
T,

H Al  A2 A3  A4  RSIGA NFUN GRD NTIME WIGHT (ib)

11 0.1032 1.0275 .959..81 .7777x10-1 534 i 26 1.0 139.3959

I.

1 0.10001 1.0152 0.9547 0.2872 .1302x10-2 176 100 1.688 3- .12-
IIJ 0.1008 1.0184_ 0.9558 0.2856 .9049x10-2 1097 47 11.0 39.2575

M Final Value Iof Element Areas (in
2
) AO - Ill in2 ; a-1; Ratio -10

E
Tg
H A, A2  A3  A4  RSIGM NPUN NGR HTIME WEIGHT (lb)

.1000 1.0151 0.9547 0.2872 .1487X10 3  
171 103 .9192 39.2122

.1003 1.0172 0.9552 0.2860 .1019x10'
-  

818 39 1.0 39.2297

IV.

M Final Value I of Element Areas (In
2

) AD - 13} in
2
; a 1 ; Ratio _ 10[ Al A2  A3  A4  RsIrGA KFUN eNGRf INTIKE WEIGHT (Ib)

I 0.1000 1.0152 0.9547 0.2872 .1302xlO- 3-151 96 .8276 39.2136
I1 0.1008 1.1186 0.9558 f 0.2855 .905610-21 887 38 1.0 39.2572

V.
M Final Value # of Element Areas (in

2
) A0  a = 1; Ratio - 50

T I
Al A2  A3  A4  RSIGMA NbUN N'RD NTIME WEIGHT (lb)

0.1004 0.9889 0.9529 0.30687 .6598x0 i  160 1 84 1.699 39.2490
OI 0.1001 1.0153 0.9547 0.28711 .2369x10-2 878 42 1.0 39.2155

V1.

IN Final Value 0 of Element Areas (In 2
) -A - 13) in 2

; a 1; Ratio _ O

H Al A2  A3  A4  RSIGKA lF NGHRD TME WEIGHT (lb)

1I 0.1000' 1.01531 0.9547 0.28712 - 4732xI0-3 -9-631 .8425 39.2138I Ii 0.1016 l.0217j 0.9570 0.2840 .1687xl.-i 56 1  24 1.0 39.3039
55 2 --. 933

Table 5 Table 6
Ten Node Twnty-Five Br Transmieeion Tower Loading System for 25-Bar Truss

Material: Aluminum Load Nodal Direction & Magnitude
Stress Limits - 40,000 psi Condition Point x y 2
Modulus of Elasticity, E - 197 psi
Specific Weight p - .1 lb/in 1 1,000 10,000 :-5,000Lower Limit on Member Sies (At)ain - .01 in 2  

1 2 - 10,000 :-5,000
Displacement Limits: .35 inch on all nodes in 3 500 - -

all directions 6 500 -
1 - 20,000 -5,000

2 2 - -20,0001 -5,000
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Table 7
Results for the 25-Bar Transmission Tower

Ratio r-T Method I Patio r' AO Method It20 .37892 t3T ig NFUN MGRD NTIMElWEIGHT (lb) 20 1.3789 {31 Tn, NFUN NGRD NTIE 4-r'T (Ib)

RSIGM-A- 19178x10
-  

1 1.0 545.04084 IRSIGMA = .3d346xlO- 2 2342 110 1 52 545.0514
g-l. " l gE- - El. f l 'E ? . . . .

2ElN.Ara(in
2  

(i)
No. Area (in

2  
No.o Area (1n2)f 2) Area . Area (n2) No. Area (in

2
)INo. Area (in

2
)

1 0.0106 10 0.0100 19 1.6171 i1 0.0102 10 0.0102 19 1.6331
2 2.0525 11 0.0100 20 1.6171 2 2.0229 11 0.0102 20 1.6331
3 2.0525 12 0.0101 21 1.6171 3 2.0229 12 0.0102 !21 1.6331
4 2.0525 13 0.0101 22 2.6766 4 2.0229 13 0.0102 *22 2.6687
5 2.0525 14 0.6815 23 2.6766 5 2.0229 14 0.6813 23 2.6687
6 2.9980 15 0.6815 24 2.6766 6 3.0173 15 0.6813 24 2.6687
7 2.9980 16 0.6815 25 2.6766 7 3.0173 16 0.6813 25 2.6687
8 2.9980 17 0.6815 8 3.0173 17 0.6813
9 2.9980 18 1.6171 9 3.0173 18 1.6331

R-tio r A Method I -r ti r A 
-  

Method II -
20 003789 f3 Fin2 

-NFUNGNRD NTINE WEIGHT (lb) 20t .0037891 !3p F~~UNINGRD NTINE r4'EC'lT (Ib)!
RSIGMA - .67207x10

3- 
162, 80 1.0 545.0383 RSIGMA - 0.62302x10 3416 140 3.77 632.b053

El. El. EI. EI El
No. Area (in

2
) n2

) No. Aea (in2 ) No. Area 'in
2
) No. Area (in 2

) No. Area (in 2
)

1 0.0101 10 0.0100 19 1.6233 1 1.9577 10 0.9143 191 1.7659
2.042. 11 0.0100 20 1.6233 2 2.1453 11 0.9143 201 1.7659

3 2.0424 12 0.0100 21 1.6233 3 2.1453 12 1.8668 21 1.7659
4 2.0424 13 0.0100 22 2.6717 4 2.1453 13 1.8668 22 2.3678
5 2.0424 14 0.6835 23 2.6717 5 2.1453 14 1.3790 23 2.3678
6 3.0028 15 0.6835 24 2.6717 6 2.5735 15 1.3790 24 2.3678
7 3.0028 16 0.6835 25 2.6717 7 2.5735 16 1.3790 251 2.3678
8 3.0028 17 0.6835 8 2.5735 17 1.3790
9 2.5735 18 1.7659 9 2.5735 18 1.7659

Rao r A M--eth---odI RAti Method II

2eho I05 ________ 20_MI____________rI HT b20 _ 2NTUN NGRD NTIMEWEIGHT (lb) 20 J1o0616 in2  3 .I~ i TNTIMEWEGHT (lb
IGMA - 9714x10-

] 159 89 1.0 1 545.0401 RSIGMA - 0.93609x10- 33761563.12545.5333
1-E El. El. El. El Eli

lNo. Area (in
2
) No. Area (in

2
) No. Area (in

2
) No. Area (in

2
) No. Area (in

2
) No. Area (in

2
)

1 0.0101 10 0.0101 19 1.6283 1 0.0106 10 0.0101 19 1.6580
2 2.0424 11 0.0101 20 1.6233 2 2.0373 11 0.0101 20 1.6580
3 2.0424 12 0.0101 21 1.6233 3 2.0373 12 0.0100 21 1.6580
4 2.0424 13 0.0101 22 2.6716 4 2.0373 13 0.0100 22 2.6169
5 2.0424 14 0.6835 23 2.6716 5 2.0373 14 0.7399 23 2.6169
6 3.0028 15 0.6835 24 2.6716 6 2.9343 15 0.7399 24 2.6169
7 3.0028 16 0.6835 25 2.6716 7 2.9343 16 0.7399 25 2.6169
8 3.0028 17 0.6835 8 2.9343 17 0.7399
9 3.0028 18 1.6233 9 2.9343 18 1.6580

Rati r A. Method I Rati r A' Metho.f -f
50 _.724255,tPn z 

NF:t gR T fTINETWEIGHT (lb) 50 1.72425 j{5 F-inZ NGRD 'NIb
ESIGMA-.4489x [ 217 104 1.0 1 545.0871 .SIGMA - 91935x10 - 687 24 0.66 682.3302

El, El. El,
Mo. Area (in

2
) No. Area (in

2
) No' Area (in

2
) No Area (in

2
)j No. Area (in

2
) Mo. Area (in 2 )

1 0.0100 10 0.0106 19 1.6056 1 6.3288 10 3.0179 19 1.7365
2 2.0395 11 0.0106 20 1.6056 2 1.8462 11 3.0170 20 1.7365
3 2.0395 12 0.0100 21 1.6056 3 1.8462 12 3.0229 21 1.7365
4 2.0395 13 0.0100 22 2.6618 4 1.8462 13 3.0229 22 2.6270
5 2.0395 14 0.6856 23 2.6618 5 1.8462 14 0.6466 23 2.6270
6 3.0457 15 0.6856 24 2.6618 6 3.1591 15 0.6466 24 2.6270
7 3.0457 16 0.6856 25 2.6618 7 3.1591 16 0.6466 25 2.6276t8 .0457 17 0.6856 8 3.1591 17 0.6466
9 3.0457 18 1.6056,, 9 3.1591 18 1.7365
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Abstract

In this paper, a new optimization algorithm for
optimal design of engineering systems is presented, based on computing bounds on the optimum value of the
The main feature of the new algorithm is that it does cost function of the design problem.
not rely on one dimensional search to compute a step
size at any design iteration. Implication of the The fundamental idea of the method is to first
feature is that algorithm requires evaluation of locate lower and upper bounds on the optimum value of
constraint functions only once at any design iteration, the cost function. Once this is done the design space
This is highly desirable for optimal design of between these bounds is systematically searched to
engineering systems because evaluation of constraints locate feasible designs that are better than tha
for such systems is very expensive. The reason for the previous design. During this search procedure better
high cost is that many constraints for such design upper and lower bounds on the optimum cost function are
problems are implicit functions of design variables, also established, since different step size selection
Thus their evaluation requires solution for a high techniques can yield vastly different optimization
dimensional finite element model for the system. The algorithms, the algorithm developed in the paper is
new algorithm is based on finding upper and lower regarded as a new algorithm for optimal design of
bounds on the optimum cost and is derived in the paper. engineering systems.
Several new step sizes are introduced and their
relation to proper reduced optimal design problems are To accomplish the objectives mentioned above
presented. Numerical aspects for the algorithm are several relatively simple concepts are introduced in
also presented. Based on the new algorithm, a general the paper. These include, a constraint correction
purpose computer code GRP2 is developed. The code is vector, a descent direction, and a constant cost
used to solve several small scale rroblems to gain direction. An algorithm based on these concepts is
experience and insight into the algorithm. Numerical then derived. Some properties of the algorithm that
experience with examples is discussed. It is shown are extremely useful in its numerical implementation
that the algorithm has substantial potential for are derived. Step size ideas are completely developed.
applications in optimal design of engineering systems, Finally, some numerical examples are solved to show

. I o n effectiveness of the algorithm.
I. Introduction

II. Design Optimization Model
During the past twenty years, considerable

numerical work has been done to show that optimization The behavior of most engineering systems is
techniques have potential for practical applications in governed by some law of physics. This behavior is
engineering system design 11-41. Whereas this is true, described analytically by a set of variables called
several problems remain to be addressed before state variables. For structural and elastic mechanical
efficient and effective algorithms can be developed for systems, state variables may include displacements and
optimal design of complex systems. A fundamental stresses at certain points, eigenvectors, eigenvalues,
problem that remains unsolved for application of etc. Let z c gn be a state variable representing
optimization techniques to large complex engineering displacements at key points of the structure, and let
systems is that of a proper step length calculation, the vector y c gn represent an eigenvector. There is a
The step size calculation problem is that after a second set of variables called design variables that
direction of travel has been determined in the design describe the system. These variables are chosen by the
space, how far should one travel along this direction designer. The equations that determine the state of
to determine a new design point. For nonlinear structural and mechanical systems generally depend on
programing problems, this is not difficult, as one the design variables; so the two sets of variables are
dimensional search can be readily used to calculate an related. Member thickness, cross-sectional area,
optimum step length. However, one dimensional search moment of inertia, flange and web thickness are design
is quite expensive, if not impossible in engineering variables. Let b C Rk represent a vector of design
design applications. The major reason for this variables.
difficulty is that many constraints in such
applications are implicit functions of design The most practical way of analyzing the behavior
variables. Evaluation of such constraints requires of a large and complex structural system is the finite
solution of equilibrium equations for quasi-static element approach. The governing equilibrium equation
problems and integration of equations of rotion for for a finite element model of such a structure
dynamic response problems. Thus one dimensional search subjected to quasi-static load is
may require several analyses of the system before a
proper step length may be determined. This can lead to K(b)z - S(b) (I)
a highly inefficient and ineffective algorithm for
practical applications in engineering design, where

A fundamental hypothesis of this paper is that one K(b) - an n x n symmetric nonsingular structural
dimensional search for optimal design of complex stiffness matrix,
engineering systems is inefficient and should not be 9(b) = an n-vector representing equivalent nodal
used. Therefore other concepts and methods for step loads for the finite element model.
size calculation need to be deveoped for such problems.
The paper presents a method for step sise calculation -
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A large number of complex structural systems subjected must solve Eqs. (1) and (2) for the finite element
to a wide variety of loads can be represented by Eq. model of the system. This is a major calculation in
(1). Examples of these structures include aircraft arty design optimization algorithm. If a one
structures, spacecraft structures, antennae, building dimensional search is to be performed in an
frames, bridge structures, various supporting optimization algorithm, designer must solve Eqs. (1)
structures, special purpose machine elements etc. The and (2) for each update of design and evaluate all the
loads that may be included in the vector S(b) are the constraints given in Eq. (4). This can be quite
dead loads supported by the structure, the live loads, inefficient. Therefore, an objective of the current
thermal loads, loads due to initial imperfections, and paper is to develop algorithms that do not rely on one
g loads. Using the displacements found from Eq. (1), dimensional search.
stresses at various points of the structure are
computed. It is also important to note that algorithm

developed in the paper is applicable to dynamic
Another equilibrium equation that governs the free response problems, although thest applications are not

vibration response of a structure of its buckling discussed in the present paper. F~r more details on
behavior is the eigenvalue problem how an algorithm, such as the one derived in the paper,

is directly applicable to dynamic response problems,
K(b)y 04(b)y (2) refer to Chapter 5 of Ref. 4.

where III. Derivation of the Algorithm

M(b an n x n structural mass matrix for the In this section some basic derivations for the
vibration problem and the geometric algorithm are presented. Two results are used in these
stiffness matrix for the buckling problem, derivations. The first result involves the use of an

= an eigenvalue related to the natural efficient method for calculation of gradients of
frequency or the buckling load for the various implicit functions for the problem. This
problem, problem has been adequately addressed in the literature

y an eigenvector. [4-8]. Therefore it is assumed in the paper that an
efficient method for calculation of gradients of

Note that in Eqs. (1) and (2), K(b) and M(b) are various implicit functions for the problem has been
symmetric matrices. For the finite element model of used in numerical calculations. The second result that
the structure the quantities K(b), M(b), and S(b) are is used in the paper is the standard set of Kuhn-Tucker
continuously differentiable functions of b. Also, necessary conditions of nonlinear programming [41.
since K(b) is nonsingular, the Implicit Function
Theorem can be invoked for Eq. (1) to state that z is a The method derived herein falls into the class of
continuously differentiable function of b. Further, direct methods of nonlinear programming in which one
since K(b) and M(b) are symmetric and K(b) is positive starts with an initial estimate b

0 
for the design.

definite, all eigenvalues of Eq. (2) are real and Constraints of the problem are then checked and design
positive, and the eigenvectors are orthogonal with gradients of active and violated constraints are
respect to K and M. Further, if no repeated roots calculated. ulsing these gradients and the gradient of
occur, then the eigenvalue C and the eigenvector y are the cost function, a change in design 6b is computed
continuously differentiable functions of b. These and the design is upgraded as b

1 
- b

0 
+ 6b. The

properties are assumed in derivations of subsequent process is continued until convergence criteria are
sections, satisfied. The following analysis applies to any

design iteration. Therefore the iteration counter is
Now a general mathematical model for optimal omitted in all derivations. Also arguments for various

design of linearly elastic structural systems is functions and gradient vectors are omitted. It is
defined as follows: understood that these quantities are computed for the

most current value of design variables.
Problem PI: Find a design variable vector b E Rk

that minimizes a cost function To calculate a change 6h in the current design b,
functions of the problem are linearized and a reduced

4)(h'z,0, (3) optimization problem for 6b is defined as follows:

and satisfies the equilibrium equations (1) and (2) and Reduced Problem RI: Find 
6
b to minimize a first

the constraints order change in the cost function as

*i(b,z,;) 4 0, i - 1, 2, ... , m (4) 6 = 
O T 

6b (5)

The mathematical model P1 is quite general. For subject to linearirqd c.3nstraints
example, the cost function of Fq. (3) may represent
weight of the structure, deflection or stress at )i + Li 6b 4 0, i = 1, 2, ..., m (6)
critical points of the structure, support reaction,
natural frequency related function, or any other and a quadratic step size constraint
function of b, z, and ;. The inequalities of Eq. (4)
also represent a wide variety of constraints, such as 6hTw 6b c &2 (7)
stress, displacement, von Mises yield criterion,
buckling, natural frequency, member size and any other For the problem RI, 10 is the gradient of the cost
functional relationship between b, z, and C. It is function and gE is gradient of the ith constraint
noted that equality constraints, if present in any function. These gradients may be calculated using
design problem, are routinely treated in the algorithm methods of Refs. 5-7. In Eq. (7), W is a positive
(41. definite weighting matrix and is a small number.

Equation (7) is a St ' size constraint used to obtain a
It is critically important to realize that bounded solution for the Problem RI. It represents a

function O0 and *i are implicit functions of design hypersphere in the design space with t as its radius
variable b because z and C are implicit functions of h. and origin at the current design point. The step size
To evaluate these functions for any given design b, one constraint is tight at the optimal solution for the
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reduced Problem I. Therefore, value of effects 6b = T-Is (1)
convergence of the design algorithm. It is also noted
that by selecting W to be Hessian of the Lagrange Equation (16) is a simple transformation equation for
function for the Problem PI, Newton-like algorithms can db that may be substituted into Fns. (5) to (7) to
be generated [81. Or by selecting W to be an estimate transform the reduced Problem RI in terms of s.
for the above Hessian matrix quasi-Newton methods can Columns of U

- 1 
or IT are linearly indenendent, so they

be generated. In the derivations presented here W is form a basis for the k dimensional vector space.
included to encompass these possibilities. However, in Therefore, once s is known, 6b is uniquely known from
all the numerical results presented later in the paper, Eq. (16). Or inversely, if 6b is known, then s in
W is taken as an identity matrix, uniquely known from Eq. (15).

Reduced Problem Ri has seen addressed adequately Substitue for 6b from Eq. (16) into Fns. (5) to
in the literature (4,8,91. Therefore, omitting (7) to obtain
details, an application of Kuhn-Tucker necessary

conditions yields the following solution for Problem 6t0 = oTt-I (7)
RI:

6b - -r6bl + Sb
2  

(8) i + ti T-Is 4 0, = 2, ... , m (1g)
where vectors 6b

1 
and 6b2 are given as

giesTs < (19)

6bl - w-l(1
0 

+ Xii') (9)

Now dividing Eqs. (17) and (18) by a positive number

-w IIl
2 

(10) l1 -T i1 I I ( -T i)T -T pil t12 = [ XL W-Itl /
2  

(20)

Here I is a matrix whose each column is the design
gradient of a constraint, and W

1 
and p2 are solutions for i = 0, 1, 2, ... , m, the normalized reduced problem

of the following linear set of equations: may be defined as follows:

'jul .XTj-1LgO'  2 = (11) Reduced Problem R2: find a that minimizes a

normalized cost function

where - T
=AO a (21)

subject to the constraints
In Eq. (8), n is a step size for the current design T
iteration. Also, the Lagrange multiplier vector for A' s 4 A i , i = 1, 2, ... , m (22)
the Problem RI is given as

and constraint of Eq. (19). Here,Pf - I
I 

+ U2/n (13)
= iI 1)A0 = (1)fT10)/ 1 IT-TLOI I (23)

It is shown in Ref. 4 that the Lagrange multiplier

vector V of Eq. (13) for Problem RI converges to the
Langrange multiplier vector for the Problem PI as the Ai = (U~Txi)/IIU-TxiI, i = 1, 2, . m (24)
optimum is reached. Also, it is shown there that as
the optimum to PI is reached, 6bl - 0.

Ai  =- i luT i l i - 1, 2, . ... , m (25)

The algorithm derived above has been used

successfully to solve several classes of optimal design Note from Eq. (24) that Ai are unit vectors. Also A
0

Probl is 141. However, calculation of the step size n is a unit vecto. A first order change in cost is
in Eq. (8) has been done in an ad hoc manner, given as

Calculation for a step size has been the most difficult T
part in the algorithm. It has generally required some S4 IITI AO (26)
experiencewith the class of design problems being
considered before a proper step size could be The Kuhn-Tucker necessary conditions for the
calculated. In order to present better and automatic reduced Problem R2 guarantee that there exist
methods for calculating step size, without doing one multipliers v i > 0, and Y > 0 such that
dimensional search, it will be highly advantageous to

normalize the reduced Problem RI for change in design [ T
6b. The normalized reduced problem leads to results a AO s + vT(ATs - A) + y(sTs - 0

that are extremely useful in numerical implementation
of the optimal design algorithm. These aspects are 2,
discussed later in the paper. or

Since W is a positive definite matrix, it may be A0 + hv + 2Ys = 0; (27)

decomposed as
and

W - IT U (14) .T
u i(A s - (i

) 
T 0, i 1, 2, ... ,m (28)

where 11 is an upper triangular matrix. Ouite often, W

is a diagonal matrix with positive elements. Therefore
in such a case, IirW = - and Ili -0 for i * j. Now y(sTs _ =2) _ 0 (29)

define a new variable s as

where columns of the matrix A ere the tansformed design
s -U6h (15) sensitivity vectors of the t-active constraints.

Equations (27) - (29) must be solved for a, v, and Y.

or 6b is given as
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Assuming I > 0 (ie., constraint 19 is active), s oT( T(

from Eq. (17) is civen as i (v) A
0
(-. 0 and A

0
(-sl) 0 (42)

I (AO + Av) (30) if and only if s 0

?
These properties are proved by direct substitution

Assuming vi > 0 for all i, one obtains ATs - A - 0 from 1101 from Eqs. (33) and (34). Property (i) shows that

Fo. (2). Substituting for s from Eq. (30) into this the directions a' and s
2 

are othogonaJ to each other.
equation, one obtains Property (ii) shows that the vector a gives desired

corrections to constraint violations (to first order).

v= - 2yA - ATA0; B = ATA (31) This is an extremely useful property as s
2 

can be used
at any design iteration to just correct constraint

After calculating v, the assumption vi > 0 for all i is violations. Property (iii) indicates that a move in s
1

checked and if necessary the matrix A is re-assembled direction does not effect constraint functions (to
and calculations for v carried out again. Substituting first order). Property (iv) shows that the inner
for v from Eq. (31) into Eq. (30), one obtains product of vectors AO and sl is non-negative and

is equal to IIs1 112. This also implies that the angle

1 + 2 between A
0 

and s is always between 0 and 90
°
.

s -ns
1  

2 n 2 (32) Property (v) shows that the direction (-si) is one of
descent for the cost function. Any move along (-sl)

where direction reduces the cost function.
s
I 
=pA0; p [I -AB

- 1 
A
T
] (33) .The Lagrange multipliers for the Problem P1 at the

optimum point give a very useful information to the

s
2

= AR
- I

A (34) designer. The constraint variations sensitivity
theorem [4] shows that the values of these multipliers

Now, one could substitute s from Eq. (32) into sTs = 2 indicate for the designer what the gain in cost for the
and solve for Y. However, 2 must he chosen by the design problem will be if a particular constraint is
designer. Therefore, it is appropriate to choose Y > 0 slightly relaxed. Conversely, it also tells the
directly and interpret 1/(2Y) as a step size. The designer what the increase in cost will be if a
matrix P of Eq. (33) is a projection matrix since PP = constraint is made more severe. Consequently relative
P. Also note that P is a symmetric matrix, since B

- 1  
values of the Lagrange multipliers for the tight

is a svmmetric matrix. It should be noted that if constraints at the optimum tell the designer which
gradients of all constraints are linearly independent constraint results in a maximum change in cost and
at the current design, then me.trix R is positive which constraint results in a minimur change in cost if
definite and hence non-singular, he decides to vary limiting values for the constraints.

Therefore, it is useful to obtain Lagrange multipliers
One can avoid explicit computation for B

-
in the for the Problem RI using Lagrange multipliers of the

calculation of s' and s2 if one decomposes the vector v Problem R2. These desired relations can be readily
as obtained if transformation of Eqs. (23) to (25) are

substituted into Eqs. (36) and resulting expressions

V = V
I + 2Y v2  (05) are compared to Eqs. (11) and (12). Thus, the

relations between the Lagrange multipliers for the

Substituting for v from Eq. (35) into Eq. (31), one Problems RI and R2 are given as
observes that vectors vl and V

2 
are solutions of the

following systems of equations: P = IT Jll /llU-TXi I (43)
i i

Rvl = -ATAO, B
v 2 

= -A (36)

2 23) -TPi.V 1 (44)
Substituting Eqs. '36) into Eos'. (33) and (34), s

1 
and

9
2 

are given in terms of v
I 

and V
2
, as

Another important step in the algorithm is to
al = [

AO 
+ AvJ; s

2  
-A

v2  
(37) check for the sign of Lagrange multipliers given by the

Eq. (35). Since only first order information is used
in the algorithm, large constraint violations can occur

IV. Properties of the Algorithm at any design iteration. In such a case it is
desirable to correct only constraint violations.

The algorithm derived in tie previous section is a Therefore, the sign check for the Lagrange multipliers
variation of the gradient projection method of of Eq. (35) cannot be made, as these multipliers are
nonlinear programming. It has several properties that for the reduced Problem R2 'hich is based on reduction
are extremely useful for its numerical implementation, in cost function. However, it is interesting to note
Also, these properties are utilized in developing step that the Lagrange multipliers for the problem of
size calculation for the algorithm, constraint correction are given in the vector v2

Therefore, sign check should be made for components of
The vectors a and s

2 
of Eqs. (33) and (34), or V2 during the constraint correction step. This can he

Eq. (37) satisfy the following properties at any design shown quite readily.
iteration:

Ts The problem of constraint correction at any design
(i) @1 2= 0 (38) iteration can be defined as follows:

(ii) AT52 A (39
(39) Reduced Problem R3: Find a to minimize

(iii) ATSI = 0 (40) 6' - sTS (45)
0

(iv) A
0 
Tl IfsIII2 (41) subject to the constraints
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contained in vectors s
I 

and v
1 . 

Now Ai's can be

Ai s 4 Ai, i - 1, 2, ... , m (46) interpreted as variations in the right hand side of the

By writing the Kuhn-Tucker necessary conditions for the constraints A' s 4 0, and according to the constraint
Problem R3, it can be readily shown that the vector s2 sensitivity theorem 141 one has:
given in Eqs. (37) solves the Problem R3 with the (64) v (50)
corresponding Lagrange multiplier v2 given in Eqs. = -
(36). This analysis then yields an extremely useful i
criterion for checking signs of Lagrange multipliers at
any design iteration. That is, if constraints are to Therefore change in cost in adjusting constraint
be corrected at any design iteration, then the sign boundaries by Ai's is given as
check for components of v2 should be made and the
constraints corresponding to negative v2 components 'T0 1 - -T0T.1
should be deleted from the constraint set. By deleting A 02 I I- j 

I -iuTE0(51)
these constraints what we are saying is that these
constraints will be satisfied (to first order) at a which is same as Eq. (49).
reduced value of the cost function given in Eq. (45).
Reduction in the cost function of Eq. (45) is not only It is noted that since A 4 0 and if vI 0 are
useful but also desirable, as it implies that we can imposed to treat constraints, Eq. (49) shows that there

come into the feasible region at a reduced length of is an increase in cost to correct constraint
the vector s. Since only first order terms are used in violations. However, if equality is imposed in Eq.

expansions of various functions it is highly desirable (22) when there are large constraint violations, then

to keep s as small as possible. V
1 

is free in sign and Eq. (49) may actually give a
reduction in cost.

Another extremely important step in the algorithm
is to decide when to take a constraint correction step
and when to take a cost reduction step. Such a V. Step Size Calculation
criterion will also decide whether to check signs of
the multipliers v

2 
or v-. The criterion for constraint Calculation of a proper step size in an

correction step should be based on the severity of optimization algorithm is of critical importance for
constraint violation at any design cycle. There are stable and rapid convergence to an optimum design. A

two ways in which the severity of constraint violations larger step can cause divergence of the algorithm and a
may he checked. The first criterion may be based on smaller step can slow the rate of convergence. The
the amount of maximum constraint violation. If the most comnonly used step size calculation method - the

maximum constraint violation is greater than a certain one dimensional search - is not efficient for

percentage of the nominal constraint value, the structural design problems. This is due to the fact

constraints may be treated as severely violated and a that several structural analyses of the system would be

constraint correction step should be taken. This required to compute a step that minimizes the cost

criterion works fairly well for most problems. function in the desired descent direction. Approximate
4owever, in some cases this criterion may be structural reanalysis methods car. be used to some

unnecessarily conservative and may take more constraint advantage in this regard. However, this requires

correction steps than necessary. Another criterion for calculation of gradients of several response quantities
checking severity of constraint violation may be based which is again inefficient.

on the increase in the cost function that may result in
case constraints are cort-cted. If the increase in In this section a new concept for determination of
cost to correct constraints is larger than a given a proper step size is presented. The new method is

percent of the current cost (2-52) then the constraint based on first calculating upper and lower bounds on

correction step should be taken, the optimum value of the cost function. Then the
design space between these bounds is systematically

Since a
2 

is the vector that corrects constraint searched by proper moves in the design space. During

violations, change in cost A*q2 to correct constraints this process sharper upper and lower bounds on the
is siven from Eq. (17) s optimum cost get defined. The process is continueduntil convergence criteria are satisfied. This concept

of design changes is based entirely on the cost
-A12 - VoT11-12 (47) function value at a design cycle. Therefore, the cost

function for the problem should be well defined.

substituting for s2 from Eq. (37) and using Eq. (36),

Eq. (47) becomes In the design algorithm, the first step is to
establish lower and upper bounds on the optimum cost

I- Tfunction. Establishment of an upper bound on the
T= (T-1)(AB- 1 A) (48) optimum cost is fairly straight forward. Cost function

value corresponding to any feasible design point that

Using Eqs. (24) and (36), Eq. (48) can be reduced to is not an optimum point, gives an upper bound on the1' optimum cost. Thus if the starting design is

T infeasible, the first step is to obtain a feasible

SA 2 U-T Olvl A (49) design. For this purpose, the s2 direction from Eq.
(34) is used. Or, the Problem R3 is solved.

Equation (49) can be used to calculate change in the Establishment of a lower bound on the optimum cost

cost to correct constraint violations without function value is more challenging. One way of

calculating 82, and decision can be made whether to establishing a lower bound on the optimum cost is to

take a constraint correction step or not. show that at a particular value of the cost a feasible
design cannot be obtained. This can be viewed as a

Another way of obtaining Eq. (49) is to use the problem of trying to enter the constraint set from an

constraint sensitivity theorem (41 for the Problem R2. infeasible point without any change in cost. This
To use this theorem, one may argue that the constraints implies that one needs a method for taking constant

of Eq. (22) are first imposed by setting Ai . 0. cost steps in the design algorithm. The present

Corresponding optimal solution for this problem is algorithm allows one to take such a step whenever it is
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necessary. This will be explained later in the -r40  (57)
section. From E. (55) and Eq. (57), one obtains

Once lower and upper bounds are established, one
simply tries to locate feasible designs at lower cost r 0
while keeping all the designs within the established 'I = I T (58)
bounds. For further discussion, let %0u and 0 APsl I.T0lo
represent upper and lower bounds on optimum value of T
the cost function, respectiely. Before presenting Since A

0 
a
I 
- 11s111

2 , 
the step size nI of Eq.

various step size calculations, several parameters that (5l) is given as

will be used later need to be defined.

1 0
First of all, one needs to determine whether the n 7 (59)

current design point is feasible or infeasible. One 1 s UIlly-1 01
method is to check all constraints and defin- 'he
maximum conatraint violation as (ii) Step Size When Current Design is Interior to the

Constraint Set. If the current design point is in
max for the interior of the constraint set, then 92 = O

II =  
i , all i with li 0 (52) and sl - A

0 
from Eq. (37). Substituting s

I 
= A

0

f 2into Eq. (58), one obtains another step size asIf II ll= < 
w2 here 82 is a small positive number,

then the current design is feasible. If 82 1 11*l1= 4 r r
01 , where 01 is (another postiveFsmall number, -= 0n 0
greater than 02, then the current design point is 2 I AOII-I11T LOII UT 1  (60)
nearly feasible, otherwise it is infeasible.

Many times, when the current design point is Comparing Eqs. (59) and (60), one observes that n2
infeasible, one would like to know change in the cost and "1 are related as follows:

to bring the design point into the feasible region
(i.e., to correct all the constraint violations). Let n2= ssl2n (61)

A412 represent a ratio of change in the cost to correct
constraints to the current value of cost function. Since l[slIt2 < 1 1101 one has from Eq. (61)
Therefore, from Eq. (26), n2 4 hl.

A-402 - (AOT. 2 ) Ulf-TZOlhl/4 (53) (iii) Constant Cost Step Size. At many design
iterations, it may be desirable to use a step that

where *0 is the current value of the cost function, leaves the cost unchanged. This type of step size

Thus, if A0 2 positive and small, then the current is desirable when the current design point is
design point can be easily made feasible without too nearly infeasible. Substituting Eq. (32) into Ea.
much penalty on the cost. Negative value for 4-J2 (26) and setting the change in cost A%= 0, one

implies that constraint correction will lead to obtains
reduction in cost whereas A- 2 = 0 suggests no change A + _ 0
in cost due to constraint correction. A*0 h

OT 
(-n3s

1 +
2)j 11-T20 0

or
Several expressions for step size that will be T T

used in optimal structural design are derived in the A
0 

s2 A
0  

2

following: 3 T 1 2 (62)
0nTs Il U

(i) Adv n Step Size. When the current design is
7eib e (.(T < U2 ), but is not optimum, an Here, 73 is a step size that changes the design at

advancing step size may be used to reduce the cost constant cost function value. Thus, if a constant
by some desired amount. Since the design is cost step brings the next design into the feasible
nearly feasible and 92 corrects constraint region, then the current cost gives an upper bound
violations, 1ls

2l must be small. Setting s2 , 0 on the optimum cost. Otherwise, it gives a lower
in Eq. (32), one obtains bound to the optimum cost.

s - -nlsl (54) The change in design that gives constant cost step

can also be obtained by solving the following reduced

where n1 is a step size. Substituting Eq. (54) problem:
into Eq. (26), one obtains a change in the cost
as Reduced Problem R4: Find a to minimize

A n - - l lI t T2 O IAOTsl (55) 8' = Ts (63)

0

A cost function reduction ratio r is selected by
the designer. Or, if lower and upper bounds on subject to the constraints
the cost function have been established then r is T
selected in such a way that the new cost lies AO a 0 (64)
exactly at the mid-point of lower and upper bound, and
In this r is given asSAT. < A ((,5)

#
0 u I

r "- (I - #ot/*ou)/2 (56) It can be shown by writing the Kuhn-Tucker
*unecessary conditions for the Problem R4, that the step

size 1 3 of Eq. (62) is related to the Lagrange
Once r has been assigned, the reduction in current multiplier for the constraint of Eq. (64).
cost is also given as
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(iv) Zero Step Size. 'Jhen the current design point is it is necessary to scale the vector 
6
b such that

far from the feasible region, it is desirable to no such constraint is violated. A step size can
correct only the violated constraints. In the easily be determined to scale the vector 6b tn
present algorithm, this can be accomplished quite this case.
easily by setting T1 = 0 in Eq. (32). It should be
noted that n - 0 usually results in an increase in
the cost. VI. Step-Rv-Step Algorithm

(v) Overall Step Size. Step sizes determined in the Figure I gives a conceptual flow diagram for step
preceding four paragraphs can result in a large size selection at each design iteration. It is assumed
change in design which is undesirable due to that before entering into this parL of calculations,
linearizations used in the algorithm. Even a zero all constraints have been checked and gradients of
step size (n = 0) to correct constraints can active constraints have been computed. There are three
result in a large change in design when the design major paths of calculation in the flow diagram of Fig.
is highly infeasible. Therefore, an overall step 1. These oaths are 1-2, 3-4-12, and 5 to 11. Location
size is introduced to limit the change in design, of the current design relative to the feasible region
Thus a desirable change in design may be expressed is checked at first. If the current design is far from
as the fe asible region, then only constraint violations

are corrected (Path 1-2). If the current design is not6b = rb (66) too far from the feasible region, one follows the Path

3-4-12, taking a constant cost step size, n3. That is,
where6 is t allated change in one tries to correct constraint violations without
design, n is an overall step size and 3b is a changing the current cost. Once the design is
desired change in design. Several criteria may be feasible, convergence criterion for the algorithm is
used in calculating the step size n. One checked. If the current design satisfies the
criterion may he that the change in design lb cekd ftecretdsg aife hconvergence criterion, the process is terminated (Path
should not be more than a fraction of the current 5-6). If the current design is near the optimum, but
design at any iteration. That is does not satisfy the convergence criterion, a smaller

step size such as n2 is used to avoid oscillation in
I I6bl 1 rl I 1b (67) constraint violations in the subsequent iterations

(Path 5-7-g-11). Otherwise, a larger step size such as
where rj is a desired fractional change in design. i, is used for reducing the cost function more rapidly
(r1 may be taken between 0.005 and 0.25). (Path 5-7-9-0).

Substituting Eq. (66) into Eq. (67), one obtains

rlJIbJI Based on the preceding derivations and discussion
110 b - (68) a computational algorithm is stated as follows:

Step 1. Estimate the optimal design as b
O .

In actual computation then, n is given as Step 2. Select a positive definite weighting

matrix W.

(69) Step 3. Evaluate constraint functions. Active

b Ib set strategies may be used here to delete
some of the constraints.

Another criterion for determining overall Step 4. Evaluate gradients of cost and constraint
step size may be based on the changein cost
predicted by the calculated vector 6b. The idea functions as

here is that change in cost predicted by the 6b
vector should not be more than a fraction of the a3 T
current cost. That is i= 

=
Ol,,..

tT6b( I r20 (70) Step 5. Evaluate vectors A and Ai as in Eqs.
(23) and (24). Evaluate normalized

constraint correction parameters Ai as inwhere r2 is a fraction chosen by the designer and Eq. (25). J6i) represent distance from
Sis the current value of the cost function, the current design point to constraint

Substituting Eq. (66) into Eq. (70) one obtains hyperplanes. Rearrange vectors Ai and

r2l) the corresponding parameters Ai in theT 2 (71) descending order of Ai.
O6 I Step 6. Check if any design sensitivity vectors

are parallel. If two are dependent,
In actual computation, no is then selected as retain the worst violated constraint.[ r- ~ 1Calculate the matrix B as in Eq. (31),= mn . - (72) and a vector ATAO

I'ob aStep 7. Calculate vectors v' and v2 from Eqs.
(36). If the system of Eqs. (36) is

Another point that shold be noted is that linearly dependent, then delete thebefore % is calculated based on the preceding dependent columns from matrix A and the
discussion, it may be necessary to scale the correspnding Ai from 6, and repeat this
vectol db. A reason for this scaling is that crepn
b + 6b may violate some lower or upper bound step.
constraints on the design variables (some Step 8. Ietemine the design cndition. If oly
variables may ewen become negative). Therefore, constraints have to be corrected,
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calculate s2 from Eq. (37) and a change A in E9( (34) is a zerp vector reducing s
2 

to zero and
in design using Eq. (16) as Eq. (395 gives a = - s 

. 
Thus

6b= 0T = n A0T(-s)

Update the design estimate after imposing
the overall step size requirement, as represents a change in the normalized cost along (-sl)
follows vector. Since (-s

I
) is a direction of descent for the

cost funtion (refer to Eq. (42)). it can be seen that
bl = b

0
+ b if 8

! = 0, then no further reduction in cos is
possible. Thus, for a feasible design, 11s II 0

and return to Step 2. Otherwise, implies optimum solution. It is, however, not always
continue. possible to attain zero value for iis1i and hence a

tolerance limit on the value of s'll1 
is placed in the

Step 9. Check iign of V
1 
components. Delete algorithm. Geometrically, 11s[[i is 1he projection of

columns of A corresponding to negative vI the normalized cost gradient vector A on a plane
components, and the corresponding Ai from tangent to the constraint surface. Since A

0 
is a unit

A. Recalculate vl and V2 from Eqs. vector, 11s 11 represents cosine o the angle between
(36). the tangent plane and the vector . Theoretically, at

optimum, this angle should be 90*. However, if a
Step 10. Calculate vectors s

I 
and s2 from Eqs. tolerance limit of 0.0001 is placed on 

11 Is11, then it
(37). would mean that an angle of cos

-  
(0.0001) - 89.99427"

is considered admissible at optimum. For some
Step 11. If all constraints are satisfied and the problems, it is not possible to attain a value as

convergence parameter & = lslil is small as 0.0001 for 11s'I1 and a value as large as 0.05
smaller than an acceptable small number, may be considered acceptable.
terminate the process. Otherwise,
continue. The algorithm uses Gaussian elimination procedure

to determine rank of the matrix B in Eqs. (36). If at
Step 12. Select a step size based on the flow a point in the Gaussian elimination procedure, a scan

diagram of Fig. I and the discussion of for pivotal element shows the largest value for the
the Section V. Calculate a vector s as pivotal element as less than a small positive number

(say 10-7), then the rank of 8 ets determined there.
1 -nsl + s2 The linearly dependent vectors Ai are ignored and

solutions of Eqs. (36) are obtained for the
Determine if the current cost represents non-singular part of B.
an upper or a lower bound on the optimum
cost.

VIIL. Design Applications
Step 13. Calculate a change in design from Eq.

(16), as Several design problems have been solved using the
GRP2 Code [111. Three design examples are presented

6b = U-Is here.

11pdate the design estimate after imposing Design of Tension/Compression Spring
the overall step size requirement, as
follows: minimum weight design of a linear spring shown in

Fig. 2 is considered. The design requirements are:
bl = b0 + 6b

(i) Deflection under a 10 lb load must be at
and return to Step 2. least 0.5 in;

(ii) Shear stress in the wire should be no greater
than 8 x l0

4 
psi under the 10 lb load;

VII. Numerical Aspects (iii) The natural frequency of surge waves is at
least a factor of 10 higher than the operating

Based on the algorithm of previous section, a frequency of 10 Hz;
general purpose computer code GRP2 has been developed (iv) The outside diameter of the spring is no
[111. The program can treat equality as well as greater than 1.5 in.
inequality constraints. Considerable care is required
in numerical implementation of the algorithm. This Design variables for the coil spring are: d 

=

section presents a discussion of the numerical aspects wire diameter, in; D - mean coil diameter, in; and n =
of the computer program and the algorithm, number of active coils. In terms of these variables,

optimal design problem is stated as follows:
It can be seen that the step sizes defined by Eqs.

(59), (60), and (72) are functions of the current cost min *0 - (n + 2) Dd
2

4b. If the cost takes a zero or nearly zero value at
any iteration, then each of the steps defined by the Subject to
said equations reduces to zero or almost zero, leaving D3
the current design point unchanged for the next *I = 1.0 - - 0

iteration. This stops the progressive improvement of 7.14 x 104 d
4 4 0

the iterative design process towards the optimum. It 2
is therefore necessary to see that the cost function 1.0 -0dD_ _
never takes a zero or nearly zero value during the 32 - d1 +0

2 1.257 x 104(Dd
3 

- d
t
) 5.11 x 103d2

iterative procedure. This can be easily achieved by
adding a positive constant to the cost function. * 1.0 -4 0 0

At optimum, the design must be feasible. That is, D
2n
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)4 =d - 1.0 ,0 (ii) Stress and Displacement Constraint Case
*4 1.5 419.6, 1802, 2703, 4013, 4013, 4013, 4014,

4657, 4657, 4657, 4657, 4680, 4661, 4661,

The lower and upper bound on design variables are as 4661, 4661, 4704, 4683, 4683, 4683, 4683,

follows: 4672, 4678 lbs.

dL 0.05 in. d 0.20 in. (iii) All Constraints Case
S. n419.6, 1802, 2703, 3610, 4638, 5113, 5113,

L.0.25 in. , D - 1.3 in. 5113, 5113, 5096, 5020, 5021, 5014, 4864,

4864, 4864, 4864, 4871, 4872, 4872, 4872,

nL = 2.no , nU - 15.0 4800, 4814, 4767, 4784, 4784 lbs.

Detailed derivation of these equations can be found in 2. Twenty Member Transmission Tower

several references [4, 11, 121. It should be noted
that all functions of the design problem depend M Stress constraints Only

explicitly on design variables. Therefore, implicit 330.7, 90.1, 90.2, 91.4, 91.4 lbs.

differentiation of these functions is not necessary.
For a given design any function or its gradient can be (ii) Stress and Displacement Constraints Case

readily computed. Several starting designs are tried 330.7, 87.8, 131.6, 197.5, 296.2, 430.2,

and optimal solution obtained in each case. At all 529.1, 529.1, 529.1, 529.1, 546.4, 546.4,

optimum solutions constraints *1 and 42 are active. 546.4, 540.7, 540.7, 540.7, 540.7, 543.5,

Table I gives results for a run of the program GRP2 for 543.5, 543.5, 543.5, 545.2 lbs.

this design problem. It gives histories for maximum
constraint violation (11*1l.), s1 norm and cost (iii) All Constraints Case

function. The cost function history for the problem is 330.7, 87.8, 112.1, 168.1, 252.1, 378.1,
also given in Fig. 3. At the starting design, the cost 495.7, 558.4, 558.4, 558.4, 564.0, 564.0,

function is quite far from the optimum point. However, 564.0, 577.6, 577.6, 577.6, 577.6, 603.7,

the algorithm reduces the cost by a factor of more than 603.7, 603.7, 603.7, 590.7, 590.7 lbs.

40 in fifteen iterations. Several upper bounds on
optimum cost (feasible designs) are established; e.g., For all the problems, several upper and lower

at iterations 3,6,7,10,11,12 and 15. Also, a lower bounds on the optimum cost were established. All

bound on the optimum cost is established at iteration optimum solutions were obtained by starting the

21. algorithm from a uniform design of 1.0 in
2 . 

No
parameters were externally adjusted during the

Several other widely separated design points iterative process.

produced same optimum cost [111. However, the final
design points were different. This indicates that
there are several local minimum points having same IX. Discussion and Conclusions

value of the cost function. In this paper, a new optimization algorithm based

Design of Trusses on upper and lower bounds on the optimum cost and the
gradient projection concept is presented. A general

Two examples of design of truss structures that purpose computer program GRP2 has been developed based

have been extensively used in the literature for on the algorithm. The program has been used to solve

evaluating algorithms are solved using the GRP2 code. several small scale optimization problems to study

The design problems are: behavior of the new algorithm relative to its ability
to obtain optimum point [111. The new algorithm has

(1) A ten member cantilever planar truss several important features that take it particularly(11Atenmembr cntilverplanr tussattractive for its application to large complex

subjected to on loading condition. It has ten strctra and mechanicaisyst Thee feature

design variables. structural and mechanical systems. These features
are:

(2) A twenty five member three dimensional
transmission tower subjected to multiple i Automatic calculation of a step size at each

loading conditions. It has seven design iteration. The user does not have to select

variables. any step size related parameters.
(ii) Cost and constraint functions are evaluated

Formulation for these design problems and their data only once at any iteration.

can be found in several references; for e.g., Refs. 4 (iii) The starting point can be arbitrary. If the

and 9, and other references cited there. The cost starting point is infeasible, the algorithm

function for these problems is weight of the structure tinds a feasible design. Also the algorithm
I sucessively obtains improved feasible

and constraints are imposed on member stress, nodal suc
displacement, buckling, natural frequency and member designs until an optimum is reached.

sizes. These problems have implicit functions of
design variables and require implicit differentiation Feature i) is useful because the algorithm does not

procedures. Optimum designs for various combination of require any prior experience by the user in selecting

constraint cases are well known and may be found in step size and other parameters to use the program.
Feature (ii) is extremely useful because any furtherreferences cited above. Same optimum solutions are futineaaioatnytrtonorhetucrl

obtained with the GRP2 code. Cost function histories function evaluation at any iteration for the structtralfor various cases are as follows: and mechanical design problems requires reanalysis of
the system. For statics problems reananlysis means

calculations for new stiffness matrix, its
1. Ten Member Truss (Case It of Ref. 4) decbmposition and new displacements and stresses. For

C(i) Stress Constraints only the dynamic resonse problem, reanalysis means writing
(i) 419.ss 1osta2, 1802, 12,new equations of motion for the system and solving them419.6, 1802, 1802, 1802, t802, 1792, 1789,

1722, 1722, 1670, 1670, 1670, 1670 lbs. for the new response. Thus, it is obvious that
evaluation of functions only once in an iteration
results in substantial savings in the computational
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effort for this class of problems. Feature (iii) is References
very useful from practical standpoint as it yields
improved feasible points even if the algorithm does not 1. Venkayya, V.R., "Structural Optimization: A Review
satisfy the convergence criteria in the specified and Some Recommendations", Int. J. for Num. Methods

number of iterations, in Engrg., Vol. 13, 1978, 00. 203-228.

The new computer code GRP2 has several useful 2. Krishnamoorthy, C.S. and Mosi, D.R., "A Survey on
features that may be noted: Optimal Design of Civil Engineering Structural

Systems", Engineering Optimization, Vol. 4, 1979,

(i) All gradients in the program are normalized Pa. 73-88.

with respect to their lengths. This allows
an easy numerical check for dependency of 3. Schmit, L.A. and Fleury, C., "Structural Synthesis
constraint. This also gives a very useful by Combining Approximation Concepts and Dual
and numerically implementable convergence Methods", AIAA ., Vol. 18, No. 10, Oct. 1980, p.

criterion for the algorithm. 1252-1260.
(ii) The step size is calculated based on upper

and lower bounds on the cost function. 4. Haug, E.J. and Arora, J.S., Applied Optimal Design:
Therefore the program first tries to locate Mechanical and Structural Systems, Wiley
these bounds. For many example solutions Interscience, John Wiley and Sons, N.Y. 1979.

[111, the convergence criteria were satisfied
while the algorithm was trying to locate 5. Arora, J.S. and Haug, E.J., "Methods of Design
lower and upper bounds. Several limitations Sensitivity Analysis in Structural Optimization",
on changes in design at any iteration have AIAA J., Vol. 17, No. 9, Sept. 1979, pp. 970-74,
been built into the program. These Vol. 18, No. 11, Nov. 198n, pp. 1406-1408.
constraints include maximum change in the
cost and a maximum change in the design 6. Haug, E.j. and Arora, J.S., "Design Sensitivity
variable vector. Analysis of Elastic Mechanical Systems", Computer

(iii) Explicit lower and upper bound constraints on Methods in Applied Mechanics and Engineering, Vol.
design vari'ables are imposed automatically in 15, 1978, pp. 35-62.

the program. Thus, the user does not have to
code these constraints in the user-supplied 7. Arora, J.S. and Govil, A.K., "Design Sensitivity
subroutines. Also, the computed change in Analysis with Substructuring", J. of Engineering
design at each iteration is such that tne new Mechanics Division, ASCE, Vol. 103, No. EM 4, Aug.
design does not violate lower and upper bound 1977, pp. 537-548.

constraints.
(iv) The program can be coupled to other codes for 8. Gill, P.E. and Murray, W. (Eds.), Numerical Methods

optimization of various classes of structural for Constrained Optimization, Academic Press, N.Y.

and mechanical systems. 1974.

There are several other points about the algorithm 9. Arora, J.S. and Haug, E.J., "Efficient Optimal
and the computer code that should be noted. These are: Design of Structures by Generalized Steepest

Descent Programming", Int. J. for Num. Meth. in

(i) The step size in the algorithm is calculated Engrg., Vol. 10, No. 4, 1976, pp. 747-766; Vol. 6,
based on the cost function value. Therefore No. 6, 1976, pp. 1420-1427.
the cost function should be well defined at
each iteration. It should be always a 10. Arora, J.S., "Analysis of Optimality Criteria and
positive number which can be obtained by Gradient Projection Methods for Optimal Structural
adding a large constant to the cost Design", Computer Methods in Applied Mechanice and
function. Engrg., Vol. 23, No. 2, Aug. 1980, pp. 185-213.

(ii) If the convergence criteria specified by the
user are satisfied, the program prints the 11. Belsare, S.V. and Arora, J.S., "A General Purpose
optimum values of the cost function and Computer Code GRP2 BAsed on an Extended Gradient
design variables. If these criteria are not Projection Method", Technical Report No. 66,
satisfied, execution of the program stops Division of Materials Engineering, University of
after specified limit on iterations is Iowa, Iowa City, Iowa, Nov. 1980.
exceeded. In such a case the user should
scan histories of the maximum constraint 12. Spotts, M.P., Design of Machine Elements, 2nd Ed.
violation, s1-norm and the cost function to Prentice Hall, Englewood Cliffs, N.J., 1953.
locate the best feasible design. Also, if
desired, the iterative process may be
continued using the restart option of the
program.

(iii) Special attention should be given to proper
formulation of the problem to avoid
singularities in various functions and their
derivatives. All functions must be well
behaved and differentimble at all points.
Also upper and lower bounds on design
variables should be carefully specified to
avoid physical absurdities.

In conclusion, the new algorithm offers potential
for applications to large and complex structural and
mechanical design problems.
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TABLE I RESULTS FOR SPRING DESIGN PROBLEM

IS CURRENT DESIGN FAR yes ____ CORRECT
I Sl~ I.5 NORM COST FROM FEASIBLE REGION? ICONSTRAINT

1 0.7134D 00 0.1907D 00 0.8840D 0n 3
2 0.1689D 00 0.5R65D0O3 0.4972D 00 N ,CRETDSG ETR3 0.0000 OJ01000 01 0.2878D 00 N SCRETDSG ET~

0 .1885D 01 0.1172D 00 0.4513D-01 FAI'E
5 0.49701) 00 0.1453D 00 0.70500-015Ye

6 0.00000 00 0.1000D 01 0.6243D-01
7 0.00091) 00 0.10000 01 0.6005D-01 1S CURRENT DESIGN Ye,
8 0.2390D 00 0.69590-01 0.37990-01 OTMM 49 0.21810-01 0.7862D-01 0.3778D-01
10 0.2371D-03 0. 79680-01 0.317780-01 7N
11 0.00000 00 0.8999D-01 0.2857T0-01
12 0.00000 00 0.10000 01 0.2399D-01 IS CURRENT DESIGN Yes
13 0.31480 00 0.8825D-01 0.1961D-01 NEAR THE OPTIMUM? a
14 0.3571D-01 0.1029D 00 0.1944D-01
15 0.6410D-03 0.1051D 00 0.1944D-01 91N
16 0.00000 00 0.1126D 00 0.1658D-01
17 0.00000 00 0.11890 00 0.14610-01 CHOOSE A LARGER
18 0.00000 00 0. 7902D-01 0. 1338D-01 SE ORDC
19 0.4169D 00 0.9126D-03 0. 11010-01TH CS
20 0. 12730 00 0. 1366D-03 0.93960-02 TK MLE21 0.5332D 00 0.9953D-03 0.96370-02STPOWR
22 0.6903D-01 0.1136D 00 0.1331D-01RETT
23 0.23240-01I 0. 1183D 00 0. 13300-01THOPIU
24. 0.2872D-01 0.1185D 00 0.1330D-01 1
25 0.4691D-01 0.6266D-04 0.12230-01

06 .00000-00 0.5761D-04 0.12740-01 TAKE ACONSTANT

Initial design: d - du - 0.2 in.
)-DU -1.3 in. Figure 1. Conceptual Flow Diagram for Step-fl - fU - 15.0 Size Selection in Optimal Structural

initial cost -0.8840 Design.

optimum design: d -0.05037 in.
0) - 0.3255 in.
n - 13.42
optimum cost =0.01274 0.8840

0.4972

40.2878

0.10

D + 0.08-
P

d Lai 0.06-

(n
0

Figure 2. A Coil Spring 0.04-

CLOZ OPTIMUM

0.00
1 6 11 16 21 26

ITERATION NUMBER

Figure 3. Cost Function History for Spring
Design Problem
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A BARRIER FORM OF THE METhOD C)F MULTIPLIERS

/R. R. Root
IBM Corporation
Rochester, Minn.

K. M. Ragsdell
School of Mechanical Eni.eerinf'

Purdue Univcity
West Lafayette, IndianaAbstract

Transformation or penalty function techniques have considerable attention recently. The penalty function
o.2coyed wide popularity fir solving nonlinear program-
ma%, problems in recent years. There have beer nany is, J 2
n.thods of this class proposed, amon# them being the P(x) = f(x) + p i1 ( <g, (x) + oj> - o 2)
Mthod of Multipliers. In this paper we develop a bar- j.

rier penalty funo+ion which iincorporates penalt, multi- K 2
pliers similar to those used in the Method of Multipli- + pk% {[hk(x) + tk] - Tk } (6)
ers. Two formulae for updating these multipliers are
erived and numerical results are presented comparing where the bracket operator, <>, is defined

both multiplier updating schemes with a conventional
barrier penalty function algorithm< = a, if a < 0

Introduction 0, if a > 0 (7)

Interest in nonlinear programming techniques has At the termination of !ach unconstrained minimization
increased significantly in recent years. Today, !s the multipliers may be updated using the following sim-

never before, with ever increasing demands and decreas- ple formulae:
ing resources engineers and scientists must face the o (t+l) = g,(x 

(
t)

) 
+ a(t

)  
= 1,2. J (8)

challenge of finding the "best" solutions to modern
problems. We pose the nonlinear programming problem (t+l) =h (x ) 

+ 
rt) k = 1,2,...,K

(NLP) in the following form:

Minimize f(x) (i) t) th

Subject to g (x) > 0 J = 1,2,3,...,J (2) where x is the solution to the t-unconstrained

hk(x) 0 k = 1,2,3,...,K (3) minimization.

This form of the Method of Multipliers is con-

and (u) i = 1,2,3,....N (4) sidered external since the sequence of unconstrained

(0) solutions obtained is necessarily infeasible with re-
We also assume the existence of an initial design, x spect to the inequality constraints. Difficulties may
which is feasible (that is, satisfies all constraints
and bounds). Nonlinear programming techniques generate arise, however, when this form of the penalty function

a sequence of points, x 
t )

, which at termination ap- is utilized in certain modeling situations. Generally

proximates a local minimum, x, of the NLP. these situations are characterized by certain com-

Transformation techniques have enjoyed wide spread binations of the variables which preclude the evalu-

application [1,2,3] recently primarily due to their ation of some parts of the model. In the case of a

ease of utilization and their dependence upon well de- model formulated in the framework of a nonlinear pro-

veloped unconstrained optimization techniques. gramming problem, this translates to the inability to

Let us define a general penalty function in the evaluate f(x) or certain constraint functions in some

following form: region of RN. In such situations, the modeller must

P(x) = f(x) + a (p,g,h) (5) formulate additional inequality constraints in order

Here 9 is called the penalty term. Clearly, P(x) is in- that the feasible region also forms a region in which

directly a function of x, since f(x) and the constraint all elements of the model are capable of evaluation.

functions depend upon x. Typically, the penalty param- Much to a modeller's chagrin, in situations like

eters, p, are chosen and P(x) is minimized in an un- the one described above, the form of the Method of

constrained state. The termination point of this Multipliers described in (6) does not guarantee the

search, x(l), is utilized to recalculate the penalty generation of x vectors which remain within the fea-

parameters, p. The updated penalty function is again sible region. In fact, the exterior qualities discuss-

minimized utilizing x(1) as a starting point. The ite- ed previously require the algorithm to traverse into

ative technique is continued until small changes .re the infeasible region. It would seem highly desirable

observed in the solution sequence, to obtain a Method of Multiplier type penalty function

The Method of Multipliers [1] is an extremely which generates a sequence of solutions to the uncon-

efficient transformation technique which has received strained minimizations which are feasible (or very

nearly so) with respect to the set of inequality con-
N-mbers in brackets cite references listed at the end t .

of the paper.
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Barrier Penalty Functions 2. The true solution of the NLP is contained

When we use the terms, interior and exterior within the region of the constraint boundaries

regions in R
N , 

we are only speaking of the set of in- rather than on them.

equality constraints. There does exist a region in 3. The gradient of such a penalty function is

which the set of equality constraints (hk(x)) is satis- well defined at the true NLP solution.

fied, however this region is of smaller dimensionality Let us consider the following penalty function and

than R
N
. When we speak of barrier functions we will determine that it exhibits the advantages mentioned

always be concerned with barriers in the full N-space, above.

and hence only the set of inequality constraints may Pi

be considered. P(x) = f(x) + Jl [g (x) + a (12)

There are several existing penalty function algo-

rithms which indeed do generate a sequence of uncon- Notice that we have only included inequality con-

strained solutions which are all contained within the straints, since as we mentioned earlier, there is no

feasible region formed by the inequality constraints, barrier function analogy for the equality constraints.

Examples of such functions include
J 1 Optimality Results

P(x) = f(x) + PJ 1 g (x) j = 1,2,3,..., J (10) Let us present the optimality results in the form

of a theorem.and af J Theorem 1: There exists a p'>0 such that if the
jl = g(largest pj in the set of ps's is less

We see that in both penalty functions, any constraint than p', a constrained minimum of

approaching a value of zero will create a very large f(x), x, is a local minimum of P(x)

value to be added to P(x). In both algorithms the with respect to x.

vatue of p begins at a moderate level and approaches Proof: The proof of the theorem is in two

zero as the sequence of minimizations proceeds. Start- parts. First assuming the gradients

ing from a feasible x(
0 ), 

the mathematical barrier pro- of the inequality constraints to be in-

duced by the penalty term guarantees that the first un- dependent of one another, we consider

constrained solution, x , will also be feasible. As the necessary conditions for ' to be

p is reduced at each stage, t, the unconstrained solu- local constrained minimum of f(x).

tions, x
(
t)

, 
will all be feasible while the constraints gj( )

destined to be satisfied at x* will become closer and

closer to zero in value. Vf(x) = Q(x)A (14)

Unfortunately, numerical difficulties can arise A 0 j = 1,2,3,...,J (15)

due to the value of p approaching zero. As p becomes Aj g(X) S 0 J = 1,2,3,...,J (16)

smaller, each minimization becomes more and more dif-

ficult to perform. Moreover, the solution of the NLP where
A = the vector of optimal Lagrange Multipliers

may be obtained in the limit of p approaching zero.

Computationally, p can only become small within the Q = a rectangular matrix whose columns r-present

limits of the accuracy available within the computer. the gradients of the inequality constraints
with respect to x.

Methods exist which extrapolate the results of suc-

cessive minimizations to that stage when p would be Vf(x) a the gradient of f(x).

zero, however they concede the existence of the numer- Let us now consider the gradient of expression (12) with

ical difficulty and do not rid the algorithm of it. respect to x.

The intent of this paper is to introduce a multi- VP(') = Vf(') - Qq (17)

plier type barrier penalty function. We will find where

several advantages to be had from such a formulation. th

Among theso are q = the column vector whose J- element is

1. The value of p may remain finite and nonzero 2 2 2

as the algorithm generates a sequence of 
un- 'j =

constrained solutions, x
(t ) 

. If we let q equal A and use this fact in expression

(17), then from (14) we see that VP(C) would be zero.
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This, of course, shows us that x is a stationary

point of P(x). 211vT14+Twl 1 21lvii IiLQ+Tii Ilwl1 (29)

The second part of the proof requires that we

show the matrix of second partial derivatives of and

p(x), V
2
p, be positive definite. We begin with an ilwTTwII ;5lw _2 1IT1h (30)

expression for V2p.

j We know that the Lagrangian is positive definite, and

V2p(") = V2f( ) + QTQT - lqj[g (x)] (19) hence can state that

where v TLv I a ivil32
T

T = a diagonal matrix whose nonzero elements are for some positive a and any v such that Q v is equal to

t = 2pj
2
/[gj( ) + UJ]

3  (20) zero (which we have chosen to be the case). We also
At x ~note that

At x, the expression above may be equivalently

written as IT1 2 = the largest Itii i.  (32)

v2P( ) = L + QTQT (21) Combining all of this information into expression (23)

where L is the matrix of second partial derivatives results in

with respect to x of the well known Lagrangian. 2

Consider now any vector, u, such that the u[vP(x )1 1 a Ilvii -- 2ivii2  lw 11 TI 2

Euclidean norm is equal to one. The vector, u, may + Id - IIQ+LQ+TII] I1w12  (33)

be decomposed in the following manner: 2 2

u = v + Q+T w (22) Here, the term, d, denotes the matrix norm of T. The

theorem hinges upon finding a value of d large enough

In (21), v is chosen to be orthogonal 
to the columns

+ to make the right side of (33) positive. To show how
ofeudo anderseisscalled thepseudo-inverserofects Ths this may be true, we consider an alternate expression
pseudo inverse is equal to (14TQ)-IQT and projects the frt.

vector, w, onto the space spanned by the columns of ii

Q. We use the facts that L and (QTQ
T
) are symetric ti = 2qj/[gj(R) ] (34)

and that v is orthogonal to the columns of Q to show a
We know that at x the Lagrange multipliers are fixed

that
and hence q is fixed. Of course, to increase the norm

T[2 a]^= T 9 Q+T T + +T
u [Vp(x)3u = Lv + 2v TLQTw + w Q L1 w of T, we must increase the value of the largest diag-

+ 2TI, (23) onal element of T. With qj fixed, the only way to in-

Showing the left side of (22) to be positive insures crease t is to decrease oil and this may be accom-

the positive definite quality of V2p(%). To accom- plished by decreasing p . We see that the value of
any t i may be increased indefinitely by reduction of

plish this, we make use of the properties of matrix the cetecorresponding p , and hence there exists a p3 such
and vector norms. We utilize the following definition i

that the value of d will insure the positive quality of
of a matrix norm:

1iz11 2 = [maximum eigenvalue of ZH Z1 (24) The results of this theorem demonstrate that the

H vleofpad atxaeidenozrndmewhere Z implies Z-Hermitian. Also, we will make use values of p and a at x are indeed nonzero, and more

of the following matrix norm properties: importantly, the gradient of this penalty function ex-

ists and is continuous at the true constrained solution
lizi 2 0 (25) of f(x). We can better appreciate this fact with the

I YZi 11Y1 1lz1 (26) aid of Figure 1. The dotted line rQpresents a penalty
2 - 2 2 function given by (10) while the solid line represents

We can use these properties to bound the terms in the analogous multiplier form. Note that in the con-

(22).a
ventional penalty function, x does not lie within theT 2a

11 vTLvii : Ilv11 2 iILI (27) barrier but on it. The multiplier form includes
2 2 2

11 < 1 1 11 () within its barrier. As successive minimizations are
2 "I 2 li 2 112 performed with the multiplier form, the penalty function

contour is displaced (without significant distortion)
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until its minimum corresponds to the constrained mini- product of Vf(X (t)) and Vg () spoiie

mum of f"x). We realize that this effect implies suc- i)ispositi

cessive minimizati~ns of equal difficulty rather than 2. The value of g i x t) is negative.

the onvntinalsequncewhih w reaizebecmesin- The first condition takes into consideration any con-

creaingy dificlt.straint which can simultaneously display a value close

Updating the Penalty Multipliers to zero an possibly satisfy expression (37). The

The updating algorithm for the values of a is second condition must be included because of the lack

II

based upon the following simple theorem: of exact unconstrained minimization. It is possible to

Theorem 2: Let it) be an unconstrained local obtain an x(t) for which some of the gs u (t) are

minimizer of P(x). x(t) is then a slightly violated. These constraints are then included

local constrained solution to the in the active set. Let us, define the set of indice

problem, belonging to those active constraints as the set, E.

Minimize f(x) (35) Using a truncated Taylor series expansion, we may

Subject to express the coirection to the active constraint set as

(g (x,) - 9((t)) : (36) 0= g, (X (t+l)) gCx(t)) + (42)

The proof follows immediately from the optimality In expression (42), the prime notation signifies that

conditions for t(x). First, only the active inequality constraints are utilized.

Vfbxs ) Q(x (t) ) q(xp) = 0 (37) We may express (42) equivalently as

and we let 2 Let '&a' = -g' (X (t) (4 )

A(t) W qt _________ 
[ 1ao)

minimi[ (xft)) + a (t)] 2  (38) We find (43) to be of little use in its present form.

We need to be able to evaluate [n Since this is a

then it follows that square matrix whose rows are the partial derivatives of

ig n (x) - g fX)( ) 0 j = 1,2,..., J (39) the constraints with respect to a, we may write the

(gj) q-tgj~x0
t ) )

1,2 .0 (30) 0 g
t

matrix as

i ao

We also see from (37) that In (44), D is a rectangular matrix whose rows represent

n t ig(x) - g t) 0 = 1,2,..., J the partial derivatives of x with respect to a'. We
gf x

t )  
may obtain an expression for D by recalling that

Of course, the expressions (37-41) imply that x is

a local constrained minimum of the problem stated by [V'x) = Vf(x) - Q q 0 (45)

(35) and (36). Operating on (45) by r)

J use

We can understand how this theorem provides a b +

means of multiplier update by considering a few simple whers

points. If, for the inequality constraints destined to

be equal to zero at the true constrained solution, we G = the matrix of second derivatives of P(x)

could predict a(l sthtg (x tl)) would equal From (46) we see immediately that

( ) q t) > 0J =1 1, 1. . h )[ ] 'D(h
= -G QT(7

zero, the theorem would say that part of the conditionsis - rta r i(oe )

x(t+l) being the constrained solution of f (x) are and hence
Ofetourse, fothe remaining constraints, we could set [QlT 1t'hatx] ' = ao nn rt) (48)

q equal to zero, we would indeed have the constrained
Ct+.i) The updating formula is then seen to be

solution in x(S) by 1 (

To achieve this result, we must be able to deter- D Q T ] g= x0) (49)

mine which of the constraints are active (i.e. The formula is easily implemented and an approximation

s ( 0) at the constrained solution of f(x). To to GIs often available if a variable metric uncon-

this end we will define an active constraint set as strained search is incorporated.

those constraints possessing the following two proper- Sometimes there is no estimate of Gs, and we

ties: would like to be able to develop an updating formula

1. The value of gn C (t))is less than some which did not require second derivative information.

positive nmber, c, and the vector dot To this end consider increasing the matrix, T by

0-38



adding a diagonal matrix, S, whose elements are all and finally recognize when a solution has been obtain-

ed. All these components have previously been put to-
equal to a large positive value. Having done this, gether in a computer program called BIAS [1]. BIAS

we find a new expression for G. has been developed to incorporate a different multi-

, 'T plier type penalty function, however with some modi-

GT+S = GT + Q SQ (50) fications to several of its components we may easily

implement our barrier penalty function. First of all,

Householder [4] gives a formula for expressing the in- we replace BIAS's penalty function routine with one
which evaluates (12). Next we alter the section of

vcrse of matrices such as T Given the matrices code which performs the multiplier updating. We now

W,X,Y,and Z have an implementation of our barrier penalty function
which takes advantage of the Davidon-Fletcher-Powell

[W + XYZ]
- 

= W-I w-X[ZW-IX + Y-I]zw-I (51) unconstrained search algorithm and the quadratic inter-

polation unidimensional search already existing in

Utilizing this, we see that BIAS.
-T1 -1' 'T-' -

kST + QsQ'T]
-
1 = G TI GT

1 
Q [Q G- Q'+ S-I]Q'TGT

1  
Numerical Results

(52) The results of three implementations of the

barrier penalty function are dirplayed in Tables 1, 2,
and secondly, and 3. Table 1 contains the results of parameter up-

1 dating via expression (49). Table 2 contains the re-

'T+G S Q Q 'TG-1Q -Q Q [Q G Q + S
- ] sults of utilizing (59), and Table 3 contains the

T+S
Q  

I T Tresults of holding the elements of a at zero and re-

QT GT Q (53) ducing the pj at each stage. This third implementation
is the algorithm associated with the penalty function

given in (10). Except for changing the penalty
Close inspection of (53) reveals to us function and parameter updating algorithms, BIAS was

'TI 1 = 1 I used in its original form. All BIAS parameters were
Q GT+S  = [(Q Q +(5) held fixed for each test problem, thus insuring a

relatively controlled algorithm environment. The
Now, if the elements of S ar'e sufficiently large, then value of E used in determining constraint activity was

[(Q' 01 1.01. 
The values of a were set at zero for the first

G T+Q )_ + S Z (55 st ge.The test problems comprise a subset of the

Sandgren-Ragsdell [5] problems. This subset consists

We then find that of those problems originally in the Colville [6] and

I - Eason and Fenton [7] test studies. Only the problems
[ T+S Q ] z (56) exhibiting inequality constrained optimum solutions

were considered. The problem numbers used in the

Noting also that if the elements of S are large, then tables refer directly to the numbering used in the

Sandgren-Ragsdell study.
(T The results are interesting in several respects.

(T' + S) : S, (57) For one, solution times do not differ significantly

and (49) may be written as among the three implementations. Looking at the re-

sults of updating formulae (49) and (59), we see

1 g,(x(t) solutions of equivalent accuracy. Based upon the

S= [S-1S] -1  
(x (58) slightly higher level of complexity of (49), expression

or 
(59) would seem the more advantageous updating algo-

(t) rithm. The superiority of the multiplier technique

Va Cx (59) shows through when we examine the results in Table 3.

The only problems in which the penalty function algo-

Until now, we have described the multiplier up- rithm of (10) was able to reduce constraint violation

to less than .0001 were those exhibiting only one
dating only for those constraints in the active set. active constraint at the solution. On the other pro-

As stated earlier, optimality depends upon the remain- blems, this algorithm was totally unable to achieve
suitably accurate solutions.

ing g being zero. We may achieve this in a manner

very similar to other barrier penalty function algc- Closure

rithms. At the end of each unconstrained minimization The intent of this paper has been to develop a

we simply reduce those qnot corresponding to the 
barrier penalty function algorithm which exhibits 

ad-

qj vantages over other existing barrier function algo-

active set. This may be very easily accomplished by rithms. To this end the paper has been successful. A

barrier function has been presented along with two

simultaneously multiplying those [oa, 3 $ B] and divi&- efficient and simple parameter updating formulae. The

ing the values of [pj, J f B] by an Appropriate posi- advantages of the method include convergence of the

penalty parameters to finite, nonzero values and a
tive constant. well behaved penalty function gradient at the con-

strained solution. Practical advantages include the

Computer Implementation ability to acheive active constraint satisfaction to

Any implementation of a penalty function requires a high degree of accuracy.

the same basic components. These components include

an unconstrained search algorithm, a penalty function,
and a penalty parameter updating routine. The imple-
mentation must be able to iteratively invoke the un-
constrained search algorithm, update the parameters
between successive unconstrained iteractions (stages),
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Table 1

Results of Barrier Method of Multipliers
Usinq Updating Formula (49)

CIO No. of No. of No. Obj. No. Const. Max. Violation of

Problem ti.,e, Stages Cycles Funct. Eval. Eval. an Active Constraint

1 3.97 6 57 1197 1190 1.4 x lo
- 5

2 .57 11 24 628 616 2.5 x lo
-

3 2.10 11 55 1461 1449 1.7 x 10
- 6

7 .45 8 32 513 504 1.8 X 10
- 7

8 .62 7 33 631 623" 2.8 x 10
- 6

11 54.57 6 33 528 521 9.0 x lo
- 4

14 20.68 7 153 4572 4564 1.98 x 10
- 4

16 5.95 8 42 898 894 4.0 x 10
-
6

Table 2

Results of Barrier Method of Multipliers
Using Updating Formula ( 59 )

CPU No. of No. of No. Obj. No. Const. max. Violation of

Problem time* Stages Cycles Funct. Eval. Eval. an Active Constraint

1 4.48 8 77 1376 1367 3.2 x 10
- 5

2 .45 7 21 542 534 1.0 x 10
-

3 2.17 11 61 1508 1496 1.6 x lo
- 6

7 .37 5 29 467 461 2.1 x 10
-
6

8 .65 4 45 757 752 2.9 x 10
- 5

11 56.5 6 33 553 546 8.0 x l0
- 4

14 19.5 7 143 4277 4269 4.3 x 10
- 4

16 5.29 6 34 700 692 3.2 x 10"6

Takle 3

Results of Conventional Interior Penalty Function

CPU No. of No. of No. Obj. No. Const. Max. Violation of

Problem time* Stages Cycles Funct. Eval. Eval. an Active Constraint

1 3.93 7 67 1228 1220 1.7 x 1o
- 4

2 .45 8 18 499 490 4.6 x I0
-6

3 1.83 a 56 1359 1350 6.5 x 10
-

7 .45 7 36 564 556 3.5 x 10
- 6

8 .59 3 42 715 711 2.8 x 10
3

11 56.95 7 35 552 544 8.2 x 10
- 5

14 19.6 7 147 4439 4431 2.0 x 10
-4

16 5.99 S 34 865 856 2.3 x 10
-

Measured in seconds on the Purdue University CDC 6500.

8-41

~ - _ .. ........... ._o I



-- --- 1, ,4 - -c -&l I II

GEOMETRIC PROGRAMMU-0. FOR CONTINUOUS DESIGN PROBLEMS

Alejandro Diaz. Panos Papalambros and John Taylor

College of Engineering
The University of Michigan

Ann Arbor, MI 48109

The present paper examines a certain extension of ik ..(rn. mk+l. .nk +nk-), k=O, 1. p

Geometric Programming for functionals defined in in- with m _ 1 < m I = mn+ n < ... <m m +n

finite-dimensional space. The intened application is 0 1 0 0 - - p p- p-I
for continuous problems in e 

l
ign optimization. A where n is the number of terms in each signomial p.'

brief summary of previous work is given and the partic- the coedficients c. are positive and the exponents aij

ular ,-rsion of the primal problem to be studied is are real numbe -s. The signurn functions si =+ I are
stated. The construction of the dual problem is pre- designed to carry the sign of each term, while the ak'a

sented using two approaches, one involving the formu- generalize the right-hand side of the constraints to

lation and reinterpretation of the Lagrangian functional + 1. Problem SPP reduces to a posynomial (prototype)

and another utilizing the concepts of conjugate functions. program if all the signum functions are + 1. Duffin

Both approaches give the same results. The (general- and Peterson (3) have shown that any SPP reduces to a

ized) zero degree of difficulty dual problem is solved posynomial problem with some reversed inequalities,

exposing the similarities between the continuous case i. e., lower bound inequalities.

and the more familiar discrete one. Two simple More recently, the theory of convex functions was

structural design problems are included to illustrate used to expand the concepts and methodology of geo-

the application of the method>,, metric programming. Peterson (9) defined the gener-

Irui alized geometric programming (GGP) in n-dimensional
Introductil Euclidean space and showed that several mathematical

The first concepts of Geometric Programming programming problems (e.g., linear, quadratic, sig-

(GP) were introduced by Zener in 1961 (15) and de- nomial) may be transformed into a GPP formulation.

veloped by Duffin, Peterson and Zener in 1967 in their A somewhat simplified version of the primal GPP

now classic text on the subject (4). Since then, signif- problem is:
icant progress has been achieved. Recently, a state- Minimize go(x)

of-the-art review was conducted by Ecker (5) and a re- k
view and comparative testing of available algorithms subject t: gk(x

k
) :S 0 k= 1, 2 ... , p

was compiled by Sin and Reklaitis (14). Although GP xk C Ck a En

is a relatively specialized technique, its effective ap- k

plication to certain classes of design optimization prob- 0 X: a cone in En,

lems makes it attractive for further study. where x = (x x , ... , xP) is a vector in En with
k A k k k

The original standard formulation of a GP problem x = (xx 2  .... x n
involved the minimization of a posynomial objective i

funcionsubectto osyomia uper oun inquaityBoth the signomial and the GOP programs presen-
function subject to posynomial upper bound inequality ted above are optimization problems in n-dimensional

constraints. A posynomial was defined as a polynomial Euclidean space. A GGPformulation in infinite-dimen-
with arbitrary real exponents and positive variables sional space has been constructed by Scott and Jeffer-

and coefficients. This positivity restriction was essen- son (13). In their development, the authors combine

tial for the use of the arithmetic-geometric mean ine- the approach described by Pterson to solve his n-

S quality for real numbers in order to link the primal dimensional problem with some theorems and concepts

and dual formulations of the posynomial (prototype) GP of convex functionals developed by Rockefellr (11).

wshlfnproblem. The first change in the pformulation They also show, as an example, a particular. version
was the lifting of the sign restriction on the posynomial of an infinite-dimensional posynomial (prototype) GP
coefficients (Passy and Wilde (8), Blau and Wilde (2)). program.

The generalized polynomial defined as the difference of

two pesynomials was called a signomial. Thus, a sig- In the infinite dimensional GGP primal problem

nomial primal problem (SPP) is a GP problem in which En is replaced by L, a real, decomposable vector

a signomial objective function is minimized subject to space of measurable functions. The GGP primal prob-

signomial inequality constraints. Its standard mathe- lem to be considered in this paper has the form:

matical formulation is as follows: Minimize G(x ° ) = fT go(t. x
0 It

0 0
Minimize P 0 (t) subject to Gk(xk) = IT gk(t x k )dt - I < 0,

subject to Pk(t) . sk' k= 1, 2 .p k k=l, 2. ... p

and t. > 0, j=l, .... m x C C ac iL. p
whr xc X: a cone in L.

a signomial defined by Here x is a function from T to Enk and g is a normal

M a. convex integrand (in the sense of Rockafelr (11)).

Pck i t. k=0, I... p. The intention of this paper is to study the posyno-
j_ I mial (prototype) GP problem that corresponds to the

Here the index set ik is: above primal formulation. The equivalent dual prob-
lem will be derived in two different ways. The first
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m£

derivation will follow a traditional approach, introduc-
ing transformations and interpretations that have been -T I  

-

used by Duffin, Peterson and Zener; Wilde; Beightler m k

and Phillips (1) to solve the posynomial and signomial L a. 1v. - V= In(c ino€0
problems. This involves the definition of a Lagrangian j= l

functional and the use of a "geometric inequality" for m wa
integrals. The second approach will be based on the L a..v. = In(-) i in I
theory of convex functionals and corresponds to the j= I J J c1
methodology of GGP developed by Peterson (9), and w T

Scott and Jefferson (13). Once the dual formulation is - for alliandIkVik
established, some suggestions will be made on how to
solve it. Finally, the process of solution wil be illu- The critical feature of the transformed problem is

strated using some simple examples drawn from the the introduction of the primal weight functions defined

field of structural design. by m a..

The mathematical formulation of the particular c. II u.

version of the infinite-dimensional posynomial GP w. = i in i
problem treated in the rest of this paper is stated as P o o

follows: m a..

Program 1: w. c. i u. 1 i in I

Minimize Po(u) j= 1

subject toP k(u) <_ I, k=1,2, Also Vo = In P and v. = In u., u in U+. For conven-

with m a.. ience the objective exp(V o ) is replaced by V .
P = T T c.(t) E u.(t) dt o

k 1 j=l In the following definition of the Lagrangian L,

and u U= {ulu(t) > 0 a.e. in T). Here uis a I = (1d0 , I I I ) is the real vector of multipliers
function to Em and the index set ik a t th integral constraints and, for each

montinuousunctionfrmTt ano tha axse e i, d. is the function multiplier associated with the con-
as straint relating w. and v. Thus the Lagrangian is

m = I < ml = m +nI < ... +±mp = mr..l +np.l, and stated as:
nk equals the nurnber of-terms in the integrand of Pk"
Coefficients ci are continuous, positive, and boun- L(Vo, w, v, d, I) V - 1 [I - f . w.dt] -

ded functions from T to R, and the aij's are real num- T 1 o
bers. P

- I lJI - fTFW'dt]

The similarities between the posynomial (proto- k= I 1k
type) problem and Program 1 are evident. Both share W. m
the positivity restriction on coefficients and variables; - T d[ln(--L) + Vo - L a.v.] dt -
both have only upper bound inequality constraints. io C = 1

These restrictions insure the convexity of the trans -

formed problem and permit the use of some sort of W. m
geometric inequality. Even though the development of - E £ d[ ln(-) E a. .v.] dt.
a dual GP theory is no longer bound by the geometric k T i c. l 1j 3
inequality or even the sign of the coefficients, for the k=l 'k I

purposes of this paper positivity of coefficients and Necessary conditions for a stationary point of L
variables will be required. are:

Dual Construction Via the Lagrangian Functional E fTdidt = I (1)
Io

The dual of Program I is obtained here using a T
"traditional" approach that follows closely the proced- A d = 0 (2)
ure described by Wilde and Beightler (15) and Beightler and
and Phillips (1). This involves first, a transformation d i = I kw, for all i in ik and all k (3)
that exploits the linearities present in Program I by where A is the nxm matrix of coefficients a.
introducing a new set of primal variables. The Inten- '3
tion of this transformation is to reach a primal formu- Combined with the primal constraints, equations
lation in which the new variables appear in separable (1) and (3) give the additional conditions:
functions. Once this has been achieved, a Lagrangian I = 1 (4)
functional is stated as a function of both primal varia- 0
bles and multipliers. A variation of the Lagrangian di = w i  i in i0 (5)
with respect to the primal variables gives conditions And by the definitions of the weights w
for optimality. Using these, the Lagrangian is rewrit-
ten and interpreted as one associated with another pro- fT L d. dt = I k k= 1, Z. p (6)
gram. This turns out to be the desired dual problern. T ik 1

Using Eqs. (3) through (6) the Lagrangian may be
The transformed equivalent problem is: rewritten in the form:
Minimise V 0

subject to: I - E dt = 0
0
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P cid k From the definition of pi and ATd = 0, the term
L = EfT E diln (d. dt + (V0 -1) ( 1 fT E didtP p

k=0 ik exp L IL fT di 
n p 

dt] = 1. Therefore

m p Po(u)>D(d) = expZ(d).f~u . E d. (u = D~)0i-
+ E f 0 L 

a
.. d. dt. From the geometric inequalities P (u) D(d) i

kB I J== 1

Following the steps of Wilde and Beightler (15), d. k kconstant, k=,. p;iin k* o

this Lagrangian may be viewed as a functional associ- which corresponds to the optimality conditions (3), (4)
ated with the following problem: and (5) obtained from the Lagrangian by setting B ° =

p C Ik P and B = 1, k=l, 2 ... , p. Hence, with( )* denot-

Optimize Z(d,1) = E fT L din(j. )dt ing the solution point
k=O 'k PO(N) <Po(u*) = D(d*) I D(d)

subject to fT E d dt = I k k=0, 1 .. , p and the dual problem is:
j k

Program 2:
p c.

ikATd = 0 Maximize D(d) = exp { f E d. In (- )dt}
T k=O d i

Ik 
>  0, di(t) > 0 a.e. in T, 1 0 z . subject to fT d, dt = 1k ' k=O, 1 ... p

To determine the nature of this optimization prob- Atd = 0 ik

lem, it is useful to introduce the notions of arithmetic and d(t) > 0 a. e. in T, I = 1.
and geometric means. 0

FProgram 2 is the dual formulation of Program I
For f and q finite and positive functions of Z in T, when all the primal constraints are active at the opti-

and with dt = 1, the arithmetic mean of f with mum. If a given constraint is loose at the optimum,
weight q is the formulation is correct if the corresponding dual

M(f, q) = fTqfdt. variables I k and di are zero (identically on T) and
c.

The geometric mean is d In -- is defined as the identically zero function on T.

G(f, q) = exp(f q In f dt] i
Dual Construction Via Coniugate Functions

and for M finite, M(f, q)> G(f, q) where the equality
holds iff f = constant. The dual formulation of Program 1 will be presen-

ted here P.s a particular case of the dual infinite-dimen-
The counterparts for real numbers are sional GGP problem. Dual GGP statements have been

n derived by Peterson (9) and Scott and Jefferson (13)
M(f, q) = 4 ifi using the concepts of conjugate functions and subgrad-

i I int sets. The fundamental theorems that apply to the

n q infinite dimensional problem appear in Rockafellar

G(f, q) = rf. (11). The reader is referred to these references for

i= 1 a description of the development of the GGP duality
theory. Certain definitions and concepts needed to

wheref= (fl .
) >

0 q = (q . qn> 0 with understand the dual GGP statement are provided here

n q. = 1. Again, M(f. q) > G(f, q) and the inequality for completeness.1=

holds Lff f. ; constant for all 1. Definition 1. The bilinear form <x, y> is defined here
Si. f a as fT x(t). y(t)dt if x and y are real valued functions on

and j=1 J T. Ifx and yare vectors in Em, <x, y> is the ordi-

let d be a weight function whose integral over T in D. nary dot product x. y.

and such that L D i = k k" With I o = 1, and using the Definition 2. The conjugate function of G(x) defined
1k 1

geometric inequalities on C is H defined on D by

I D. d ci k I D. d. cp I k H
k 

i  
D k i ik. H(y) = sup {<x y > - G(x)

P k [E-M D---- G(-U_ xe C
Sk k k i D = {ylsup[<x,y>-G(x)]< co).

d. 'c k) D Definition 3. The positive homogeneous extension of
1I G( , i I H(y) is H+(y, X ) defined on D+ by

-k D i d i H +(yX) sup <x, y> if X=0 and PC <Xy><o
ex4 k T n( k

) XlH(y/X) if k > 0=exl I di 1.(

k and D+,= {(y,X)Isup<x,y> < X i}

Since k >0andPk < lfork=l,Z ..... p, itfol- U {(y,X)Iy/ E D, X >0}.

lows that
& I k WhenGis of the form G(x) f.f.g(tx)dt - I with

Po 
>  

P > k p Z(d) • fTdiln p, dt] g a normal convex integrand, H is given by H(y) =
o- k=0 k pXIJdt f

fT h(t, y)dt + I where h is the conjugate of g. By
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construction D* = - H*. To show this equivalence first introduce

G(x) +H(y)2 <xy> x inC, yinD the following transformed version of the dual Program
G(x) + H (y)> < y > x in yyX in D 4.

G(x) +H +(y,k)> <,,y> xin (y,X) in D+. Minimize H(Zz,) = ZInZ -Z -ZD(z,±) +

The GGP dual to the infinite dimensional primal p
problem given earlier is: + Z[ L - fT E z, dt]

p k=l k

Minimize H(y, X) = Ho(y ° ) + E H k ( y Xk) subject to z a. dt = I
k=l oTi

subject to yo DO; (yk, Xk) 4 D+, k=l,Z . p A z r 0

y c Y: the polar cone of X. zt ~ .i , •0

k function from T to En In terms of the Here the transformed variables z and are defined byHer y s fuctin romT t E k . ntrso t z i = yi/ Z and Lk = )Lk/Z where Z is a positive real
primal objective functional Go , at the solution poit number chosen so that

Go(X°)* + H(y)* = 0 f T LzdfEjzidt = I.

The dual function just stated, is valid for any in- 0
finite dimensional optimization problem that can be Conditions for optimality of H with respect to Z

put into the standard GGP form. It can be used in par- and 1L are
ticular to solve Program I once this problem has been p
suitably transformed. As before, this can be accom- In Z = In D(z, 4) - L [4k " 

f  
L zidt ]

plished by defining a new set of primal variables that k= I ik
brings out the separability exhibited by all posynomial f zidt k= 1, 2, p.
problems. These new variables are given by the trans - fT ik d k'

formation With these conditions the transformed dual prob-
m a.. lem involving the minimization of R(Z, z, 4) is equiva -

x. = In [•Il u. 3] for all i, u in U lent to the maximization of D(d, I) with
1 j=1 3

With these new variables the primal problem becomes H(Z, z, L) = - D(d, I)

Program 3: &=d, = I .

Minimize G (x O) = fT f ci exp x, dt And the equivalence between Programs Z and 4 is es-
kk tablished thereby.

subject to G (x 
k ) = fT i

E c, exp x dt - I < Ot

k Solution of the Zero Degree of Difficulty Problem

k k= 1, 2,..., p As is the case with the prototype problem, solving
x (t) C Enk the dual of the infinite dimensional problem has many

and
m advantages. In particular, the solution to certain

KE X KK. La.nufoalunjxa In ufor all i, u in U , a problems may be obtained by just solving the con-
j= I ii straint equations. This occurs when n, the number of

subspace. terms in the primal functionals, equals m, the num-

The conjugate function of each G
k and its positive ber of primal unknowns plus one. The number

homogeneous extension are obtained using the defini- r = n-m-I is called the degree of difficulty.

tions given above. Once they are found, the dual of When r=O only one function is needed to describe
Program 3 is written as follows: the whole subspace Y. [For instance, all the feasible

d.' s may be expressed in terms of d, by just solving

Minimize H(y, X) = [y. Y d t +  ATd = 0. ] Also, if D. is the integral of d. over T, the
f n ( i - ldt satisfy

p y. L D. =I k=0, ... ,p
+ E f yi n 

.
) -I Y]dt 

+
X i k  k (7)

k=l 1 k k i L k

subject to A Ty = 0 k=O ik 
i j i 0, j=l,..m

y(t) > 0 a.e. in T 1 = I
0

X > 0. which can be solved for the D' a and I s provided that

It can be shown that the condition A Ty = 0 is equivalent addthe onn tr as Independent,

to < x, y > = 0 for all x in X and it therefore describes Dddition, in terms of d I,

the orthogonal complement of X (which is the polar d i

cone of X since X is a subspace). = D 1

Program 4 does not yet have the same form as and
Program 2, the dual formulations with objective D ob-
taied ucing the Lagrangion approach. However, the
two programs are equivalent and at the optimum
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d, DI)K p ciIk D * ,
D(d) =exp~fT~n[T II - 11) ndtl (9) D D2 = I Iand K~

1 k=0'k D 1 I
From Eqs. (10), (11) and (8)

with A P 3
K= 1; 1., 1o0= 1. * 4 qoL

k=0 Bo = V E

This has the form of the geometric mean of a function max
f with weight function d 1 /D 1 , which is maximum for and
f " constant = B . d d 3 (L-t)I/*L-3/2.o d1 dZ =2

f D 1 K P r cil b)
= i i b B Finally, the optimum area distribution is found from

k=0 ik i Eq. (12): L 3 / 2

Since D is the integral of d, over T, the solution is a 3 1/2

B = { k(. ) i]I/K dt}K (10) max

k=0 i Problem 2: Cantilevered beam:

Consider a beam cantilevered at one end (t=O) and

dc i k)Di D{- subject to a tip load of magnitude Qo at t=L. Let the

S= D 1 (11) cross section of the beam be rectangular, of fixedI1 D.
o k=0 xk  I width b and varying height h(t). Find h that minimizes

and the volume so that the average bending stress does not

D(d*) = P (u*) = B. exceed . L
0 0 The volume of the stress is given by V = f- bh dt.

All optimum dual variables are retrieved from Eq. (8). The average stress is
The primal solution is obtained by solving m of the
following equations * * 1 L h/Z)dt L 6Qo(L-t) h dt

m d. P avg E f s(t,/d fo bLEa.lu I n( 1, 1W in Th
1 aj In u = lo The mathematical problem statement is:

j= 1 L
(12) Minimize fo bh dt

m d.*0

Za.. Inu. J- i in I L ___.* -Z
j=l I c subject to f ' h dt< 1, h>0.

k i o bLs

Structural Design Examples Again, r=0 and the solution to the dual constraints
solves the problem:

The following simple examples are included here d
to illustrate the method. D 1 = 1 o, D =I " (1,1-)( d 0, 1 0 1

Problem 1. Axial member: 2

Consider an axial member fixed at one end (t=0) whereby

and subject to a distributed load of constant magnitude D = 1, D= 1/2, 1* = 1/2, K = 3/Z.

q . Find the area distribution a(t) that minimizes the

volume while keeping the tip displacement less than a Using Eqs. (10), (11), and (8):

maximum value u max. 9 bQ

The volume, and the tip displacement are given by B 
=  V = b0)/2L3/2

SV 
4r(Lt) -a 

0

V f adti u(L)= j a dt. * = 4 -4/3 d
2 3

The mathematical problem statement is and the optimum height distribution is:

Minimize fL a dt
L qo(L-t) -l h Q

subject to fo a dt < 1; a(t) > 0 o
max

This is a zero degree of difficulty problem, and Conclusion

therefore the solution is found simply by solving the The infinite -dimensional prototype formulations,

constraint equations of the dual problem. both primal and dual, are very similar to the more
familiar discrete problems. Solution in the dual space

D, 1 (1, 1)( ) = 0 i 1 is often easier than in the primal. In the infinite-
D Io 2 I ( dy o i = dimensional problem, the solution functions belong to

a subspace that is often small and easy to describe.
whereby In the case of the zero degree of difficulty problem.
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this subspace is described by multiples of only one (13) Scott, C. H. and T. R. Jefferson, Duality in
function and the solution is immediately available. Infinite Dimensional Mathematical Programming:

The dual problem incorporates all the primal Convex Integral Functionals, J. Math. Anal. Appl.,

constraints into the objective function, resulting in a 1pp. 251-261, 197?.

set of dual constraints and a subspace condition that (14) Sin, Y. T. and G. V. Reklaitis, On the Computa-
are much easier to handle. Local inequality con- tional Utility of Generalized Geometric Program-
straints may be added to the primal without difficulty ming Solution Methud. Part 1: Review and Test
and with very little change in the results (7). The Procedure Design; Part 2: Results and Interpre-
incorporation of state equations, on the other hand, tation, 7th ASME Design Automation Conference,
is much more difficult and more research is needed Hartford, 1981, to appear in Progress in Engi-
towards this goal. neering Optimization 1981, ASME Design Divi-

The interpretation of the dual solution is similar sion.

in both the finite and the infinite dimensional problems. (15) Wilde, D. J. and C. S. Beightler, Foundations
At the optimum, the dual functions act as weight func- of Optimization Prentice-Hall, Inc., Englewood
tions that measure the contribution of each primal Cliffs, N.J., 1967.
term towards the objective function or towards the
satisfaction of the constraints. In fact, the integral (16) Zener, C., A Mathematical Aid in Optimizing
over T of each dual function associated with a term in Engineering Designs, Proc. Natl. Acad. Sci.,

the primal objective is equal to the fraction of the ±7, pp. 537-539, 1961.

objective carried by that particular term.
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ASSOCIATED SOLUTIONS IN OPTIMIZATION
APPLICATIONS TO STRUCTURAL MECHANICS
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4 Place Jussieu

75005 Paris

SUMMARY I. INTRODUCTION

In a previous article (f) we have defined and studied, In this paper, we shall study pairs of optimization
sets of two optimization problems that we call asso- problems. Each problem of a pair is deduced from the
ciated problems : an optimization problem with one other one-by exchanging the objective function and a
inequality constraint being given, its associated pro- constraint function.
blem is obtained by exchanging the constraint func- Some of such pairs of associated problems (also
tion and the objective function. The main purpose of called dual problems) have been considered by several
this paper is to present some connections between the authors. But, to my knowledge, all these examples
solutions of a problem and those of its associated concern very particular structures ; for example, for
one, and more particularly to make methods for sol- a given bar, or plate, or shell, to minimize the mass
ving any optimization problem having a suitable form when one of the natural frequencies is bounded from
when the solutions of its associated problem are known below, or to maximize this frequency when the mass is

First of all, we present two general theorems bounded from above. In such examples, as well as in
about solutions of associated problems. These theorems any examples we have seen in literature, the results
are very general ; they do not use any properties have been obtained by elaborating particular proves
regarding continuity, differentiability or convexity, adapted to each particular case, and by using various
The second one concerns problems, often met in prac- properties for the problem which is studied : control
tice, the solutions of which are on the boundary of theory, extremum theorems with differentiability, con-
the admissible region. In this event, we actually vexity, etc.. (2 - 7) . Let us note a particular
derive a method for solving one of two associated pro- method based only on extremum properties and which
blems when the solutions of the other are kaown. In permits to prove that a certain condition already
particular, we develop the method in the important known as a necessary one in a problem of mass minimi-
case as far as the numerical treatmrvt is concerned. zation with a free boundary, is also a sufficient
Then, we extend the definition of the associated pro- condition for both this problem and its associated
blem of a given optimization one to problems involvirg problem (8).
several inequality constraints. We show why optimiza- In this paper, we make and we prove general
tion problems introduced in practice present often the optimization theorems valid for all associated problems
properties required in the general crnsiderations provided they have a very general form. We do not need
above ; here, increasing and continuous functions are any properties regarding continuity, differentiability
necessary. At last, two examples concerning structu- or convexity. From these theorems we derive methods for
ral optimization are completely treated : for an elas- solving any optimization problem when the solutions of
tic column, minimize the mass when the load is bounded its associated problem are known. We examine general
from below, or maximize the load when the mass is situations where the assumptions mentioned above on the
bounded from above ; for perfectly plastic frameworks, initial form are automatically verified ; in this
minimize the mass when the safety factor is bounded event, we need functions which are monotonically in-
from below, or maximize the safety factdr when the creasing and continuous. At last, applications to me-
mass is bounded from above. chanical optimization problems are given.

2. GENERAL THEOREMS

2.1. NOTATIONS

- Given,
E : a finite or infinite dimensional space,

S a non empty set of E,
a: the generic point in E,

f,g: two given real-valued functions defined on S,
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m., PO: two constant numbers. Consequences of theorem I

- The following terminology will be used, - Any solution a of problem Q(f ) verifying

G(p#) the subset of points a in S where g(al >p is a solution of problem P(p)

g(a) •P, Proof. According to theorem (1.ii), problem P(po) has(this subset G(p*) is assumed to be nonepthis ssiat least a solution : the set X(p ) is non empty. Then,
empty), -0

f() the infimum of the function f on G(p) according to theorem (.i), the point a is in X(p),

F(mo ) the subset of points a in S where i.e. is a solution of problem P(po).
f~a) h s o- If problem P(p ) has only one solution a , thenf (a) 4C m.

a * is the unique solution of problem Q(f ).
- The two following problems will be considered, ao

Proof. The set X(p ) reduces to a single point aProblem P(p): minimize f on G(p )
0 0 of course, this point is the unique solution of the

Problem Q(a : maximize g on F(mo ) problem : maximize g on X(p ) , i.e. the unique solu-

tion of problem Q(fC) ), by theorem (I.i).
- The following notations will be used, j-o

X(po ) : the set of the solutions of problem 2.3. THEOREM 2

P(P, ),

Y(mo) : the set of the solutions of problem In most optimization problems which are formula ted

Q(m) as problem P(p 
)
, all solutions lie on the boundary

(the sets X(Po) and Y(mo) may be empty) g(a) - p . Therefore, by supposing this is the case,

we do not make a very restrictive assumption. This

2.2. THEOREM I explains the interest of the following theorem.

Theorem 1. i. If problem P(p.) has at least a solu- Theorem 2. If problem P(p.) has at least a solution

tion, then problem Q(f ) is equivalent to the folio- and if all its solutiops verify g(a) Po , then pro-

wing one : maximize the function g on X(p*), and any blem Q(fLJ ) is equivalent to P(p ). In other words,

solution of these problems verifies g(a)>p. we have X(p.) . Y(f1-0 )

ii. If problem P(p ) has no solution, then problem

Q(fo ) has Proof. Here, all points a in X(p) verify g(a) - P

to hs nThen X(pe) is the set of the solutions of the follo-

Proofs . i. Let us consider in F(f * ), the part wing problem maximize g on X(p. ). By theorem (I.i),

which is in G(pe) and the part which is in the comple- the set X(po) is also the set of the solutions of pro-

ment of G(p.) with respect to S. blem Q(f&) ). Therefore, theorem 2 is proved.
14 (ci

in G(p) the only points containd in F(f - ) Comments - Replacing in the various statements the

are the points in X(p ), according to the definition -- -
and the existence of the solutions of problem P(p inequalities by their opposite ones and, at the same
Lndhet u sence that snyo ion f inXp vrifes time, exchanging the terms minimize and maximize, leadLet us recall that any point a in X(P) verifies

g(a) p*" 6to a theorem analogous to theorem 2, whose formulation

In the complement of C(p ) with respect to S, is left to the reader.

e( fL) - Exchanging problem P(p ) and problem Q(mo) in theorem 4
such that f % . 2 gives a new theorem : if Q(m,) is not empty, we have

but, all these points verify g(a) < Pe Y(m) - X(gW ), where g is the supremum of the

Then, theorem I.i is proved. fn o g

ii. The set X(p ) is here assumed to be empty : all

points a in C(p ) verify f(a) > f (A.)
i * 3. APPLICATIONS TO OPTIMIZATION PROBLEMS

If problem Q(f 0)) has no solution, the conclu-

sion of the theorem is evident.

fproblm Q(f ) has solutions, all these solu- 3.!. APPLICATION OF THEOREMS I AND 2 TO THE RESOLUTION

tioms a verify the inequal after the OF PROBLEM Q(u) WHEN THE SOLUTIONS OF PROBLEM P(p)

definition of problem Q(f ) . Thus no solution of ARE KNON
Q(fl) is in (P).
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According to the comments above, problems P(p ) 3.2. REMARKS ON SOME SITUATIONS WHERE THE PREVIOUS

and Q(me):play the same part. For instance, suppose THEOREMS CAN BE APPLIED

that we know how to solve problem P(p ). We are going

to show how to obtain the solutions of problem Q(mo). Now, we are going to extend the definition of associa-

A first result is the following : if the assump- ted problems and to introduce a situation for which

tions of theorem 2 are verified, then the solutions of either the unique solution of problem Q(f ) ispolmQm ) with m - f k;) aetoeo rbe

p m f are those of problem known or the assumptions of theorem 2 are automati-

P(p*). cally verified.

The following result is much more important :

under suitable conditions, it is possible to obtain 3.2.1. An extension of theorems I and 2. In the

the solutions of problem Q(%.) for all m. in certain definition of associated problems, it was supposed that

problem P(mn) involves only one inequality constraint:

Indeed, let us suppose that the assumptions of g(a)> p . Now, let us suppose that there are seve-
Inded lettait whsc supos that theren asumtin ofe def

theorem 2 (existence of at least a solution of pro- ral constraints which do not intervene in the defini-

blem P(p.), localization of all the solutions on tion of the initial set S : the inequality constraints

g(a) -p) hold for all numbers p in a given inter- g.(a) p , j I,. (there is no loss of

val J: ( , . et and p be two numbers generality in supposing that the right-hand sides of
in this interval such that pe <P . The set X(p ) the j previous inequalities have the same value p.).

n tLet us consider the greatest lower bound g of the
does not intersect G(p; ) because it is in g(a) =

by assumption. Thus, according to the definition of g. (i.e. such g(a) - iVf g.(a) for any a in S). The
6p ehl constraints g.(a).>p are equivalent to the unique

problem P(ps
), 

the inequality f(a) > f 4, holds on

X(p'). But on X(p' ) we have f(a) = f . Therefore constraint g(a) W . We are then led to define for

0 (;) .) , problem:
we obtain fA, < f . Thus, the inequality p< p pb
imp lies f|L k l' In other words, we have defined

im e s I t - minimize f on the intersection of S and of

on J a strictly increasing function f(b) of p . Con- 7

sequently, this function has an inverse function defi- 0

ned on the set I consisting of all numbers f W)- its associated problem:

when P. describes J : to each number m. in I, there
corresponds one number Pe in J such that ms - fC - maximize on F(m.) the smallest of the functions g.

Now, let a&(t-.)e an arbitrary solution of pro- Then, theorems I and 2 can be used with the greatest

blem P(p ). For any value m. in I, the maximum of the lower bound function g defined as above.

function g on F(ma) is denoted by pe(mo) : the solu-

tions of problem Q(m) are the a p (m) ) obtained in 3.2.2. A general case met in practice

replacing pe by Pc(m) in a4 (p ). In most concrete In moat practical cases, the subset S of the space E
applications, the function f&) of PO is continuous, is defined by a bound from below and a bound from

Then, the set I is an interval of 1 : the interval above

(f
1  

, f ). Both following cases are very impor-!0 + a a 4C l
taut.

- Suppose that we can calculate the quantity P%(m) where a and 1 are given. If E is a finite dimensional

and the solutions aO (p,) in terms of me and P. res- space (E = R ) . and T are column-matrices, and the

pectively. Then, for each m in I, the msximum p,(%) double inequality (I) represents 2n inequalities bet-

of g and the solutions of Q(me) are obtained in terms ween the components of the matrices a, a, 1':

of a. by substitution (see example 4.1). a < a - , for i -I, ...n . If E is dn infinite

- Suppose that we can numerically solve problem P(pa )  dimensional space of real-valued functions defined on a

and compute the correspotding minimms =(p.) of the connected subset A of 1 , e or It', then a and

function f for each p in J. Then, for every value are given real-valued functions defined on 6 ; the

of as in I, we can compute the curresponding value double inequality (1) means a(x) < a(x) < i(x)

p (m) by a numerical interpolation, and thus compute for all x in A

the solutions of problem Q(a,). Here, the function f is assumed to be a strictly
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increasing continuous function(as it is the case when Let us write

f is the volume). ChE
If a is in G(po), it is the unique solution C =- TtC 0 a - ,tc , ri.

of problem P(p ), and, consequently, the unique solu-

tion of problem Q(f ) ) by the second consequence of (n. #w'0-
theorem I mentioned in paragraph (2.2). C L.L

If a is not in G(po), and if problem P(pa) has

a solution (such a solution always exists if E is a Then, problems (2) and (3) take the following forms

finite dimensional space), we are going to show that

all solutions of P(p ) lie in the set g(a) -p .in- 1 4

deed, if a solution a* would verify g(a >
some point a' such that a'( a * (i.e. a'4 a* and

a4 a would exist in G(p*),the inequality C(O.,- O ) -

f(a') f(a *) would hold, and therefore a* would not Maximize the smallest of the 2 quantities

be a solution of problem P(p ). Then the assumptions

of theorem 2 are actually fulfilled.

4. ASSOCIATED SOLUTIONS F('v.,) 0.4 ,. ,

IN STRUCTURAL MECHANICS

,-,- t

4. I. EXAMPLE I; MINIMIZATION OF THE MASS OF AN ELASTIC

COLUMN AND MAXIMIZATION OF THE LOAD SUPPORTED BY THE Problems (4) and (5) have the generalized forms presen-

COLUMN ted in paragraph (3.2.).

4.1.1. Formulation of the problems. The column is 4.1 .
2
.Solutions of problem (5)

pin-jointed at its ends ; it supports a compressive The second problem, (5), can easy be solved by taking

axial load applied at one end. The column is a cylin- m = ag,- a1  as a variable. The number and the explicit

drical tube ; its height h is fixed. The interior expressions of the solutions a a as well as the

radius and the exterior radius are termed r, and r maximum value P* of the supported load, depend on the

respectively. The column is made of an homogeneous respective values of C and B, and on the values of m

material (mass density , oung modulus E). Its

weight is neglected. - If C,< B

The exterior radius r. is to be smaller than

or equal to a given length c. It is assumed that only

two failures cam occur ; the compressive stress must a5 - t
not exceed a given stress o , Euler buckling must 0 o C e :./ (

not appear.0 .ot,'e )
The two following problems are stated. C

How to choose r and r, in such a way that

the maximum load supported by the column be (2) 15e 4 &t

greater then or equal to a given load p, , and ,

that the mass M of the column be minimum J

How to choose r4 and r. in such a way that

the mass M of the column be smaller than or C - C.M*
equal to a given mass Me and that the maximum

load supported by the colum be maxissm J > 44.*IO b.. .
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4.1.3. Rdsolution of problem (4) The column matrix of cross-sectional areas of bars

In the previous solutions, the maximum values of the are taken as a variable ; let a be this matrix. It is

supported load (now written p instead of P ) define assumed that all bars are made of the same homogeneous
0 T

functions P. of m. . Each of these functions has an material. So, the total mass m of bars is L a

inverse function in the corresponding interval. By where ? is the mass density, L the column matrix of

substitution as it was explained in paragraph (3.1), lengths of bars, and where T is the symbol of the

we can directly obtain the solutions at , a* , of transpose. For several reasons, in particular techno-

problem (4), in terms of p , as well as the minimum logical ones, the matrix a is to be bounded from below

values m of the reduced mass m and from above : a < a , where a and

are given matrices (with positive elements).

- If C < B It is shown (9) that a safety condition is

./ with the following notations,

= L -p safety factor,
*C B*'# 4: load column matrix,

C and D rectangular matrices depending only

L C +on the geometry of the structure,

"4oili.Ao-, isof : column matrices of certain indepen-

dent parameters which generate kine-

ILA C ./C matically admissible mechanisms

CYB '-<  (4 .o 0K, a) (for all irf , the product -r 3

is positive)

= It is of interest to consider the two following

problems :

> CMinimize the mass m when the safety factor p is greater

-If C>B 
than or equal to a given number pa

4 C/B+ -. IC Maximize the safety factor p when the mass m is smaller
/FA than or equal to a given mass ma .

"O4 'C / 
t

4 These two problems can be stated as follows

L ' A -Minimize m e L a with the constraints

-Masximize the smallest (whenak varies from I to a ) o

ZC-- s c(b,0 0 . , .. the quotients &b e ;
T IZI / with the

constraints a < a T" , a me

V - "Let us suppose that the admissible region of the

[r ,~ .L O first problem (minimization of the mass) be non empty.

Then, this problem has at least a solution. According

4.2. EXAMPLE 2 : MINIMIZATION OF THE MASS AND MAXI- to paragraph (3.2) and theorem 2, we have the follo-

MIZATION OF THE SAFETY FACTOR OF PERFECTLY wing result : the solutions of the second problem

PLASTIC FRAMEWORKS (maximization of the safety factor) are the sae than

We consider structures which are represented those of the first one (mass minmizatign) when vn

as perfectly planar frames with perfect constraints, is the minimum of the mses in the first problem.

The frames are expected to support given concentra-

ted loads lying in their plane. We postulate that all

failures derive from the formation of plastic hinges.
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5. CONCLUDING REMARKS

As it has been shown, the notion of associated solu-

tions permits the resolution of numerous optimization

problems. We a aljl ive new results for problems

the slutin reobtained by computors and for

problems where E is an infinite dimensional space.
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MULTIOBJECTIVE OPTIMIZATION IN STRUCTURAL DESIGN:
THE MODEL CHOICE PROBLEM

--- Lucien Duckstein
Department of Systems & Industrial Engineering
Department of Hydrology & Water Resources

University of Arizona
Tucson, Arizona 85721

Existing and potential applications of multi- TABLE I Alternative Steel Floor Designs Versus Four
optimization techniques to structural design are re- Objectives
viewed. DESIGN

Two approaches are available to formulate a I II III IV V
multiobjective structural design problem. The first
approach starts with a classical design, say minimize Cost 3850 3085 2774 4780 4162
weight subject to cost, reliability, risk and other V-Ratio 1:1 1:2 1:2 1:1 1:2
constraints; and then some of the quantities included
in the constraints, in particular cost and reliability, Reliability 1.00 0.80 0.95 1.00 .95
are used to define additional objectives Thus, if X Applied 1000 720 570 1000 570
denotes the design or decision variabl eetor- W( X) Weight
K(X) and R(X) the weight, cost and reliabtlity objec-
tive functions, respectively, and G(X) is \a set of
non-negativity constraints, the multiobjec ive problem Design I Standard (Deterministic)
is written as ) Design II Probabilistic, R = .28

Problem Pl: Design III Probabilistic, R = .43

Min Z(X) = (W(X),K(X),l-R(X)) (l) Design IV Minimum UT
X Design V Minimum UT and Probabilistic R = .43

subject to

G(X) > 0 For both problems Pl and P2, a trade-off solu-
tion, also called "satisfactum", is tv be sought

Note that G(X) usually includes constraints on the among the set of non-dominated solutions or Pareto-
objectives themselves such as allowable maximum cost optimum set. Alternative k dominates alternative j
or minimum reliability. if C*(k) > C(j); the dominance is strict if at least

one element of vector C(k) is greater thtan the
The second approach consists In modeling the corresponding element of C(j).

design problem directly in multiobjective form. This
formulation may lead not only to problem P1, but also Once the multiobjective problem has been formu-
to the inclusion of qualitative objectives into the lated as either problem P1 or P2, a solution technique
analysis, expressed by criteria such as aesthetics which matches with the type of problem and desiratas
A(X) and emloyment M(X). Since qualitative (ordinal) of the decision-maker is to be chosen. This model
ob-Sectives are usuallydefined on a discrete scale, it choice problem is examined in a systematic manner and
is convenient to consider a discrete set of alterna- illustrated by setting up a problem with a choice
tives as well. Accordingly, let X = {X(i): i=1,2,..., between eleven multiobjective techniques, respectively:
J) be a discrete set of alternative designs. Then the
jth alternative design is evaluated by the criterion 1. Compromise Programming (7), (8)
vector 2. Goal Programming (9), (10)

3. Cooperative Game Theory (11), 12)
C(J) - (W(j),K(j),I-R(j),A(j),M(j)) 4. Multlattribute Utility Theory 13), (14)

5. Surrogate Worth Trade-off (15)
and the multiobjective problem now becomes: 6. ELECTRE (16), (17), (18) -'

7. Q-analysls (19), (20)
Problem P2: 8. Dynamic Compromise Programing (21), (22), (23)

9. PROTRADE (24), (25)
Find an alternative X(j) that constitutes a 10. STEP Method (26)

satisfactory trade off between the elements of criteri- 11. Local Multiattribute Utility Functions (27).
on vector CM. These techniques can be categorized by means of

For example, consider the standard steel-floor five binary classification criteria:
design (1) as described in (2), in which cost is to be
minimized. The optimization technique used in that a. Marginal versus non-marginal difference between
model is geometric programing (3), (4). Alternatives alternatives; are only marginal differences between
may be obtained by minimizing weight, or by probabil- alternatives being considered? If yes, formulation P1
istic design (5), (6). Table 1 shows five alternatives is applicable; if not, that is, if major differences
obtained from the basic uodel of (2). Design I repre- between alternatives are possible, say an arch versus
sents the original problem, Design IV corresponds to a a gravity dam, then formulatlon P2 may be preferable.
minimum weight formulation, Designs II, III, V are A parallel classification criterion would be design
probabilistic. These alternatives have been obtained versus maintenance problem.
by changing constraints into objectives, which means
that Table I stems from Problem Pl. b. Qualitative versus quantitative criteria: are

there qualitative criteria which cannot or should not
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be quantified? If so, formulation P2 may be more (6) Ghlocal, D. and D. Lungu, Wind, Snow and Temper-
appropriate than formulation Pl. ature Effects on Structures Based on Probability,

Abacus Press, Kent, England, 1975.

c. Prior versus progressive articulation of prefer-
ences: at which point of the analyis is the decision- (7) Zeleny, M., Compromise Programming, in Multiple
maker required to express his preference function, if Criteria Decision Making, M. K. Starr and M.

at all? Zeleny, eds., University of South Carolina Press,
Columbia, 1973.

d. Interactive versus non-interactive: has the tech-
nique been explicitely designed for an interactive (8) Zeleny, M., Multiple Criteria Decision Making,
mode of application? McGraw-Hill Book Company, New York, 1982.

e. Comparison of alternatives to a given solution (9) Lee, S., Goal Programming for Decision Analysis,
point or to each other; in the former case, the solu- Auerbach, Philadelphia, 1972.
tion point may be an aspiration level, corresponding
to a feasible solution, or a goal point, corresponding (10) Ignizio, J., Goal Programing and Extensions,
to a non-feasible (often ideal) solution. Heath, Lexington, Mass., 1976.

To these five classification criteria are added (11) Szidarovszky, F., I. Bogardi and L. Duckstein,

other criteria describing the characteristics of the Use of Cooperative Games in a Multiobjective
problem (size, uncertainty, number of objectives...), 0 Analysis of Mining and Environment, Proc. of the

the decision maker (level of understanding, time 2nd Internptional Conference on Applied Numerical
available for interaction) and the techniques them- Modeling, Madrid, Sept. 11-15, 1978.

selves (robustness, partial versus complete ranking
provided, ease of use...). This procedure leads to (12) Szidarovszky, F., M. Gershon and A. Bardossy,

defining four categories of choice criteria (23): A Goal Programming Approach for Dynamic Multi-
objective Decision Making, Presented at the

1. mandatory binary criteria: for example, under CORS-TIMS-ORSA Joint National Meeting, Toronto,

formulation Pl, a technique able to solve only dis- Canada, May 3-6, 1981.

crete problems would be eliminated from further con-
sideration (13) Keeney, R. and H. Raiffa, Decisions with Multiple

Objectives: Peferes and Value Tradeoffs,

2. non-mandatory binary criteria: for example, com- Wiley, New York, 1976.

parison to an aspiration level versus comparison of a
goal point (14) Krzysztofowicz, R. and L. Duckstein, Preference

Criterion for Flood Control Under Uncertainty,

3. technique-dependent criteria: time required from Water Resources Research, Vol. 15, No. 3, pp.

decision-maker, robustness 513-520, June 1979.

4. application-dependent criteria: nuner of objec- (15) Haimes, Y. Y., W. Hall and H. Freedman, Multi-

tives, formulation Pl or P2. objective Optimization in Water ResourcesStems:
The Surrogate Worth Tradeoff Method, Elsevier,

To conclude, he advantages of a multiobjective Amsterdam, 1975.
formulation over a single objective one with a sensi-
tivity analysis is that more alternatives can be (16) Benayoun, R., B. Roy and B. Sussman, ELECTRE: Une

explored and that explicit trade-offs between criteria Methode pour Guider le Choix en Presence de Points

can be made. Furthermore, given any problem involving de Vue Multiple, Direction Scientifique, Note de

trade-offs between quantitative or even qualitative travail No. 49, SEMA, Paris, 1966.

criteria, an appropriate multiobjective tdchnique can
usually be found by following the proposed model (17) Roy, B., Problems and Methods with Multiple Objec-
choice procedure. The potential use of multiobjective tive Functions, Mathematical Programming, Vol. 1,

techniques in structural design thus looks quite No. 2, pp. 239-268.

promising. (18) Gershon, M., L. Duckstein and R. McAniff, Multi-
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SUMMARY

Over the past several years a methodology for
rationally-based optimum design of large structures has
been developed. Previous papers have presented some of
its features and have shown how it gives substantial
savings in structure cost, reduces design time and
gives the designer far more power and flexibility,
pllowing, for example, a much wider investigation of
design alternatives. This paper presents the method's
dual level formulation of the optimization problem,
which is a principal source of its versatility and
efficiency. It also demonstrates its use for the

a structural design of naval ships and presents the
results of a realistic design study of a destroyer,
showing how the method achieves substantial savings in
structural weight and vertical center of gravity
compared to current practice designs, while also satis-
fying constraints on hull girder deflection and fatigue
damage.

I. Goals of Structural Optimization

In the field of structural optimization the two an accurate and comprehensive atru aZ
principal goals, at least in relation to large complex response analyesie to determine all of the load

structures, may be summarized as follows: effects (stresses, deflections, etc.) in all
of the members. For large complex structures

(1) the development of an optimization algorithm the only analysis method capable of this is

which can achieve a rapid and efficient the finite element method.
solution to the type of problem which a large
structure poses: a large-scale, nonlinear, an accurate and comprehensive limit state

highly constrained problem in which the analysis; i.e. an explicit investigation of

objective may be any designer-specified all possible modes and levels of failure, in
nonlinear function of the design variables, order to determine the limit values of the

load effects, QL(X). These are usually non-

(2) the combination and synthesis of this linear functions of the design variables, 1.

algorithm with the other basic aspects of
structural design which are required for a * roliabiZt .b-baed design criteria for estab-

fully rati.oalty-based design method. lishing the required margin between each
value of Q and QL, so as to account for the

A rationally-based design method is one which is various uncertainties (in loads, load effects,

based on accurate md efficient methods of structural and limit values of load effects, the latter

response analysis, limit state analysis, and optiaiz- being due to variations in material quality,
ation, which accounts for uncertainties and reliability, workmanship, fabrication, etc.) and also

and which achieves an optimum structure on the basis of account for the degree of seriousness of all

a designer-selected mmasure of merit. Thus in addition relevant limit states.

to the optimization algorithm, a rationally-based aility to acoomod2te any special constraints
design method mat include the following: which the designer may wish to specify, such

as limits on deflection, natural frequency,
sizes or proportions of mbers, need for
uniform mmber sizes, etc.
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2. Principal Requirements 3. A Comprehensive Optimum Design Method
For Large Structures

The creation of such a comprehensive design method
requires substantial developments in many areas, but As the result of an eight-year research project,
there are two items which are particularly vital: both of the required methods have now been developed.

Firstly, a new optimization method has been developed
a structure-oriented optimization method, i.e. which is capable of solving problems involving a large
a method which meets the particular require- number of constraints of various types (linear and non-
ments of structural optimization stated in linear, equality and inequality) and in which the
paragraph (1), and which also, wherever objective may be any user-specified nonlinear function
possible, takes advantage of any special of the design variables. Most importantly the algorithm
features of structural optimization which may is very rapid and cost-effective; it involves much less
not be present for other types of optimization. computation than other nonlinear methods. The algorithm

is a new form of sequential linear programming and is
* a design-oriented finite element method, which known as SLIP2. It is not limited to structures; it

has sufficient speed and efficiency as to can be used for any optimization application, and a stand-
permit repeated structuralanalysis, as is alone computer program has been developed for this
required for optimization, purpose. The theory, mathematical details and complete

documentation of SLIP2 are given in reference [11.Structure-Oriented Optimization Method Secondly, a special "design-oriented" finite
During the past two or three decades many optimiz- element analysis program has been developed which has

ation methods have been developed. The majority may be been shown [2] to be approximately 15 to 20 times
grouped into two categories: faster than a standard general purpose program, for

comparable levels of accuracy. This is achieved mainly
" sophisticated general purpose methods, such by the use of large specially developed elements, each

as mathematical programming methods and of which corresponds to a principal structural member
various algorithms for unconstrained (stiffened panel, deep girder, etc.) instead of smaller
minimization; general purpose elements. In this way the level of

detail of the analysis matches the level which is
* rapid special purpose methods, such as required for the optimization. There is no more

fully stressed design and the optimality computation than is absolutely required. Also the one-
criteria method, to-one correspondence between the analysis variables and

the design variables simplifies the interfaces between
Most of these methods perform satisfactorily for the response analysis, the limit state analysis and the

small or medium size problems (up to say 30 design optimization.
variables). However, for large and complex structures
such as ships both types of methods have been found to On the basis of the SLIP2 optimization method and
have significant limitations: the design-oriented finite element method, a complete

rationally-based methodology has been developed for the
* general purpose methods involve far too preliminary structural design of stiffened plate

much computation; structures such as ships, box girder bridges, freight
cars , container structures, etc. The computer program

* special purpose methods are too restricted; which implements this method is known as SHIPOPT.
they cannot handle constraints which are Besides the two main features just described the program
highly nonlinear and/or involve many design also contains:
variables, and they cannot handle an
arbitrary (user-specified) nonlinear (1) A comprehensive set of subroutines for the
objective, accurate estimation of the various modes of

ultimate strength and other limit values,
nearly all of which are nonlinear functions

Design-Oriented Finite Element Method of the design variables. For the current
design (as the optimization proceeds) the

The finite element analysis must deal with a large method calculates the lowest margin of
enough portion of the structure to accurately portray safety for each limit state, and the
all interactions and eliminate doubts about boundary location and loadcase where each 'lowest
conditions. For a structure with complicated geometry value occurs; this allows the method to be
and three-dimensional loading it is necessary to model used for the comprehensive evaluation of a
and analyze a very large portion. For example, for a given design, as well as for producing an
ship it is generally necessary for the structural optimum design.
analysis to extend over several cargo holds (or
compartments of a naval vessel). However, since (2) A complete set of partial safety factors
structural optimization requires that the analysis be which account for the various uncertainties
repeated many times, the analysis method must be (in loads, load effects, and limit values
extremely rapid and efficient. The general purpose of load effects, the latter being due to
finite element programs presently available are far too variations in material quality, workmanship,
slow for this purpose, fabrication, etc.) and which also account

for the degree of seriousness of all
relevant limit states. These factors are
chosen according to the target level of
reliability. The method can accommodate
multiple loadcases, each with its own set
of partial safety factors, in order to

allow for any special or unusual conditions
or modes of operation.
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(3) The automated formulation of the complete An overall response usually consists of the inter-

set of mathematical constraints arising from active response of a group of substructures, and an

the various limit states; these constraints, overall limit state is usually some maximum permissible

which incorporate the various partial safety value of this collective response. Since the design

factors, ensure that the target level of variables act in a collective manner, both the response

reliability is reached. The program can and the limit state may be expressed in terms of

also accommodate any number of user- substructure vaziables which are combinations of the

supplied constraints which represent other individual design variables and which account for their

design requirements, as described earlier, collective influence. For example, in a ship the hull

girder deflection depends on the moment of inertia of
The basic theory and methodology of SHIPOPT is the ship's cross section, 1, and the maximum hull

presented in reference [3], and the performance of the girder stresses (which occur in the deck and in the

program is demonstrated in reference [2] in which it is bottom) depend on the section modulus, Z -I/y. Both I

used for the design of a 100,000 ton segregated ballast and Z can be expressed in terms of the cross sectional

tanker and a 140,000 ton bulk carrier. These are very area of the substructures which comprise the ship's

large structural optimization problems; for example, cross section. Hence the constraints relating to hull

the segregated ballast tanker involved 168 design girder deflection or stresses can be expressed in terms

variables, 1080constraints of which approximately half of these areas, which are few in number, rather than as

were nonlinear, and a nonlinear objective function a function of the many individual design variables.

(least cost). SHIPOPT achieved the least cost design in
five minutes of computer time on an IBM 370/158 The existence of these two distinct levels-

8(approximately $60 at commercial rates). In this test overall and substructure -in the structural response

problem all of the design particulars (ship dimensions, and in the limit states makes it possible to divide the

general arrangements, loading conditions, etc.) were the optimization problem into several smaller problems,

same as for an actual current practice design. The one at the overall level and one for each of the sub-

design produced by SHIPOPT had a 6% lower structural structures. The first problem contains all of the over-

cost than the current practice design, which for a vessel all constraints, and the design variables are whichever

of this size represents a cost savings of over $1 million, substructure variables are appropriate for those

Also SHIPOPT gives a dramatic savings in design time, constraints. Each substructure problem contains all of

reducing it to manhours instead of manweeks, and it the constraints relating to that substructure, either as

gives the designer far more power and flexibility, a whole or to its component members, plus a set of

allowing, for example, a much wider investigation of constraints which require that the values of the sub-

* design alternatives. structure variables for that substructure, which are

known functions of the individual design variables,

4. Dual Level Optimization of Large Structures must not decrease below the values which were determined
in the first problem. The design variables are optim-

In structural optimization the objective function ized and the corresponding values of the substructure

usually depends on all of the design variables, and some variables are calculated. When all of the substructures

of the constraints may also depend on a large number of have been optimized the first problem is repeated, with

design variables because of interactions among the the additional constraints that the substructure

various members, either in the structural response (e.g. variables cannot decrease below the values corresponding

a load effect might be a function of many design to the optimum solution of the substructure problems.

variables) or in the limit states (a limit value might Then each of the substructures isagain optlinzed,wth the

be a function of many design variables). However, for ne values of the substructure variables replacing the
a structure having over 100 design variables and over old values. This process is repeated until convergence.

500 nonlinear constraints, together with a nonlinear

objective function, it is simply not possible to This dual level formulation is utilized in SHIPOPT
express these constraints as functions of all of the and recent tests on realistic full scale ship designs

design variables because the problem size and the have shown it to be very successful. The manner of

computation required would be prohibitive, even for a implementation and the test results have not been

very rapid and efficient optimization algorithm. previously published, and that is the main purpose of

Therefore, in addition to an efficient optimization this paper. The structure chosen for the test problem

algorithm it is also necessary to have a method for is a naval destroyer because naval vessels involve

formulating the optimization problem which takes account some nonlinear constraints at the overall level which

of the interactions, both in the response and in the do not occur with comsercial vessels. Also, in naval

limit states, and yet avoids excessive computation. design the objective is maximum mission capability,

This may be achieved by taking advantage of the fact which is a more complex objective than least cost.

that for most large structures there are three distinct The remainder of the paper consists of three sections

levels of response and also of limit states: overall, and an appendix:

substructure and member. An overall response or limit
state involves the structure as a whole, and a sub- • an explanation of the special aspects of naval

structure response or limit state involves a group of structural design.

members. For example, at the overall level a ship

structure is essentially a box bean or girder (the hulZ * a suemary of the benefits of a rationally-

girder) and the predominant structural response is based method, and the results of a SHIPOPT

bending of the hull girder in the vertical plane. This design of a destroyer, for which the design

hull girder bending has two components: a static (or specifications were the same as for an actual,

"stillwater") couponent caused by the unequal longitud- current practice design.

inal distribution of weight and buoyancy along the ship's

length, and a dynamic component caused by the waves which 0 in the appendix, a description of how the

the ship encounters. The resulting load effects at the optimization strategy is implemented in

overall level are the hull girder bending stresses (both SHIPOPT.

stillwater, ag, and wave-induced, 0.) and hull girder

deflection.
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5. Special Features of Naval Structural Design The situation is illustrated in Figure 1, in which
the coordinates are the three main aspects: weight,

Minimization of Weight and Vertical Centroid VCG and fabrication cost. The curved surface represents
the combined and net effect of all of the constraints.

In the optimum design of commercial ships the It is actually an irregular surface -it is the outer

objective is profitability, which is influenced by envelope of all of the many individual constraints,

structure mainly through initial cost. Hence for these each of which is itself a surface consisting of the

ships the appropriate objective is least cost. For lowest possible combinations of weight, VCG and cost

naval ships the objective is to obtain the maximum which just satisfy the requirements of that particular

possible mission capability over the life of the ship, constraint. In different regions of the design space

subject to budget limitations. Thus cost is here a different constraints are the outermost or "active"

constraint instead of an objective. The two aspects constraints. Any point in the design space which does
of a structural design which have the greatest not penetrate below this surface is a feasible design,

influence on mission capability are the weight of the and any point actually on the surface is an optimum
structure and its vertical center of gravity (VCG): design. The surface indicates what sort of tradeoffs

are available to the designer.

* weight savings permits either a higher
speed or more mission-related equipment For example, by raising the height of the strength deck
(weapons, sensors, etc.) or increased or increasing its thickness the designer may achieve a
range and endurance, or some combination lower overall weight at no extra fabrication cost, but
of these. incur a higher VCG. Alternatively if he is willing to

pay more for a more sophisticated and intricate
* a low VCG of the hull structure is of structural arrangement (more stiffeners and thinner

great benefit since most of the plating) he can achieve a lower weight, or a lower
important weapons and sensor systems VCG, or both . The choice of which tradeoff to make
involve large topside weight. In fact, and the selection of the final optimum combination must
the provision of adequate stability is be left to the designer because this depends entirely
often the limiting factor on the number on the particular mission requirements, cost limitat-
or size of such systems, particularly as ions and other design requirements and priorities.
a vessel gets older and it becomes
necessary to fit more modern systems. The objective function U is a combination of

These objectives tend to produce a structure which weight W and VCG in the form

is sore intricate and involves less material. Hence VCG
for naval vessels the structural cost (that is, the U - -~o + VC- (1)

cost which is attributable to structure and is a W0  VCG0
function of the structural design variables) is mainly
fabrication cost; the material cost is much smaller where Wo and VCGo are the weight and VCG of a previous
and, for a given material, it has little influence in design of approximately the same size, in which the VCG

determining final optimum design*. Thus naval design is at a satisfactory height. The value of the parameter

involves a tradeoff between weight, VCG and X is then determined by making a few trial optimizat-

fabrication cost. The designer seeks to determine the ions, starting with X- 1 and adjusting X until the

number, arrangement and size of structural members resulting optimal design has a satisfactory VCG. If the

which will give the lowest possible weight and VCG, previous design was smaller or if it is desired to

subject to cost limitations and to a variety of other achieve a lower VCG X should be increased.

constraints requiring satisfactory strength, reliability,
endurance and functioning of the vessel. The constraint
on cost is somewhat different from the other constraints.
Rather than being an absolute limit it is a somewhat
elastic barrier in which the rigidity of the resistance WEIGHT
to further increase In cost depends on the cost/benefit
ratio -i.e. how much benefit the increase in cost will
yield. Nevertheless, besides the cost/benefit type of OUTER ENVELOPE
constraint, there is often an absolute upper limit on OF CONSTRANT

total cost.

EXTRA COST

* The possibility of using a very expensive material •
such as titanium would be investigated by making a vcG
separate optimm design using that material and
then j dgin g hethe r the wet~ht/VCG avin gs wsFG M ESG P C
worth the extra coat. FIGURE 1 DESIGN SPACE
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Special Overall Structural Constraints 6. Sample Benefits of Rationally-Based
Design of Naval Hulls

Besides the usual constraints guarding against As shown above, naval structural design involves
structural failure, naval vessels must also satisfy several complex and difficult aspects and hence a
two structural requirements at the overall level which raona ly-bas d dinimet can o eneft
do not arise for commercial vessels. Firstly there is rationally-based design method can be of great benefit.

a limit on the amount of hull girder deflection because Current designs are the result of a long evolutionary

the weapons tracking and guidance systems impose a process of gradual improvement and have now reached

limit on the relative angular deflection e between the approximate limit of what can be achieved by

various points along the ship length; for example, from current practice methods. These methods involve the

the inertial navigation set to the aft missile following features:

launcher, as shown in Figure 2. Because of their
slender shape and their lightweight construction (which empirical design codes based on accumulated
is accentuated by least weight optimization) naval experience
vessels tend to be relatively flexible and so the
constraint on e can be of fundamental importance in two-dimensional structural analysis; no
the design. finite element analysis as part of

preliminary design

Secondly, the slender proportions and lightweight
construction of these ships cause the hull girder approximate formulas for limit values; no

bending stress to be correspondingly larger. The wave- nonlinear computer-based limit state

induced portion, ow, is cyclic, and in a ship's life- analysis

time it undergoes approximately 108 cycles. Therefore
a larger value of ow increases the possibility of a very limited optimization - least weight
fatigue failure in the deck or bottom, where aw is only, few design variables.
maximum. The use of high yield steel does not
alleviate the problem because the fatigue character- Further improvements in naval ship structures can

istics of steel are relatively unaffected by the value only be achieved by adopting a more powerful and

of yield stress. Therefore in naval vessels it is rationally-based design method. This section presents

necessary to impose a strict upper limit on M,. a brief outline and some sample values of the improve-

Although in principle this same limit applies to ments in weight and VCG which are possible. The

commercial vessels, they are usually much less slender numerical results given here are from a small design

and also, since they are designed for least cost study which was performed with SHIPOPT in order to

rather than least weight, the optimum design is much illustrate and quantify some of the benefits which

heavier, involving thicker plating and fewer rationally-based design can provide for naval vessels.

stiffeners. This gives a much larger hull girder In order to make the study as realistic as possible it

section modulus Z, and a corresponding decrease in was based on the same design specifications (ship

usually bringing It well below the fatigue limit, dimensions, general arrangement, loading conditions,
etc.) as for an actual, current practice destroyer

In these two constraints the quantities involved, design, and the quoted savings in weight and VCG are in

8 and o , are a property of the ship as a whole, in comparison to this design. In order to guarantee a

its hull girder level of response; they are not related fair comparison the precise structural dimensions of

to any particular substructure or member. Therefore, the actual design were used as the starting values in

unlike the constraints dealing with structural failure the SUIPOPT program and hence all quantities, including

of substructures or of members, these constraints weight and VCG, were calculated in the same manner for

cannot be dealt with at the substructure level. They both designs. Also, whenever an approximation or

must be dealt with at the overall level and must be assumption was required it was made in such a way as to

expressed in such a way that their dependency on the favor the current practice design.

design variables throughout the structure is
accurately accounted for. This can be achieved with- The percentage savings of the rationally-based
out generating an excessively large problem by using design method and its other performance statistics are t

substructure variables and the dual level formulation quoted herein because it is these values which are

outlined earlier. The particular manner in which this required in order to assess the performance of the

is done in SHIPOPT is described in the Appendix. method. The detailed specifications of the actual
design are not required for this purpose, and although

it9

FIG. 2 RELATIVE ANGULAR DEFLECTION OF HULL
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they are not classified information they are not given accuracy by the prismatic beam theory on which the
here because of normal design confidentiality. It is current design method is based. Even a modified beam
expected that a more complete report will be published theory which attempts to account for the different
in future, after further studies have been completed radius of (bending) curvature of the superstructure is
and decisions have been made regarding the information not sufficiently accurate. The problem is essentially
to be published. three-dimensional, and only a method which includes a

three-dimensional analysis can deal with it adequately.
For purposes of explanation the benefits of using The effect of the superstructure and the savings which

a rationally-based method are presented as three can be achieved by allowing for it will be investigated

separate stages, but they can be obtained in any order in a further design study.
or combination. Firstly there is a savings in weight
and VCG simply because of the greater accuracy of the
rationally-based method. In current practice design
both the load effects and the limit values of the load ACKNOWLEDGEMENTS
effects are only known approximately, and therefore so
also are the margins between them. To help prevent the r hn afor reprl the SndPOP ata and
actual margin from becoming less than the required r. Joas Donovan for preparing the SHIPOPT data and
margin (which allows for genuine and unavoidable other assistance in the design study, and to Mrs.
uncertainties such as wave loads) the design margin is Loyce Dalloway for typing the paper. Thanks are also

made larger than is actually required. But in due to Dr. John Gergin, Director of the UNSW Computing

rationally-based design the actual margin is known and Services Unit, and to his staff.

so it can be set to the required value rather than an
inflated value. The result is illustrated in Figure 3, REFERENCES
which is an enlargement of Figure 1. Point A
represents a current practice design. The calculation I. Mistree, F., Hughes, O.F. and Phuoc, H.B., "An
and use of actual margins gives an immediate savings Optimization Method for the Design of Large,
In structural weight, and the improved (in fact, Highly Constrained Complex Systems", Engineering
optimal) distribution of material gives a reduction in Optimization, Vol. 5, No. 3, August 1981.
VCG (point B in the figure). Both savings can be
achieved with no additional fabrication cost. In the 2. Liu, D., Hughes, O.F. and Mahowald, J.E., "Applic-
destroyer design study the savings were 8% in weight ations of a Computer-Aided, Optimal Preliminary
and 4% in VCG. As indicated earlier the proportion Ship Structural Design Method", Trans. SNAME, 1981
between the two can be altered to any desired figure (Paper to be presented at the SNAME Annual Meeting,
by modifying the value of the parameter X in the November 1981).
objective function.

3. Hughes, O.F., Mistree, F. and lanid, V., "A
But these savings are just the start; the designer Practical Method for the Rational Design of Ship

can also investigate the question of cost. He can ease Structures", J. Ship Research. Vol. 24, No. 2,
some or all of the cost constraints, which would then June 1980, pp 101-113.
allow more intricate and efficient (but costlier)
structural arrangements and proportions (point C in
Figure 3). The most common example is an increase in
the number of stiffeners and a decrease in plate
thickness. In the SHIPOPT program the new optimum
arrangements and proportions are calculated imediately,
as soon as the designer supplies the modified cost BETTER 1 OF K47ERIAL
constraints (or any other modifications). Still further
savings in weight and VCG can be obtained because with
such a versatile, rapid and inexpensive design program A
the designer can examine many other design alternativ-
es and perform parametric studies. For example he can
investigate the use of an improved steel or COST
aluminium alloy, wIth a higher yield stress or an CALCLATION
improved fatigue resistance. These changes would have AO USE FV
the effect of moving the corresponding constraint ACTUAL
surfaces (in Figure 1) closer to the origin, and if MARGINS
one of then had been an active (outermost) constraint MORE EFFICENT STRUCTURAL
for the current optimum design, then the optimal design ARRANGEMENT AND PPORTIONS
surface in that region of the design space also moves (INCREASED FABRICATION COST)
closer to the origin, and an imediate savings in B
weight and/or VCC is gained. In present day naval
vessels the fatigue constraint is one of the active
constraints and so knowing the true margin permits an (
immediate savings, and using a steel with a higher RLONWCOST
fatigue limit would permit further savings. In the BENEFITS
destroyer design study these savings have not yet been .HIGHER YIELD STRE AND
Investigated, and the 8% and 41 savings do not include MtOR SR/ [ E
these further potential savings. MORE ACCURATE VALUE OF MATERIALS

k; AND A v 11In the design study the current practice destroyer
design was found to be close to the limit on hull * ACCOUNT FOR CO U41EIN
girder deflection and in the optimized design this was OF SUPERSTRUCTU
one of the active constraints. Nevertheless it is
still possible to obtain further weight savings by
taking account of the contribution of the superstruct-
ure. In current practice design this contribution is Fla 3 BENEFITS OF RATIONALLY - BASED DESIGN
ignored because it cannot be calculated with sufficient
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The hull girder collapse constraints can be
APPENDIX classified according to the type of load effect which

is involved: the total hull girder bending stress,
Implementation of Dual Level Optimization in SHIPOPT Ohg; the wave-induced stress, aw; and the transverse

loads due to external fluid pressure and internal
In SHIPOPT the principal type of substructure is loads: cargo, fuel, stores, ship steelweight, etc.

a "strake", that is, a row of panels and transverse The following four subsections give a brief summary of
frame segments and an adjacent longitudinal girder, if these three types of collapse constraints, and the
there is one, extending in the longitudinal direction, other hull girder constraint arising from the limit on
as shown in Figure 4. This type of substructure is hull girder deflection.
large enough to encompass nearly all types of struct-
ural failure and other types of limit state; in other
words, most limit states do not involve a larger (1) Collapse due to total hull girder stress
extent of structure than a strake, and therefore the
majority of the constraints can be dealt with at the The total hull girder stress 

%
g can cause

strake level. Also, this type of substructure contains collapse of a strake either in tension, by tensile
many regular and identical members. A group of yield or direct fracture, or in compression, either by
identical members should always be optimized as a group, compressive yield or instability (and usually by a
and for each limit state the constraint is formulated combination of these two). In the first three cases
for the member which has the lowest margin. The total the limit value (Ohg)L is a material property; if in-
number of constraints per substructure is then the sum stability is involved the limit value is also a
of the number of constraints for each different member function of the individual design variables of that
in that substructure. This approach is not limited to strake. For each type of instability the dependency
strakes; it can be applied to any substructure such as can be simplified and expressed in terms of a few
a transverse bulkhead, substructure variables (or strake variables, in this

case). As explained in Section 4, for constraints
The limit states which cannot be dealt with at the relating to hull girder stress ah the appropriate

strake level are those relating to structural failure strake variables are the cross sectional areas of the
of the hull girder and any other limits on a hull flange strakes; for convenience these will be denoted
girder load effect, such as the limit on relative as a vector, As, and the symbol ahg(As) indicates the

angular deflection, e. Structural failure of the hull dependency of ahg on these areas. Using these symbols
girder is defined as collapse of either of its the constraints against collapse caused by ahg are of

"flanges"; i.e. either the strength deck or the bottom, the form
In most cases each flange consists of only two or three
strakes, all of which have approximately the same Ohg(As) 4 (Ohg)L (2)

ultimate strength. Thus if any one of them collapsed
the resulting overload on the others would usually where in each case (Ohg)L is the limit value for the

cause them to collapse also. Hence the collapse of a particular type of collapse.
flange strake should be classified as hull girder
collapse. There are also multi-strake modes of hull If the superstructure's contribution is being

girder collapse caused by the formation of a collapse disregarded then the dependency of ahg on A. can be

mechanism in the transverse framing of the flange expressed in terms of the hull girder section modulus,

strakes. It will be shown below that by making a Z(As). The expression is
slightly conservative approximation it is possible to
deal with this type of hull girder collapse at the 

0
hg = /z(As) (3)

strake level.
in which H is the characteristic or design value of

hull girder bending moment, which allows for the

statistical distribution of bending moment over a ship's
lifetime. The general form of the constraints becomes

Y' Tnsvers Z(As) > /(Ohg
)L  (4)

If the superstructure is being counted the value

/ of ch is obtained from the finite element analysis of
the hll girder, with H as the applied bending moment.

- -7 / , The dependency of 
0
hg on A. is obtained numerically,

by a systematic perturbation of each value of As.

The form of each constraint is as given in eq. (2).

ria. 4 DfFlIrl7oN or 7-A,4KE
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(2) Cumulative fatigue failure due to wave-induced (4) Limit on hull girder relative angular deflection

stress
If the contribution of the superstructure is not

Over its lifetime a ship encounters a wide range counted the relative angular deflection between two

of values of wave-induced bending moment, M.w , each of points along the hull girder separated by a distance

which occurs for a different number of cycles. I is given to a good approximation by

This distribution can be characterized by 1f C
a characteristic value, Kw, such as the value of M. C (9)
corresponding to N =10f cycles. In the fatigue EI(A 5) 0  EI(A5 )

constraint the value of wave-induced bending stress is
0
w , the value resulting from N.,. If the superstructure in which I(.) is the average value of hull girder
is ignored then of inertia, which is a function of the strake

is given by cross sectional areas, As. Since C/E is a constant

(say CI) the constraint that e not exceed the limit
a- w /Z(A.) (5) value OL may be written as

and the fatigue constraint is of the form (0

Z(A,) > gw/(a,)L (6) VL

If the superstructure is counted it is necessary
in which (&w)L is the limit value of ow for a partic- to use a transformed hull girder cross section with
ular steel. This value is established by fatigue moment of inertia Itr and a further correction,
tests. Since fatigue failure is the result of accumul- obtained by means of a finite element analysis of the
ated fatigue damage the tests must take into account combined hull and superstructure, which allows for the
the complete range of ow . non-prismatic nature of this new hull girder. As with

If the sis being taken into account the other constraints this is merely an added compl-
t f ication; it does not create any obstacle to the

the value of ow is obtained from the finite element
analysis of the hull girder, with P. as the applied formulation and solution of the overall optimization

bending moment. The dependency of &w on As is again problem. Hence from this point on we shall ignore
the superstructure. It was also ignored in the design

constraint is then study described in Section 6 because current practice
design does not account for it, and the purpose of

Ow(A) 'C (&w)L (7) the study was to compare a rationally-based optimum
design with a current practice design, using the same

(3) Collapse due to transverse loads design specifications.

Collapse of the hull girder can also occur due to Formulation of the Overall Optimization Problem

the formation of a mechanism in the transverse framing The three sets of hull girder constraints are
which supports the flange strakes. The mechanism may gi e by eq s ) (6) an d 0 Es4and ()o

be caused by plastic hinges or by flexural-torsional given by eqs. (4), (6) and (10). Eqs. (4) and (6) both

buckling of the framing. In this type of collapse the apply to section modulus Z(As) and therefore it is

principal load effect is the bending moment in the only necessary to use whichever of them has the larger
transverse frames, and the strke variables are the right hand side, which is the required value of section
plastic section modulus Z modulus, ZR. Likewise in eq. (10) the right hand side

platicsetio mduls pf and moment of inertia If is the required value of 1, demoted as IR. The
of each of these frames. A mechanism due to plastic obecie fuion isl h of eq dexted in
hinges may involve more than one strake but flexural- objective function is that of eq. (1) expressed in

torsional buckling does not, and this type of terms of strake areas A 8 . The overall optimization

mechanism can be triggered by the formation of just one problem is then:

or two plastic hinges. Therefore, in order to simplify
matters and to be slightly conservative, collapse of Determine the vlue of As which give the

the framing is defined as either flexural-torsional nolinear constraints

buckling within any stroke or the formation of one

plastic hinge in any strake. The occurrence of either Z(As)  0 ZR
of these two failures within a flange strake is regard-
ed as hull girder collapse. This approach gives rise
to two constraints for each flange strake, of the form I(4) >

and the constraints on each strake area Asi

Zpf • Hf/0y (8a) arising from the individual strake optimizat-

Ncr(If) > Hf (8b) ion problem for strake i

in which Hf is the maximum frame bending moment in Asi > (Avi)R i -,'...n

that strake, icr(If) is the critical bending moment where n is the number of hull girder flange
for flexural-torsional buckling as a function of If wtre nd is the r er lng

and ay is the yield stress. This approach has the strokes and (ps R is the stroke area resulting

enormous advantage that each pair of constraints obtained in the previous set of atrake

relates only to its own strake and therefore all of the optinin prevlems

constraints corresponding to eq. (8) can be dealt with optimization problem.

at the strke level; they do not need to be included in In a typical ship structure there are seldom more
the overall, or hull girder, optiisatio problem, than eight or ten flange strakes, and so the above

problem is solved by SLIP2 in negligible computer time
(approximstely I second on a CDC Cyber 171).
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S ummarr design. Till early seventies these studies
were, by and large, restricted to a fixed

This paper addresses itself to the auto- geometry of structure. Of late attention is
mated optimum design of transmission line rightly directed towards configuration opti-
towers, modelled as a space truss in dynamic mization (1-5). However, the studies on con-
response regime. The basic thrust of the in- figuration optimization, so far, have been
vestigation is to achieve the optimum confi- restricted to static behaviour of structures.
guration of the tower. The objective is to A detailed study on optimum configuration of
minimize the total weight of the tower inclu- transmission line towers, under static beha-
ding the weight of the secondary members. The viour, i.e., using static loading patterns
design variables chosen in the present work prescribed by design standards, has been
are the base width and the panel heights in carried out and reported by the authors (6).
the body of the tower,_-The weight minimiza- The present study is directed to achieve the
tion is carried out silboect to the limita- optimum configuration of the tower in the dy-
tions on dynamic stresses-in the individual namic response regime. The tower is modelled
members and the requirements of overall com- as a space truss. The dynamic response is
patibility of the tower configuration. The assumed to be linear with or without damping.
optimum design problem is formulated as an A time dependent forcing function similar to
unconstrained minimization problem. All the the one used in Ref. (7) has been considered
constraints are handled implicitly. This is to model the wind load in the present work.
necessitated since the objective function is The design variables chosen are the base width
not an explicit function of design variables, and the panel heights in the body of the
Powell's method has been used which turns out tower.
to be the obvious choice for seeking the
solution of such unconstrained minimization
problems. Dynamic analysis of the transmi- Formulation of Optimum Desixn Problem
ssion line tower is carried out through modal
superposition technique. Subspace iteration The general structural optimization pro-
method is used for the extraction of eigen- blem can be stated as follows
pairs. Optimization study is carried out for
15m, 20a and 25m body heights of transmission Minimize f(T) ()
line towers under time dependent wind loading.
The sensitivity of optimum design to the Subject to gj(1) 5 bji J=1,2, ... ,m (2)
damping coefficient is also studied in the
present work. -Some of the salient conclusions dd(1) di(u)
of the present study are : (1) rigorous dyna- and di _ i=1,2, ...,n (3)
mic analysis under wind load should be
carried out to obtain more realistic response where
prediction of transmission line tower as f represents the objective function
against the conventional practice of consi-
dering equivalent static wind load; (2) the - is the vector of design variables
optimum configuration of the tower is more gj is the constraint function
sensitive to dynamic loads as compared to the
one obtained by merely considering only the b4  is the known value corresponding
static behaviour; (3) the optimum configura- to the j-th constraint
tion of the tower corresponds to bottom-most and
panel to be 3.5m high, top-most panel to be dil) and di (u are respectively the
2.0 a high, intermediate panels interpolated i
in between and the base width varying with lower and upper bounds on the design
the height of the tower body; and (4) the variables.
optimum configuration of the tower is insen-
sitive to the admissible changes in the damp-
ing coefficient. Desia Variables

The geometry of the basket portion ofJariugion the transmission tower is specified from ele-
e u r i m tctrical considerations. Hence this portion

The enormous increase in the amount of of the tower geometry is of no consequence to
electrical energy to be transmitted coupled the present work. Therefore, structurally it
with higher and higher Voltage of transmissioan is only the geometry below the bottom cross
has focussed attention to the optimum design arm, i.e., body of the tower, which can be
of transmission line towers. Sixties wit- optimized. The configuration of the tower
nessed enough success in optimum structural body is defined from the ensiona of the
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base, number of panels and the height of each where
panel. The base of the tower, in general, is
square in plan. This, therefore, introduces = unit weight of material
only one design variable, viz. the width of ii = length of members in group i, (all
the base. The number of panels being inte- leg members/diagonals in a panel
gers, its incorporation as a design variable 3ymmetrically located about the tower
leads to a mixed integer programming problem; axis form a group)
the solution to which is not easy to obtain. A. = area of members in group i
Therefore, it has been dropped from the set 1

of design variables in the present work. How- ni = number of members in group i
ever, a parametric study has been carried out and
to study the influence of number of panels on
the optimum configuration of the tower (6). n = number of groups which is the sum of
Thus the design variables chosen in the pre- the groups of primary as well ns
sent work are the 'base width of the tower and secondary members.
the panel heights of the tower body, Fig. 1,
to generate an optimum configuration. It is to be noted that i i and Ai are implicit

functions of the design variables, chosen in

T the prcent work.

Constraints

Basket The minimum weight design of the tower
(fixedgeometryl is to be constrained in a manner such that at

no point on the structure the displacement
exceeds a specified upper bound, as well as
the stress remains below the permissible
value in the time domain. Moreover, the na-
tural frequencies of the structure should be
away from the resonant frequency (9). Further-
more, the panel heights should add up to the

dspecified body height of the tower. Needless
to mention that the base width and panel± heights should be positive values. However,

12  no upper bound limit on the design variables
is imposed.

While considering the linear dynamic
T analysis of the tower, consideration of dis-d-2  placement constraint together with stress

+- constraint is redundant unless stability con-
dn -i siderations warrant it. Study on the stabi-lity of optimum configuration of the tower(6)

has obviated the need. The dynamic stress
constraint can be easily accounted for,while
designing the members of the tower. There-

dn -- f fore, considerations of dynamic displacement
and dynamic stress do not impose any explicit

Fiq. Design voriables constraints on the optimum design formulation.

The time dependent forcing functionAvailable angle sections are used for corresponding to wind load, being aperiodic
the members of the tower. While designing the in nature eliminates the necessity of consi-
members, section having an area close to the derin constraints on natural frequencies of
required one is picked up which satisfies all the tower. Thus, the formulated optimum de-
the stipulations of the design standard (8). sign problem has only one explicit constraint
Therefore, the cross sectional variables do to satisfy which can be stated as
not appear explicity in the formulation of
the optimum design of tower. dI + d 2 + ... + dni + hNp = constant (5)

Objective Function where di is the height of i-th panel from the
top of the body and hNp is height of bottom

The goal of the present work is to study most panel in the body. To handle this con-
the effect of panel heights and the base straint implicity, only the first (NP - 1)
width on the minimum weight of the tower.This panel heights are taken as variables, makingis justified because towers are made-up of the bottom-most panel dependent on the height
only one material and their fabrication and of the other panels. Thus the formulated con-
erection cost goes on tonnage basis. Hence, figuration optimization of the transmission
the objective function, f, representing the line tower turns out to be an unconstrained
total weight of tower, is minimized in the minimization problem.
present work. It can be stated as

f i A ni , i=1 to n (4)
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4

Method of Optimization The eigenvalue problem, Eq.(7), is sol-

Several'dmethods are available for s01- ved using subspace iteration method (13).Seveal'methds re aailble or ol- First six eigenpairs are extracted in the
ving the resulting unconstrained minimization rst wir rs renextrae in me
problem. However, the nature of the problem present work resulting in the following mode
makes the choice limited. In the present for- sapes (14)
mulation, the function to be minimized is not 1. First bending mode in the transverse
an explicit function of design variables and, direction
therefore, the evaluation of gradient in 2. First bending mode in the lorgitudinal
close form is not possible. An estimate to
the gradient can, however, be made using
finite difference technique. This, apart 3. First torsional mode
from the time required for additional number
0' furction evaluations, may not be an accu-
rate estimate, since the available angle 5. Second bending mode in the transverse
sections (10) that are used for the mem~bers direction
or the tower are discrete in nature resulting 6. Second bending node in the longitudinal
into the discontinuity of the function. Hence direction
non-gradient method is the best choice for
the problem formulated in the present work.

Amon- the non-gradient methods, Powells Table I Bigenvalues of A Transmission Line

method (I) is the most widely used search Tower
method since it is quadratically convergent.
Therefore, Powells method is chosen in the Mode No. Eigenvelue, W 2
present work for the unconstrained minimiza- (rad2/ 2)
tion. The details of the method are well ( see
documented in literature (12). For one-
dimensional minimization, quadratic interpo- 1. 691.39
lation technique (12) has been used.

2. 710.83
QYnamic Analysis 3. 1230.15

The tower is modelled as a space truss, 4. 6001.15
having pin connected joints. The discrete
element method of structural analysis is used
in the present work. The matrix formulation 5. 7042.81
of the general structural dynamic response 6. 8033.55
problem results in the equation

Table 1 presents the corresponding eigenvalues
where M,C and K are, respectively, the master of a typical transmission line tower, having
mass, damping and the stiffness matrices of 15m body height, with 6 panels in the body
the structure and their order nf corresponds and 4.33m base width.
to the elastic degrees of freedom of .he Making the transformation
system. The vectors-, 4and rrepresent the -V.- .0--
displacement, velocity, acceleration of the u = q q (8)
lumped masses at the panel joints and-3(t) is
the external load. The stiffness matrix is where - = ,P2,93, ... , and p in many
assembled from the corresponding element ma-
trices of the members. The diagonal mass ma- practl al situation s n taken to be considera-
trix M is obtained by lumping the masses of bly less than nf as an approximation to save
the members at panel joints. The elements of computational effort. The equilibrium equa-
the C matrix are considered to be linear com- tions, Bq.(6), become, in view of the ortho-
binations of corresponding elements of K and normality of eigenvectors, as• M ma tr ie . t + -Iq- ^ 2- T-

The two distinct phases of the dynamic
analysis are : (1) an sigenvalue analysis of in which A = yT C 9 turns out to be diago-
the structural model and (2) computation of nal. Eq. (9) consists of p uncoupled equa-
the dynamic response. The eigenvalue problem tions each one corresponding to a single
given by degree-of-freedom which can readily be solved

K= 2 N7 (15).K W T(7)
is obtained by substituting u-u= inw(t-to) The wind load function, pi(t) at the
and assuming the system to be undamped. The i-th degree of freedom is expressed as

nf eigenvalues, ), give the natural frequen- P(t) -Fi fi(t) (I0)
cies of the te and the corresponding
eigenveoctorse represent the modes of vibra- where Fi is a constant for i-th degree of

rich. freedom, being the maximum value of pi(t).The
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time function, fi(t), as shown in Fig. 2, is modal participation factor is given as
same as that considered in Ref. (7). The n
other loads on the tower, viz. the broken 2
wire loads and dead loads are considered at qj,max p ij Fi(DLF)ij,ma/Wj (13)

static maximum values. The broken wire load i=I
has been calculated based on the IS recommen-
dations (8) which is the load on the cable at where (DLF),max is defined as the maximum

failure. DLF for the unit load fi(t) due to oscilla-

tions under natural frequency &J. The upper
bound on stress is computed by superimposing

- the modal contributions as,
P

aj,max JIijqj,maxl (14)
j=1

where ai, is the stress in member i due to
0

mode shape j taken as deflection vector. The
. DLF has been computed by segmentwise inte-
tgration of the function (16) shown in Fig. 2.
E- "For the static loads (DLF)max has been taken

as 1.0 in all modes.

The member forces experienced by the leg
members of the 15m, 20m and 25m body towers

O. are presented in Table 2. These are the
0 maximum value of stresses obtained by the
.C superposition of the stresses due to the

first six eigenmodes. In other words p has
been taken to be six in this case. The first

e2 7 rows in Table 2 correspond to the forces in
._h leg members in the basket portion of the

tower and the rest are in the body portion,
starting from the top. The corresponding

C member forces under static load conditions
L are also shown in the same table. It is obser-

0 ved from these results that there is an in-
sinssid puIm crease of 33 % in the maximum dynamic stress

as compared to maximum static stress in the
bottom-most members. For smaller towers,how-
ever, the increase is lesser, Table 2.

The uncoupled equation for the j-th Results and Discussion
mode, Eq. (9), turns out as Optimum design is carried out for 15m,

q (t) + 2 (t) +C2 qj(t) 20m and 25m heights of tower body. The opti-
Sqj ~ qmum configuration design obtained under sta-

nf tic leds, presented in an earlier paper (6),
nf is taken as the starting point for the present

= ?ij Fi fi(t) (11) study in each case.
i =1 In order to find a usable search dire-

where suffix i denotes i-th degree of free- otion, a step size of 0.01 has been used, to
dom, check whether the function decreases along a

is the fraction of critical given direction. After the usable direction
is obtained, objective function values are

damping evaluated at intervals of 0.3, 0.6, 0.9,
and Or at 0.3/2, 0.3/4, 0.3/8, .... depending

upon the situation to bracket the minimum.
i-th component of the j-th mode shape Then the minimum along this direction within
v vctor, the bracketed range is located through succe-

acive quadratic fits.
Assuming initial conditions to be zero, the

solution of Eq. (11) is given (15) as The first (n-1) variables of the design
2tnf %J ? r t -).(t_,) vector correspond to panel heights starting

q'jt) 2 F f(s) J from top and the n-th design variable corres-
i= 2 LmJd 0 pond to the bass width (Fig. 1). Hence, to

i start with, in the first cycle in Powell's
aethodp the routine finds a better base width

sin Cjd(t-)dr] (12) locallY, oes on to panel heights, once again
along base width and then moves along the

The expression inside square brackets in the pattern direction.

above equation is the Dynamic Load Factor(JLF). Taking the aximum value of DLF, the The optimization process is terminated
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Table 2 Member Force (ton) in the Legs Under Static and Dynamic Loading

Leg member 15m body, 6 panels 20m body, 8 panels 25m body, 10 pinels
number in the body in the body n the body
starting Static Dynamic Static Dynamic Static Dynamic
from top analysis analysis analysis analysis analysis analysis

1. 7.220 3.214 7.125 2.782 7.048 2.536

2. 10.166 7.194 10.166 6.535 10.166 6.552

3. 15.904 14.995 17.473 15.560 18.691 17.174

4. 20.855 19.106 22.098 19.420 23.039 21.044

5. 26.241 27.209 26.250 25.415 26.261 27.088

6. 34.325 35.671 34.317 34.235 34.308 35.859

7. 36.607 38.850 36.744 38.504 36.902 39.458

8. 43.555 44.764 45.267 47.450 45.847 50.290

9. 49.086 46.257 48.370 49.450 51.194 56.142

10. 50.289 48.375 52.013 50.096 52.428 57.623

11. 53.215 53.037 56.544 55.111 58.200 62.336

12. 53.939 55.841 58.817 60.291 61.115 66.045

13. 55.710 59.132 61.594 65.848 64.862 72.11.8

14. 63.159 70.311 66.842 78.651

15. 65.186 74.782 69.501 85.669

16. 71.011 91.392

17. 73.051 97.084

when the change in all design variables '.s
less than 0.001 in the search along the pa-
ttern direction.

The results of optimum design are pre- " 7

sented in Table 3 and Table 4 fo- undamped
s',stem and for a system with 2 percent damp-
ing respectively. The time taken on DFC 1090
system for one function evaluation is also
given in Table 3. The weight of tower at the 1o0

end of each iteration is plotted in Fig. 3
and Fig. 4 for undamped case and for a case
with 2 percent damping respectively.

Contrary to the results of optimum de-
sign under static loads (6), there is consi- 25"' 1,PwU4,
derable variation in the base width corres- L--- - s
ponding to the optimum tower under dynamic

loads, Table 3. Optimum base width increases
for increasing height of the tower body.Under 0
static loads the optimum base width (6) was U
observed to be around 4.0m for all the towcrt ,
considered herein. Thus, for a realistic op- - S.-.---m a Pau ,
timum configuration design of transmission 7D714,95
line towers, considerations in the dynamic -

response regime seem to be inevitable.

From Table 3, it is observed that the 3-3
optimum base width varies from 4.34m to 5.49m
when the towers are assumed to be undamped. 4o i to 1'2 it.
However, the range of optimum base width, ttotonumoor

Table 4. is 4.02m to 5.20m when 2 percent Fiq3 Woot vesus iteation (undamped)
damping is considered in each case.

The reduction in weight is maximum
corresponding to the change in the base width.
This can be observed from Fig. 3 and Fig.4 base width) is significant. The reduction in
wherein the reduction in weight in the first weight due to the changes in pnnel heights is
iteration (which corresponds to changes in relatively small.

3.0-17
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Table 3 Results of Optimization Study (Undamped Case)

15m body, 6 panels 20m body, 8 panels 25m body, 10 Pqrnels

Starting Optimum S.D. O.D. S.J. 0.1.
Design Design(S.D.) (O.). )

2.00 1.85 1.90 1.90 2.10 2.10

2.20 2.20 2.10 2.10 2.20 1.58

2.40 2.40 2.30 2.30 2.30 1.90

2.60 2.60 2.50 2.30 2.40 2.40

Panel heights(m) 2.80 2.37 2.50 2.35 2.50 2.16

3.00 3.58 2.70 2.70 2.50 2.45

2.90 2.90 2.60 2.59

3.10 3.45 2.70 3.00

2.80 2.75

2.90 3.67

Base width(m) 4.00 4.34 4.00 4.60 4.00 5.49

Lowest natural
frequency, 4) 27.756 28.926 22.348 23.349 18.033 20.679
Total weight
(kg) 3766.447 3672.028 4823.799 4714.947 7043.425 6034.063
Reeuction in
weight(percent) 2.50 2.26 14.35

CPU time for one
function evaluation 6.83 7.85 11.04
(see)

Table 4 Results of Optimization Study (2 Percent Damping)

15m body, 6 panels 20m body, 8 panels 25m body, 10 panels
S.D. O.D. S.D. O.D. S.D. 0.D.
2.00 1.10 1.90 1.90 2.10 1.31
2.20 1.30 2.10 2.10 2.20 1.84

2.40 2.10 2.30 2.30 2.30 2.31
2.60 2.72 2.50 2.50 2.40 2.40

Panel heights(m) 2.80 2.80 2.50 2.50 2.50 2.50
3.00 3.98 2.70 2.70 2.50 2.50

2.90 2.90 2.60 2.45
3.10 3.10 2.70 3.00

2.80 2.65

2.90 4.04
Base width(m) 4.00 4.02 4.00 4.30 4.00 5.20
Lowest natural
frequency,&), 27.289 27.291 21.916 22.879 17.959 20.315
Total weight
(kg.) 3688.956 3630.854 4823.799 4716.258 6598.937 5924.535
Reduction in
weight(percent) 1.57 2.23 10.2
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The study further reveals (Tables 3 and nature of available sections being used as
4) that for the minimum weight towers,number members of the tower.
of panels should be chosen such that the
height of the central panel(s) of the body Conclusions
is around 2.5m. For an optimum configuration
the panel heights are to be chosen such that The following are the salient conclusions
the top most has the smallest and the bottom based on the present study
most has the largest panel height. Optimal
panel height turns out to be 2.Oe and around 1. in order to have a realistic response
3.5m respectively for top and bottom most prediction for wind loading, considerations
panels. The intermediate panel heights may of equivalent static loads are insufficient
be varied linearly. Similar conclusions for and a rigorous dynamic analysis is inevitable.
the panel heights were arrived at during the This is more so when optimum design is the
configuration optimization study of transmi- goal.
ssion line towers under static loads (6).

2. The variation in base width has marked
It is observed, by plotting the area of effect on the optimum weigh of the tower.The

leg members along the height of optimum optimum weight is more sens tive to the base
towers under static and dynamic loads (16), width in the dynamic response regime as com-
that there Is reduction in the area of leg pared to the static case. From the results,
members coupled with increase in the base it is observed that the base widths corres-
width in each case. Reduction of the order ponding to optimum tower for 15m, 20m, and
of 31.7 percent is noted in the leg members 25m body heights are around 4.OOm, 4.30m and
of the 25m body tower, Fig.5. There is an 5.2Om respectively.
increase in the base width of this tower by
3U percent, Table 4. These observations lead 3. The number of panels in the body of the
us to conclude .at the optimum tower, in tower should be chosen such that the height
d 'ynamic regime, -'esists the dynamic loading of central panel(s) of the body is around
by increased stiffness contribution and with 2.5m. Further, the top-most panel height may
reduced inertia, be kept around 2.00m and that of bottom-most

panel around 3.5m for achieving minimum weight
A parametric study has been carried out tower. The intermediate panel heights may be

to study the effect of damping on the optimum fixed by linear interpolation of heights of
tejign. The results are presented in Table 5. top and bottom panels.
.-ro" this table, it is observed that there is
-'neral tendency of reduction in optimum 4. The reduction in the optimum weight of

weignt with increased damping. However, the the tower for the admissible changes in damp-
r -uction is negligible. Further, the redu- ing coefficient is negligible.
ci on in weight is not monotonic with increa-
sed damping. This is due to the discrete
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Table 5 Results of Optimum Design with Different Damping Ratios*

1Damping 1m body 20m body 25m body

ratio Optimum Optimum Optimum Optimum Optimum Optimum

(percent) base width weight base width weight base width weight
((kg.) (m) ( kg.)

1. 0 4.34 3674.028 4.60 4714.947 5.49 6034.063

2. 1 4.02 3616.830 4.30 4716.258 5.50 6048.663
3. 2 4.02 3630.854 4.30 4716.258 5.20 5924.535
4. 3 3.95 3668.007 4.56 4712.519 5.41 6036.838

5. 4 3.94 3617.080 3.94 4789.293 5.43 6024.327

6. 5 3.94 3593.230 4.28 4717.968 5.39 6009.267

Starting base width has been taken as 4.00m for all designs presented in this table.
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OPTIMIZATION OF MJLTIPLE SAFETY FACTORS IN STRUCTURAL DESIGNS

E. 0. Eason, J. M. Thomas, P. M. Besuner
Failure Analysis Associates
750 Welch Road, Suite 116

Palo Alto, California 94304

This paper presents a method for optimization of The present study extends the earlier work (7)-
safety factors and testing procedures to simultaneous- (8) to the practically important case where loads are
ly minimize weight and maintain acceptable reliability split into categories, each with its own safety fac-
and testing costs. A load combination rule for two tor. Such an approach has been used in weight reduc-
categories of load with different safety factors is tion efforts on the external tank for the Space Shut-
analyzed by structural reliability methods to estimate tle, and the related load factor approach is in wide-
the probability of failure as a function of the two spread use in civil engineering. The analysis con-
safety factors. As a part of this analysis, a proce- tains three basic parts: probabilistic analysis of
dure is developed for modifying published strength structural reliability, cost and weight modeling, and
distributions to reflect a successful test to a speci- design factor optimization. The probabilistic analysis
flied fraction of design ultimate load. A cost model follows standard approaches (7)-(11), except that an
is constructed including the expected cost of failure, improved method is developed for modifying the
the value of saving weight, and the cost of develop- strength distribution of previously untested struc-
ment and/or proof tests. s cost is minimized tures to reflect a successful full scale static load
numerically subject to con aints on maximum failure test. A simple cost model is developed to assess the
probability, safety factors, nd proof level. The relative importance of weight savings, changes in
results for an application to t Space Shuttle Exter- reliability, and cost of various testing schemes. The
nal Tank show that reduced wei t and reduced total cost, as calculated by this model, is then minimized
cost are possible without any sig ificant decrease in subject to a constraint on failure probability and
reliability, by increasing devel pment and testing limits on the variables, using a nonlinear minimizati-
expenditures. on computer code.

Introduction Reliability Methodology

The literature on structural optimization has Load Combination Rule

been periodically organized and surveyed over the past
two decades (1)-(5). In most cases, the work has Two broad load categories are considered in the
emphasized development of computer codes that will Space Shuttle application, well defined (thrust,
specify structural element dimensions, shapes, or pressure, inertia) and other (dynamic, thermal, and
behavior to minimize cost or weight, or maximize aerodynamic). Each category has its own safety fac-
performance and reliability. The traditional design tor, conceptually defined as
safety factors (or code requirements) often appear as
constraints on the objectives of minimum weight or v---(1)
cost, thereby Implicitly controlling reliability. 4

Some recent papers, e.g. (6), explicitly consider where v is the safety factor (v > 1), W is the predic-
reliability, but the emphasis is still to let the ted ultimate strength or resistance, and 9 is the
optimization code specify the element or structure limit load -- an upper bound or high estimate of the
design. load to be withstood in actual use. Since there are

two load categories, a load combination rule (which
actually defines v, and v2 ) is necessary. The ruleIn contrast, the present study assumes that the analyzed in this application is

elements of complex structures will be designed in the

traditional way by large groups of engineers, and the A - Vl91 + V292 (2)
reliability will be controlled by design safety fac-
tors, proof test levels, and development testing as is where subscript 1 corresponds to well defined, sub-
common practice today. A larger-scale optimization script 2 to other loads.
problem is considered to find the design safety fac-

tors, proof levels, and type of testing that will
minimize total cost. This total cost includes the This traditional definition of safety factor is
expected consequences of failure as well as develop- based on an underlying deterministic design assumption
ment costs, testing costs, and cost and performance that a given design has a predictable, single-valued
penalties associated with structural weight. Such an strength, and the maximum load it will experience is
approach has been applied to several aerospace struc- known and similarly single-valued. Probabilistic
tures by Thomas, et al. (7),(8), considering the design begins from a more realistic assumption, that
effect of various types of development testing on the both strength and load may vary between different
strength distribution in a probabilistic design ap- samples of the same design, under different applica-
proach. A single safety factor was optimized, and the tions, and at various times during the life of the
results showed a wide variation in the optimum value structure. Most of the time the sample structure will
depending on the consequences of failure and the level have nearly average strength and the loads will be
of proof and development testing. well below the limit load, so the probability of
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Figure 1 - Diagram of Load Combination Procedure and Strength Distribution.

failure for v > I will be small. However, a sample of The value of the effective safety factor depends
a given design or class of designs may fail because it on the proportions of well defined and other loads.
is under-strength, or an unusually large overload may For convenience, a parameter a is defined as the
cause average or above-average strength structures to fraction of well defined load
fail. Thus, the probabilistic approach treats a range j
or distribution of strengths and loads, as occur in a = - , 0 :a 1 (5)
practice, and attempts to control the design factors T+ 2
so that the probability of failure is acceptable With this definition, the effective safety factor is
considering the entire range of possible combinations
of strength and load. ve = v 2 + (V1 - v2 )a (6)

In practice, there will be a range of values for a atFigure 1 shows the two probability density func- different locations in the structure and at differenttions (PF) for load, fs(x), combined to form a compo- times in the launch sequence of the Space Shuttle.
site load PDF. The upper tail of this load distribu- Consequently, the cost function must be evaluated at
tion intersects with the lower tail of the strength typical values of a, while the constraints must be
distribution, fr(x), and It is In this intersection evaluated over the entire range of a.
region where load may exceed strength, resulting in
failure. The two-factor analog of Eq (1) is the Load Distributions
effective safety factor we

V131 + V2t2 For this study, the load distributions are as-
Ve - - - (3) sumed to be Gaussian. There is some theoretical1 + 92 + 9 justification for this assumption, because the load at

many points in the structure is the sum of severalwhere 91 and 92 are the limit loads of the well-de- load components, each of which may take on positive or
fined and ether distributions. The composite distri- negative values at various times during launch.
bution is obtained by probabilistic combination of the Whenever a composite distribution is the sui of many
two load distributions, summing the means and vari- independent distributions, the composite distribution
ances. The design ultimate strength I Is not the mean is Gaussian regardless of the shape of the individual
of the strength distribution; structural engineers distributions (15), provided that none of the indlvi-
typically produce designs that average somewhat stron- dual distributions dominate the composite.
ger than the predicted design ultimate (8),(12)-
(14). Figure I also shows the fact that when the
limit loads 91, t2 are three standard deviations from The load distributions are defined as a percen-
their respective means TI, T2 , their sum is not three tage of design ultimate (i.e. A - 100), using the load
standard deviations from the mean of the composite combination rule, Eq. (2), Eq. (5) and (6), the as-
load, i.e., sumption of Gaussian distribution, and the definition

of limit load as q standard deviations above the mean,
j + 2 - S + 3a (4)s( I I S (I + qjyl ) (7)

Equality holds only when there is one load component
or all components are mtually dependent and in pro- where yi is the coefficient of variation (y - a/S).
portion. It is not necessary to know the mean of the

loads T' and T2 in advance, because they can be calcu-
lated as
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I
lO 10a 2 =  100 (l-a) (8

= e (1 + q1Y1) 'e 2 (I + q2y) 8 1.0

Combining the means and standard deviations 0.8
(a = yS), the composite load distribution Is given by
Eq. (8) and

- - - I.0.6- Aircraft Dat

S =S1 + S2 
(9) 0aft Dat

2 2 1/2 0.4 Saturn V Dat
as) (2Y2) (10) 100% STA

Note that both S and a~ depend only on values of .~0.2-0 Ts~4 " r 0% STA
a, vi, qi' and y Since the range of a is known,
vi  are the design factors to be found, and qi is . ..
typically three standard deviations in aerospace O0 20 40 60 80 100 120 140 160
practice, the only problem-specific input data to the

load distribution are the values y, and Y2. The Percent of Design Ultimate
values of y and q, are treated as sensitivity studyvariables In the current Space Shuttle application. Figure 2 - Comparison of Strength Distributions. Air-

craft Data from (10), (16), Saturn V Data

Strength Distribution from (8).

The basic strength distribution data was collec- that one sample of the external tank structure (the
ted during the Saturn V program (12). Fifty struc- Structural Test Article or STA) successfully passed a
tures were tested, in most cases to failure, and the full scale test. The adjustment is performed by
failure load was expressed as a fraction of the design blending the distribution of strengths for identical
ultimate load. Many different types of structures samples of a particular strbcture, given in (16) for
were included, and the loading included the normal 341 test items
range of compression, bending, and concentrated loads
(with associated failure modes) found in rocket struc- F(x) = 1 - e(x/101.7)

25  (13)

tures. All of these tests are assumed to belong to a
single population that can best be described as pre- with the distribution of strengths for a variety of
viously untested aerospace structures, structures given by Eq. (12). The basic issue is,

what is the probability that a second (flight hard-

The Saturn V strength data compares closely over ware) sample of the tested structure will fail at or

the critical lower tall region of its distribution below strength x, given that the Structural Test

with the data collected by the Air Force Materials Article (STA) survived a test to strength Xl? In

Laboratory as reported in (10),(16). Much of that probability notation, let

data is not readily comparable because it is not
reported as a fraction of the design ultimate load. (flight hardware) fails at R5 x
However, selected results of 66 tests are reported B = the event that the first sample of the
this way in (16), including 38 tests in 7 groups that

are reported in (10). When these data are plotted design (STA) does not fail at all R < x,
together on Welbull paper, the aircraft data fits a Find

cumulative distribution: Ftnd

P(A\B) P(AnB) (14)e./0)' 1) weePB is14)B

Fx) = 1- where P(B) sfound by normalizing P(A\B) to unity

over all x.
compared to the Saturn V distribution:

F(x) = 1 - e(x/115.5)
6 4 3  (12) P(AAB) - P(AAB\v2 ) PDF(v 2 )dv 2  (15)

I where v2 is the unknown scale parameter (characteris-
Both distributions are plotted in Figure 2, where it tic strength) for the distribution of samples of a
Is apparent that there is cqose agreement up to about particular structure, to be drawn from a probability
80% of ultimate strength (the region of intersection density function, PDF(v 2 ), representing the entire
with the load distribution where most field failures class of similar structures. Note that v2 = 101.7 in
would occur). The Saturn V structures are generally Eq. (13).
more likely to withstand loads near and above the
design ultimate than the aircraft structures. P(AnB\v2) - P(B\v2 ) - PDF(A\v2 )dx , (16)

Effect of Successful Development Testing because A and B are independent events from the same

distribution, Eq. (13). This can be broken down to

It is necessary to adjust the strength distrtbu- - (x1/v2 )k2
tion of previously untested structures for the fact P(B\v2) - (17)
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k2
" - v fled distributions drop sharply near their respectivek2Fk2-1 k2 successful test levels. This is because the narrowerPDF(A\v2) X eX/2)(8

V2 V e(1 distribution for expected variation among samples of
the same design dominates in this region.

ki(v 2 ki - 1 e(v2/vl)k1 Effect of Proof Tests

The second test option considered in this study

is the proof test. The proof test is an idealizationNote Eq. (15)-(19) have been expressed in terms of the in which all load conditions are fully tested before
same-structure scale parameter v2 ; this is effectively flight to a particular percentage ro of design ulti-
an assumption that the Saturn V data is a distribution mate, and no failures occur in flight below this level
of scale parameters v2 for various structures. Be- if the test is passed. Analytically, this corresponds
cause k2 = 25 corresponds to low variability, and the to truncating the strength distribution below t
mean of the Weibull distribution is which affects the probability of flight failure as

1 discussed in the next section and introduces an expec-= v2 r(1 ) (20) ted cost of proof test failure. Assuming that the
proof test load is deterministic, the probability of

v2 can be used in place of the mean with an error that proof test falure is stimply the probability that
is practically insignificant. Thus, the Saturn data strength is below ro, given by
given by Eq. (12), which is actually a distribution of
recorded failure loads, can be interpreted as either a P(fail < ro) = Fr(ro) (25)
distribution of mean failure loads for various types
of structures or a distribution of scale parameters Failure Probability Calculations
for the sample-to-sample distribution of particular
structures.

The probability of failure at load x is equal to
the probability that the strength is below x and theCombining Eq. (14)-(19), the result is an expres- load is in a small range dx about x, i.e.

sion for the probability that strength is less than x,
given that one sample of the structure survived a test P(fail @ x) = Fr(x) fs(x) dx (26)
to load level xl:

where Fr(x) is the cumulative strength distribution
given by Eq. (21) and fs(x) is assumed to be a

P(A\B) = Fr(x) = Gaussian probability density function with parameters
given by Eq. (9), (10). The probability of flight

2 kfailure is the integral of Eq. (26) over all x above

f(le-(X /v)k2) e-(xl/v)kzvk -e(v/vl)k dv (21) the proof level ro

0

where subscript 2 has been dropped from the variable Pf = 1 f Frx (27)
of integration. The normalization constant f rFro) o r2

/v)k2 k,-1 (v/vi) k, where 1/[l-Fr(ro)] is a normalizing term for maximumc e l ev c dv (22) probability - 1. Eq. (27) is integrated numerically,
using the approximations Eq. (23) and (24) for Fr(x)

and k,= 6.43, v, - 115.5, k2 - 25 from Eq. (12) and to avoid nested numerical integrations.
(13). This expression requires numerical integration
and is somewhat clumsy to manipulate, but it can be Cost Optimization Model
conveniently and accurately approximated by a product
of Welbull functions. At x, - 100%, the result is

(1.e.(X/120.9).23)(1.¢.(x/101.9)16.1) The form of the cost model isFr.(X) = 1" xlo 9  (..~I0.) (23) aw

C " CfPf(vl,v2,ro) + CW Wt Ve + C F (r) + C (28)
while at x, - 90%, the result is fVe pr o t

Fr(x) - (1-e'(X/117")a8.82)(1-e'(X/92"4)16"3) (24) where the constants are defined as

Cf - cost of flight failure
This least-squares fit to points generated by Eq. (21) CW  - cost of launching added weight
is most accurate in the critical lower tails, yielding CP - cost of proof test failure
deviations from Eq. (21) of 1% or less in those re- Ct  = incremental direct cost, including cost of
gions. structural tests or proof tests plus cost of

re-engineering and manufacturing, less

hedistributions for successful tests to 90% and awt baseline cost for unoptimized design.
c dis tr s f u sensitivity of weight to changes in effec-

100% of design utimate are shown in Figure 2. By e tive safety factor
compariso with the Saturn V distribution, the modi-
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The model is nonlinear in the variables v1, v2 and ware is in most cases similar in configuration, dif-
ro and it depends on the ratio of well defined to fering only in dimensions. Tests are_ planned for

total load, a. The absolute values of the constants those areas where design changes are extensive or not

are less important than the relative values, which covered by the earlier tests. For the purposes of
establish the relative importance of reliability, this analysis, this procedure of testing where neces-
weight reduction, and development cost. sary and otherwise relying on the previous test is

assumed to be functionally equivalent to a 90% STA
test option.

Constraints are imposed in addition, placing

upper and lower limits on v 1 , v2, and r0 and an upper
limit on flight failure probability. These limits are In both the HWT and LWT designs, the oxygen and
based on factors not included in the model (e.g., hydrogen tanks are pressure proof tested. This cannot

fracture mechanics considerations, yield failure mode) be considered a proof test under the assumptions in

and engineering judgement, considering the systems- the Reliability Methodology section, because not all
level assumptions of the present analysis and the fact of the load conditions are proofed. That is, all

that flight failure would be life-threatening. The combinations of pressure, aerodynamic, thermal, dyna-

constraints are required to be satisfied at all values mic, thrust and inertia loading would have to be

of a. tested to the proof level to qualify as a proof test
option.

The constrained cost minimization problem can be

solved by a variety of constrained nonlinear optimiza- Selected results for a typical set of cost con-

tion codes. The functions are not analytic, because stants are shown in Figure 3. Different cost con-

of numerical integration for Pf, so it is necessary to stants and input parameters qi 9 y can change, the

choose a code that does not require analytic deriva- results. Full details and input values are presented

tives. In addition, the limits imposed on the varia- elsewhere (20). Figure 3 shows substantial weight

bles by engineering judgement are fairly tight, so a reduction from the HWT to the LWT, but not much cost

code that is based on local exploration is preferable reduction. The optimc,,t solution for the 90% STA test

to one that is based on lare-step extrapolation. option, with safety factors 1.285 on well-defined
load, 1.25 on other load, trades slightly less weight
savings for slightly greater reliability, resulting in

The chosen code PATPEN is a revised version of lower total cost. The optimum solution for 90% STA
the best algorithm in Eason's study of seventeen cooes testing plus full proof testing saves both weight and
(17). The original algorithm is due to Hooke and cost and also increases reliability slightly. The
Jeeves (18); the modifications include scaled step safety factors are 1.25 on both load categories, the
lengths, provision for scaled external penalty func-
tions for the constraints, search order permutation,
retained information on the direction of successful 2.0
exploratory steps, and many other details. The code em
has proved effective and reliable on many similar

practical problems characterized by a small number of 90% STA + Proof-.

variables and inequality constraints. 100%

Sample Application 1 5

.LWT,

The methods pres,.n!ed above have been applied to 90% STA
the external tank of the Space Shuttle. The original
design, referred to 4 HWT hereafter, performed suc-
cessfully in the first Space Shuttle flight. It was 0S

based on a safety factor of 1.4 throughout and exten- C 1.0
sive development tests, including a full-scale Struc-
tural Test Article (STA) program. In the STA program,
the most critical load combinations were tested to
full design ultimate (1.4 ) with no failures. All
loading conditions were successfully tested to at .c
least 90% of design ultimate, so this set of tests is .- ' 0.5
referred to as the 90% STA test option below.

A lighter-weight design called the LUT has been HWT. 90% STA
developed based on the results of the successful
testing program for the HWT. Several methods of 0 ,
weight reduction are being simultaneously implemented, 0 0.2 0.4 0.6
as discussed in (19), but the one of interest here Is
the use of multiple safety factors. Well-defined Total Cost Reduction, Relative Scale
loads in the LWT are subject to a 1.25 safety factor,
while other loads are subject to the original 1.4 Figure 3 - Locus of Optimized Solutions Compared to

safety factor. The testing program is considerably Original Design (HWT) and Light-Weight

less exhaustive than the HWT tests, because the hard- Design (LWT).
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minimum allowed by the constraints, and the optimum CT
proof level varies between 74% and 78% of design . ,
ultimate, depending on the subsystem.* An even better o

solution is to perform structural tests that success- .j

fully test all load combinations to at least 100% of
design ultimate. The 100% STA option assumes this is
done with no failures -- quite an achievement since in
practice some loads must be applied above the design 4 Increasing
ultimate to ensure that all load combinations reach Reliability
the 100% level. Such tests would justify a 1.25
safety factor throughout, and would give slightly
better flight reliability with less risk of proof test
failures.

The costs of the 90% STA + proof and 100% STA o
options are as close as shown in Fig. 3 primarily .

because it was assumed in the 100% STA option that 0 0

pressure proofing would still be required for the
hydrogen and oxygen tanks, so that the risk of proof
test failure is not avoided entirely in those sub-
systems. In fact, an improved strategy compared to
either 100% STA or 90% STA + proof is to combine the
two. For the hydrogen and oxygen tanks, the proof
test strategy is optimal, so it appears worthwhile to 0

expand the pressure proof test to a full static load
proof test at about 75% of desig; ultimate. In the 0 1. . 0
intertank and interface subsystems it is better to 0 0.05 0.10 0.15
perform the more stringent 100% test and avoid proof Well-Defined Coefficient of Variation, yI
testing. The result of using the best test option in
each subsystem is a significant decrease in expected Figure 4 - Sensitivity of Estimated Reliability
cost, as shown in Fig. 3. It should be recognized to Input Parameters (at a=1, v1=1.25).
that options involving decreases in expected cost
generally involve initial monetary outlays, in parti- structures that perform as predicted, and this ability

cular, additional expenditures for development and is relatively independent of application. However, it

testing. is quite possible for one group of engineers to in-
clude more or less conservative strength margins above
design ultimate, or for fabrication to be better

All of the results shown in Fig. 3 are at nominal controlled by one company than another, and the pre-
values of the inputs qt, yt and the cost coeffi- sent analysis would not reflect these differences.
cients. The sensitivity of the results to off-nominal
conditions Is also investigated in (20), with results
such ds Fig. 4. The results are rather sensitive to The second assumption is the Idealization of test

qi; for instance, if the limit load is less than 3 options. In practical tests, some load conditions are

standard deviations from the mean, the optimal safety tested to higher levels than others because of the

factors switch from V1 > V2 or v, * V2 (depending on complexity of the load paths and the extremely large
the test option) to vi < V2 , and the weight increases number of load conditions. The lower bound on test

dramatically to maintain the same reliability, level is used here for a conservative analysis, but it
is known that the loading conditions judged most

Discussion critical were applied at higher levels. Similarly, no
credit for proof tests is given unless all load condi-
tions are specifically proofed, yet the fact that the

There are several key assumptions in this analy- tanks are pressure proofed does increase their relia-
sis. First, the strength distribution is assumed to bility relative to other loads as well.
correspond closely with data from a different set of
structures. This is a necessary assumption underlying
structural reliability analyses whenever there is A third assumption is that the sensitivity of
insufficient data on the structure in question (espe- weight to safety factor changes can be modeled by a

cdally when there are neither failures in development linear AWt/61ve calculation from HWT and LWT data.

nor high-load successes in tests of the final struc- This is a necessary assumption to avoid the massive

tural configuration). The assumption is reasonable redesign effort that would be needed to obtain several

because the strength distribution effectively points on a weight vs. safety factor curve. There is
describes the ability of engineers to design and build no fundamental reason why aWt/av should be linear

over the domain of ve , but linearity is probably a
good assumption for the limited range considered.

The optimization was carried out separately for
each subsystem of th. external tank, then combined for
the results in Fig.3. Finally, many assumptions went into the model

parameters and cost constants, some of which have been
checked by sensitivity analysis. It is necessary to
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temper the conclusions of a system study such as this 8. Thomas, J M, and Hanagud, S, "Reliability-
with an awareness of these sensitivities, the Impor- Based Econometrics of Aerospace Structural
tance of imperfect knowledge, and the fiscal con- Systems: Design Criteria and Test Options,"
straints that must be considered in efforts to achieve NASA TN D-7646, Marshall Space Flight Center,
optimum design. June 1974.

Conclusions
9. Freudenthal, A M, Garrelts, J M, and Shino-

zuka, M, "The Analysis of Structural Safety,"
An approach has been presented for determining ASCE Structural Division Journal, Vol 92, No

optimum values of safety factors and test options by ST1, Feb 1966, pp 267-325.
structural reliab y analysis. An effective tech-
nique was derived i- modifying existing test data for 10. Freudenthal, A M, and Wang, P Y, "Ultimate
the fact of a successful structural test. Two load Strength Analysis of Aircraft Structures," J.
categories and safety factors were considered, and Aircraft, Vol 7, No 3, May-June 1970, pp 205-
depending on the test option and input data, the 210.
optimal values of the two safety factors could be
equal or either one larger. The most sensitive input 11. "Structural Safety - A Literature Review",
variable was found to be the number of standard devia- ASCE Structural Divison Journal, Vol 98, No
tions between the mean and limit load. Testing was ST4, April 1972, pp 845-884.
worthwhile for improving reliability, and depending on
the subsystem, the best test option could be either 12. Thomas, J M, "Statistical Determination of
enhanced development tests or proof tests. The simple Safety Factor Requirements for Untested Struc-
Hooke and Jeeves pattern search optimization code with tures from Saturn V Test Data," Research
scaled exterior penalty functions performed well on Achievements Review, Vol IV, Report No 1, NASA
this problem. TM X-64528, 1970.
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Summary Verbally this definition states that x* is Pareto op-
timal if there exists no feasible vector X which would

A general philosophy of the multicriterion approach decrease some criterion without causing a simultaneous
is presented, and Pareto optima are defined as solutions increase in at least one criterion. The notation Z* =
to the problem. A structural design problem where the f(x*) is used for the corresponding vector in the cri-
weight and some chosen nodal displacements of the struc- terion space R

m
, and it is called a minimal solution.

ture are taken as design criteria is formulated for hy- Usually several Pareto optima exist for a vector op-
perstatic trusses and plane frames. The displacement timization problem, and additional information is needed
method is applied, and limits for the stresses as well to order the Pareto optimal set. This clearly makes it
as for the member areas are imposed. Only elastic struc- possible to bring in special considerations not included
tures with constitutive and geometrical linearity are in the optimization model but yet stressed by the de-
considered. Aigner, thus making the multicriterion approach a flex-

ible technique for most design problems.

Special attention is paid to numerical techniques

for generating Pareto optima. The weighting method and Even though vector optimization goes back as far as
the constraint method as well as the minimax approach 1896 (Pareto, (IJ), a wider interest in the subject in
are presented, and two examples of structural design are such areas as optimization theory, operations research
given to illustrate the theory. Also an interactive and control theory was not aroused until the late 1960s,
method where some parameters are joined with the minimax and since then research work has been very intensive.
problem and trade-offs obtained from the Kuhn-Tucker mul- Also in structural and mechanical design problems vector
tipliers are used is introduced. In addition, graphic optimization has been treated by some authors [2] - [8]
representation of the results, which has become an im- and the multicriterion approach has now come to occupy
portant question because of the great number of Pareto an established position in solving economic problems,
optima, is discussed. but its full potential has not yet been exploited in

engineering design.
Introduction

The object of this paper is to briefly present the
During the last two decades much attention has been basic ideas of multicriterion optimization and to apply

paid to exploiting the results of mathematical op- the theory to a specific structural design problem for-
timization theory in different fields of engineering. mulated for trusses and plane frames. Special attention
Also in structural design various techniques, mainly is paid to the numerical calculation of Pareto optima,
based on nonlinear programming, have been widely used to but also an interactive method for reaching the final
handle problems with a constantly increasing number of design is introduced.
design variables and constraints. Usually a scalar-
valued objective function is optimized in a feasible set, Numerical methods for Pareto optima
and the result is then used as a guiding device in striv-
ing for the best practicable structure. In mechanical Several numerical techniques for solving a general
and structural problems, however, there often exist se- nonlinear vector optimization problem have been present-

* eral, usually conflicting, criteria to be considered by ed in the literature [9]. Usually they turn the orig-
the designer. One very promising approach to this ape- inal problem into a sequence of scalar optimization
cific topic seems to be multicriterion opti ization, problems, which may be solved by using standard nonlinear
where a vector-valued objective function is examined, programming routines. Here only three of them are pre-
The problem is then stated as sented, namely the weighting method, the constraint

T method and the minimax approach. These seem to be suit-
min f(x) = [f1 (x), f2 (x) .... ,fm(X)] , () able basic techniques to be considered in structural op-
X E m timization as well as in other fields of engineering de-

Eign.
where the components fi (x), i = 1,2 ,...,m, called cri-
teria, may be noncommensurable as well. The design vari- Weighting method
able vector x belongs to the feasible set 0 a Rn, de-
fined by equality and inequality constraints in the fol- Perhaps one of the most commonly used approaches
lowing way: to problems with several criteria is to form one scalar

objective function as a weighted sum of the criteria.
S f (X E Rn I h(x) = 0, g(x) S 0} (2) In cases where certain convexity requirements are met,

this technique may be used also in generating Pareto
Usually there exists no unique point which would optima for multicriterion problems. If the notation

give an optimum for all m criteria simultaneously. Thus A E Rm is used for the vector of weighting coefficients,
a new optimality concept, different from that used in the problem takes the form
scalar optimization, is introduced as a solution to the
vector optimization problem. min A f(x)

Definition. A vector x* E 0 is called Pareto op- X;
timal for problem (1) if and only if x E 01 and fi (x) S
fi (x*) for i 1 l,2,...,m imply that fi (x) * fi (x) for Without losing generality A can be normalized so that
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minimal curve
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minimal Scurve )idV

ZI ZI
Figure 1. Geometrical interpretation of weighting Figure 2. Geometrical interpretation of minimax approach

method in bicriterion case. The minimal point in bicriterion case. All Pareto optimaareob-
B and the corresponding Pareto optimum are tained by this method regardless of the con-
missed no matter what weights are used. vexity of the minimal curve.

the sum of its components, which are nonnegative and not the largest deflection from the so-called ideal solution
all zero, is equal to one. Now Pareto optimal solutions is minimized. By introducing certain parameters a method
can be generated by parametrically varying the weights for generating the Pareto optimal set may then be con-
Ai in the objective function. The main disadvantage of structed. First the ideal solution needed in this ap-
this technique is its incapability of producing the proach is defined by
whole Pareto optimal set for some nonconvex problems. id
This may be seen by geometrical interpretation of the z = [minf 1 (x),minf 2 (x),...,minfm(x)J 1

. (6)
weighting method in the criterion space, where the prob- xE xE Q xE m
lem may be stated as In order to determine this point in the criterion space

T it is necessary to search for the minimum of every fi in
min A z (4) 0, which calls for solving m scalar optimization prob-
z E f(Q) lems. Generally the ideal is not feasible, ie

z
i
d f(S). The distance between z E f(O) and the ideal

With a fixed A a linear function is minimized in f(R), zid E R
m 

is measured by the metric function
which is the image of the feasible set. As is -'lus-
trated in fig. 1, even the great majority of ;to id id
optima may be unattainable by this method if lower d (z,z ) = max I zi -zi(
boundary of f(Q) is not convex. i

Constraint method
Because a scale invariant solution to the problem is

As the second technique for generating Pareto optimal sol- wanted, a normalized vector objective function
utions to a multicriterion problem the costraint method T
is considered. In this approach the original formula f(x) = [ f1 (x) (Z) . . (x) T, (8)
(1) is replaced by

min fk(X) where the components are defined by

x E a nl0 (E) , f.(x) - minfi(x)
1ix 1 , 9)

where max fi(x) - rmn f ix)
k( ) = {X lfi(X) ,i i xk 1} 1

and is introduced. Thus the values of every normalized cri-
T terion are limited to an equal range, ie fi(x) E [0,1].

C EEk= {[k-1 , 2 .  k-1 ,Ck+ 1 .... ] Ok(E) 1} . If the notation i = f(x) is used, the problem is now
looking for the vector i E f(Sl) which in the se-.se of
d.-metric is nearest to the ideal jid = 0 , and it may

Verbally this states that one criterion is taken as a be formulated as
scalar objective function and the others are constrained
by the suitable chosen constants Ei . By systematic vari- min d,(i,O) . (00)
ation of these parameters the entire Pareto optimal set (
is obtained also in nonconvex cases. The constraint
method may be viewed as having an established position
as a basic numerical technique in vector optimization, One Pareto optimal point is usually obtained as a sol-
and it is widely discussed in ;hL literature. uticn to this scalar optimi '+on problem, which is

next modified to solve the multicriterion problem (I).
Minimax approach If certain parameters wi, i = 1,2,...,m, are used as

weight- for the criteria in the same way as was done in
In this section a method based on the l-norm or more the weighting method, the problem can be written in the
properly on the distance function induced by it is pre- form
sented. This approach leads to a minimax problem, where
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rin max (wi fi(x)) (11)
xE 4 i Z2

Now the whole Pareto optimal set may be generated by

parametrically varying the weights it toe tve fun,- t weakly minimal curves
tion. This method is illustrated in fig. 2, which shows
that the minimax approach may be interpreted as search-
ing for that point i* E f(2) wbere the rectangular
level set just touches fill). The corresponding vector
x* E 0 is the Pareto optimum actually needed by the de-
signer. The geometrical meaning of the weightv eriation
is changing the side ratio of the rectangle, which in .

turn may be viewed as an origo centered ball generated
by the d-metric in the criterion space. From this dis-cussion it should be clear that using the minimax ap- \

proach given in (11) all pareto optima can be obtained
regardless of the convexity of the minimal curve.

minimal curve
Several techniques for the numerical treatment of ....... .

the minimax problems have been presented in the litera-
ture, and the one chosen here is that where the scalar
problem

min Z

subject to (12) Figure 3. Minimal and weakly minimal soluisis Ii

bicriterion case.w.i ?.(x) y, i = 1,2,.a,

is considered. In the sequel this special formula is W= Fw 1,w 2, ..., wmj I wi
utilized in developing an interactive algorithm for
solving the multicriterion design problem. is used to bring in the parameters w:. Now the - -fa:;-

ily thus defined includes the weighting method ati the

General aspects minimax approach as special cases corresponging to the

values p = 1 and p = o, respectively.

Each of those three numerical techniques discussed
in this chapter includes parameters to be varied in gen- Multicriterion optimization of structures
erating Pareto optimal solutions to the multicriterion
problem (I). The geometrical interpretation of these Problem formulation

parameters facilitates the understanding of the methods
and gives a natural basis for future development con- Even though various design criteria may arize in

cerning different interactive approaches. By some para- optimizing structures for different operational pur-
meter values it may happen, however, that the constraint poses, a specific multicriterion problem where the
problem (5) has no unique solution. This is due to the weight of the structure and some chosen nodal displace-
so-called weakly Pareto optimal points, which are defined ments are taken as components of the vector objective
next. function is discussed in this paper. The same problem

has been considered earlier in truss optimization [ 6],
Definition. A vector x* E Q is called weakly [ 8 1, and here it is extended to embrace plane frames as

Pareto optimal for problem (I) if and only ifthere exists well. The structural design problem in no, :tateu as
no vector x E Q such that fi x) < fi(x*) for i =
1,2,...m. iminf(x) W, A1 , A2 ..., I'_1 , (14)

xESI
From the definition it may be concluded that every

Pareto optimum is also weakly Pareto optimal but the con- where W is the weight of the st-ucture and A. j =

verse is not true. This concept is illustrated in fig. 1,2,..., m-i, are aisplacerent criteria. this multi-
3, where the flat parts of the boundary of f(S) which criterion formula is apparently suitable for =lastic

are parallel to the coordinate axes, form thecorrespond- structures in general, nut only trusses adl plane
ing weakly minimal solutions in the criterion space. In frames with specified geometry and topology are coo-

effect, all the numerical tchn que ionsilered here meet sidered here to illustrate the applicability of the
difficult s in such problems where weakly Pareto optimal vector optimization ti.<ory in structural design. If

solutions ex st. It should be noticed, however, that in it is further assumed that the mem, er: of the ,_ructure
some cases the designer may be interested in weak Pareto consist of the same materias, which also implies that

optima as well. the minimum weight design and the minimum volume design

are equal, it is possible to choose member areas Ai,
The weighting method, which is a suitable solution i = 1, . k as zoe only design variables. ThI: is

technique for convex problems, and the minimax approach, true even for plain frames if the well-Known expressions

applicable also to non-onvex problems, may be both con-
sidered as members of a larger algorithm family called I = aA

P 
, a,p E , (15)

p-norm methods tI0]. This is a collection of all those = c A
q

, c,q E R

methods which may be obtained by using the distan'e func- where I is the moment of inertia and Z is the section

* tion dp induced by the lp-norm modulus, are used for the members. In addition, con-

stitutive as well as geometrical linearity is assumedlWf =P i fi) , 1 throughout this chapter.

The detailed formulation of the problem is only

where the diagonal matrix briefly discussed here, and it may be found in referenc-e
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II] wriere the minimum weight design of trusses and Three-member frame
plane frameu is considered. The only difference is that
now the vector valued objective function (14), which in- As an introduction to the multicriterion approach
eludes also displae:.ent criteria in addition to the in structural design a three-member plane frame shown
4eignt, is used. Comparisons between the two basic in fig. 4 is first considered. The structure is subject
techniques of structural analysis [6] suggest that the to only one loading condition, which consists ofahori-
uisplacement method appears preferable to the force zontal force F at the left-hand free node of the frame.
method because it offers simple linear expressions also In addition to the weight of the structure the horizon-
for the displacement criteria, as can be seen from tal displacement of the loaded node is chosen into the

objective function. The effect that is caused by ex-
tensions of the members is not included in the kinematic

W = E1 A.L. (16) model applied to this problem, and it is further assumed
that both the vertical members are equal, ie they have

A. = X. , j 1,,. in-I , the same design variable A, = A3. The structurenowbe-
3 J haves antimetrically, and the coordinate system shown

where Li is the length of member i and Xj is a nodal dis- in fig. 4(b) can be used. In addition, the displacement
lcriterion as well as the constraints imposed on the de-placement chosen into the objective function. The

special numbering of the nodal coordinates used in (16) sign variables and the member stresses are presented in
should cause no confusion in this general presentation, the figure. This example has been modified from a

and certainly any numbering system wanted by the de- scalar optimization problem treated in [11], and the

signer can be used. The nodal displacements Xi, i = expressions

1,•., where Z is the number of the nodal degrees I = 3.200 A
2  

(20)
of freedom, may now be regarded as additional design
variables, also called state variables [12]. Thus the Z = 1.452 A

3/2

design variable vector fare used here for all members. Two criteria, five de-
x = [A,A 2,..., Ak, X1 ,X2 ,..., x ] (17) sign variables, three equality constraints, two stress

constraints for each member and two inequality con-
typical in structural optimization, is obtained. If straints for both design variables occur in the design
limits for the member areas and the stresses are imposed, formulagion of this bicriterion frame problem.
then the feasible set of the multicriterion problem (14)
is defined by Even though the structure is hyperstatic, -t be-

k+ : ~haves like an isostatic one, ie the element forces do
S1 {x E R JP = KX, ai i A i i Ai

} 
, (18) not depend on the values of the member areas but are

constants. Thus the feasible region in the AA 2 -plane
where P is the loading matrix, K is the stiffness matrix may be easily formed by the upper and the lower limits
whe P is the dla n matrix, K h i e the matx n of the member areas, as is shown in fig. 5. The Pareto

tatins found in displacement method analysis. In this optimal polygonal line, which connects the extreme ver-

stiffness equation each column of the matrices P and X tices of tne feasible set, is also presented in thefig-

corresponds to one condition. Further, the no- ure. Most of the Pareto optima lie in the interior of
tations o, A load ng ac ndo the memer ae sh the feasible region, and only a short line segment AE

und Atre use d frthe loer anea is located on the boundary of the rectangle. The cor-
respetively. For plane frames member stresses can be responding minimal curve and the whole image f(P)can be

calculated from the common expression seen in fig. 6 where the situation in the criterion
c e fm tspace is illustrated.

i + A- ' (19)

where Mi is the bending moment of member i in the criti- -2 X2
cal section and Ni is the normal force in member i. FL X x
Thus the stress constraints for plane frames are nonlin- 2 L .
ear functions of the design variables whereas for A 2
trusses, for which Mi = 0 in (19), they are linear func-
tions of the nodal displacements X1. The stiffness equa-
tion, however, destroys the linearity and the convexity
of the problem in both cases. If also displacement con- 3L D © A A
staints occur, the approach presented is still appli- 1 1
cable by simply introducing these quantities intotheob-
jective function. This is also motivated by the fact
that the limits for the displacements cannot usually be X3
defined exactly.

In the sequel two examples are given to illustrate A A A ,
the multicriterion design theory discussed in this paper.
Pareto optimal solutions are generated for both problems
oy using the numerical techniques presented in the pre- (a) (b)
vious chapter. The bicriterion frame example has been
chosen so that the results can be represented graphi-
cally both in the design space and in the criterion L - 100 cm a = 10 kN/cm

2  
A = 30 cm

2

space. On the contrary, the truss example with three 104 kN/CM
2  

/CM
2  

0 cm
2

criteria has been introduced to illustrate the diffi- E a 2.07 - a = -10 kN A

culties which arise in representing the Pareto optimal F - 2.07 kN
set and the minimal set when the number of design vari-
ables or criteria is increased.

Figure 4. Three-member plane frame under one loading

condition.
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Figure 5. Feasible region ABCD and Pareto optimal Figure 6. Feasible region in criterion space and mini-
polygonal line AEC of three-bar frame. mal curve AEC of three-bar frame.

Four-bar truss Interactive solution method

Next a four-bar plane truss show in fig. 7 is con- In order to lessen the computational and huma ef-
sidered. In this example two displacement criteria in fort in the design process it seems preferable instead
atdition to the weight of the structure are included, of generating all Pareto optima to restrict the survey
The first is the vertical displacement of the outer only to a certain subset of them. One possibility,
loaded node under loading condition 1 and the second is which may prove to be a suitable approach also in struc-
the vertical displacement of the loaded node under load- tuial optimization, is to develop interactive
ing condition 2. Both these oriteria andthe correspond- algorithms where the designer participates the process in
ing loadings as well as the constraints imposed on the every Pareto optimum achieved to determine the direction
design variables and the member stresses are also pre- of the next step. In this chapter a technique of this
sented in the figue. category, based on the method of pairwise comparisons

given by Saaty [13] and trade-off studies of the mini-
Because of the great number of Pareto optima there max formula (12), is introduced.

easily arise difficulties in representing the results of
& siuticriterion problem. The numerical results of this Method of pairwise comparisons
example are given in table 1, and the corresponding
graphic illustration is show in figures 8 and 9. It may The aim of this method is to produce the weights w-
be noticed that both the displacement criteria achieve for the minimax problem (11) by using pairwise compari-
their minimum value in the same point where the member sons for the criteria. First a reciprocal matrix A,
areas are in their upper limits. This need not, however, which includes the relative weights of the criteria, is
be the situation in general, but also displacement ori- considered. This matrix is defined by
teria may be conflictive.

i Table 1. Pareto optimal and minimal solutions to four-ba s0rbem

A1  A2  A3  A2 W LI

cm
2  

cm
2  

cm
2  

cm
2  

cm
3  

10-
2
cm 10-

2
cm ®I

1.00 1.4i: 4.2h 3.00 2600 7.33 3.00 I
1.29 1.82 4.214 3.26 2880 6.28 2.92 L 4_
1.16 1.64 4.44 3.88 2960 6.28 2.69100 1.2 614 . 320 6.7 ?06
1.00 l.4 8.00 8.00 4660 5.46 1.44
1.65 2.34 4.24 4. 10 3340 5.22 2.73

1.45 2.05 4.97 4.52 3470 5.22 2.37 A1.20 1.70 7.08 5.51 4060 5.22 1.74

1.06 1.50 8.00 8.00 4710 5.22 I.44
2.21 3.12 4.50 5.45 4130 4.17 2.44 3
1.93 2.73 5.61 5.30 4230 4.17 2.06[
1.72 2.44 6.87 5.89 4300 4.17 1.74la
1.48 2.09 8.00 8.00 5040 4. 17 1 .44 I LC 2
2.96 4.20 5.99 7.29 5530 3.12 1.83
2.42 3.41 8.00 8.00 5790 3.12 1.44 L = 200 cm O 1 0 kN/cm

2  
A = 8 cm2

8.00 8.00 8.00 8.00 9330 2.06 1.44 E = 2 " 10' kN/cm
2  

a f -10 RN/cm
2  

A = 0 cm2

A = 0 kN

-22

Wrsi 2600 cm Amn = 2.06.•10-2cm

Amn = 1.44 • 10-2cm Figure 7. Four-bar plane truss under two loading

mmconditions.
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Figure o. Pareto optimal trusses corresponding to A2IlOcm

corner points of minimal surface. A dif-
ferent scale is used for the lengths and
the widths of the bars. Figure 9. iinimal surface of four-bar truss.

W, '4 wi  the matrix. It should be mentioned that also another
consistency criterion, where the computation of the maxi-
mum eigenvalue is not needed at all, has been reported

w2  w2  W2 [14].

A wW2 Wm  Various applications of this technique, whi-h was
A =o (21) only briefly described here, to different deci :ion caking

problems can be found in the literature [15], 16] , ani
it is now proposed for structural design problems with

w w w several criteria as well. The obvious advantage of the
m m mw- w . - method is that the weights are obtained by pairwisecom-

W1 W2 Wm parisons of the criteria which is easier for the de-
signer. Encouraging results have been achieved oy using
a scale ranging from one to nine, also given by Saaty

and its positive elements satisfy the reciprocal rule [13], but an additional examination of different scales
aij = 1/aji. The matrix has the property that if it is is recommended for structural problems.

multiplied by the vector w = [ w, w2 ... , w IT then the
vetrmmsotiei Trade-off studyr and interactive design methodvector mw is obtained, ie

= mM . (22) A comprehensi-e trade-off study coupled with the
constraint method is presented in reference [17], but it
is not applicable to the minimax approach discussed here.This equation haes a nonzero solution if and only if RI Teitrciesee oeeuemrd-f ubr

is a eienvaue f A.Allthe igevalus p, iThe interactive sheme, however, uses trade-off numbers
and thus it is necessary to give a preliminary survey on

1,2,.,m , are zero except one, notated here by Imax' the subject. For convenience a simplified scalar problem
which according to eq. (22) is equal to m. This can be
seen immediately from (21) where every row is a constant min
multiple of the first row, ie A has unit rank. h,e sol-
ution v of this problem is any column of A, and these subject to
solutions differ by a multiplicative constant. The f. (x) - 0, i =

vector w may be normalized so that its components sum
to unity. Then the result is a unique solution of eq. (L-3)
(22) no matter which column is used. Further, the matrix gI(x) < 0 , i =1
A satisfies the cardinal consistency property aij ajk = h. (x) = 0 i = 1,2.s
aik and is called consistent. I

In the sequel only estimates of the ratios wi/w; instead of the weighted and normalized formula (12) is
in the matrix are known and the object is to determinie considered. The Kuhn-Tucker conditions of this problem
the corresponding weights. The notations A' and W' are can be written in the form:
used here for the estimated matrix and its eigenvector,
respectively. The elements of A' are now obtained by m r
pairwise comparisons of the criteria and the weights Z u. V f x) + E Um+ V gi x) +

ws,ws,...,wm may then be calculated by solving the i= 1I i1= I

eigenvalue problem of this matrix. In this case, how- s
ever, the combined consistency relation given above E vi v h (x) = 0 , (24)
need not hold, nor need an ordinal relation of the form: i 1 1

fi 
4 

fJ, fj 4 fk imply fi 4 fk (notation 4 is used as
"more important than") hold. It turns out that A' is m
consistent if and only if pmx = m . With inm'n:iztency I- E u. = 0

max 
> 
m always, but the ordinal consistency is pre- i = 1 1

served, ic, if f. A fj then w! Z w! . Finally the depar-
ture of W from m can be shown to measure the incn- 1 = ,2,...,m
sistency which may call for revising the judgements in
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u. (fi (X) - y) 0, i = 1,2,...,m , The interactive design method introduced in this
1 1 chapter is now summarized in the following:

Um igi (x) = 0 , i = 1,2,...,r

10 Choose the starting weights w , I = 1.2,...,m,
In order to find out the trade-off number 

0
jk relating for the normalized criteria ?i by using the

the change of fk with the change of fj the first of method of pairwise comparisons.
these equations is divided by uj which is assumed to be
strictly positive. By applying the sensitivity theorem 20 Solve the corresponding scalar problem (12) with

(Luenberger, [18], p. 23
6
) it may be then concluded that fixed weights for the Pareto optimum X*.

30 Compute z* and consider the result. If it is

. = - (25) satisfactory then, stop, if it is not then con-
jk o tinue.

This result is very useful in solving a multicriterion 40 Determine the trade-off numbers ajk at X*.
problem because it provides the designer with an addi-
tional information about the properties of the minimal 5 Impose the allowable changes A (x*) and cor-
surface. Its geometrical interpretation in the criterion pute the elements a!k for the matrix A' by using
space states that the vector the relations (27) and (28).

* . u T  
(26) 6 Check the consistency rate of A' and make the

u u 2  m necessary corrections for its elements.

whose components are the Kuhn-Tucker multipliers corre- 70 Determine the new weights w!, i = 1,2,...,m, by
sponding to a Pareto optimum X*, is normal to the tan- solving the eigenvector of A'.
gent plane of the minimal surface at Z*. In convex prob-
lems this means that the multipliers u1 , i = 1,2,...,m, 80 Go to 20.
can be regarded as the weighting coefficients used in
the scalar formula (3). In nonconvex cases, however, a If some additional requirements not included in the op-
given vector U* as well as the numbers aik associated timization model occur, it is possible to generate more
with it may correspond to more than one Pareto optimal Pareto optima in the neighbourhood of the final design by
solution. The trade-off study given here can be easily properly varying the weights wi in (12).
modified for the original problem (12) which is used as

a basis of the iiteractive design technique discussed Conclusions
next.

In this paper the basic principles of multicriterion

In this algorithm the method of pairwise compari- optimization and three numerical methods for the solution
sons coupled with the use of trade-off numbers is ap- of Pareto optima are presented. In eddition an interac-
plied. The object is to determine new weights wI, i = tive design technique where some parameters are joined

i = 1,2,..., m, for the minimax problem (11) in every with the minimax problem and trade-offs obtained from the
iteration step. These can be obtained as an eigenvector Kuhn-Tucker multipliers are used is introduced. A special

w' of the matrix A' which is formed by the designer, structural problem where the weight and some chosen nodal

Quotients w'j/wk , which are the elements of this matrix, displacements are chosen as design criteria is formu-

may be geometrically interpreted as side ratios of the lated. Especially trusses and plane frames are considered

rectangular level set generated by the d -metric in the to illustrate the applicability of the vector optimiza-

criterion space. By using pairwise comparisons of the tion theory in structural design.

criteria it is now possible to compute each element a'k Only elastic structures have been examined here,

when only the trade-off numbers'ajk are known. From the but also multicriterion plastic design will undoubtedly
relation deserve attention in the future. In order to still more

effectively consider the practical design requirements
A. (x*) = k f (x) the suitability of new criteria, different from those

used in this paper, should be studied as well. Further,

an estimate for the change of fj corresponding to the effective numerical techniques for generating Pareto
change of fk at X is obtained. If A fk (X") is chosen by optimal solutions to these specific structral problems
the designer, as is suggested in this approach, the el- will be needed. It seems, however, necessary to solve
ements of A' can be calculated by (27) and some open questions concerning the graphic presentation

of the results before it is reasonable to tackle large
problems with several criteria and numerous variables.

S + A'f (x) This is due to the fact that the number of Pareto optimawkk
= (28) is usually great, and thus a reduced solution set should

jk A (X*) be considered. Problems arise also in the criterion space
w. J where the minimal surface becomes difficult to present as

soon as the number of criteria exoeetl two.

where c is the value of the distance function d at x*.

Geoi'etric3illy this expression simply gives the new side One way of reducing the number of the Pareto optima
ratio of the rectangle. By making all the necessary considered by the designer is to develop interactive

pairwise comparisons the matrix A' is formed and the algorithms where only a few Pareto optimal solutions are

corresponding eigenvalue problem may be solved. First generated. Sometimes it is preferable, however, to aim
the coninc rate of A', however, should be cherked at obtaining the whole Pareto optimal set which is then

consistency offered to the designer for his final choice. Both these
because inconsistency easily appears, Thus it may be approaches seem suitable for structural problems, and

necessary to correct the values of the elements a' by they should be further developed in future research

the designer to improve the consistency rate. w work in this field.
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I SUMMIARY oribed and reviewed in (6).

in may structural design tasks the deal- In this paper the ala-max approach to the
Suert's goal is to mini-ise and/or maximize DO- Multioriterion, optimization problem for nonli-
veral functions simultaneously. This situation near programing in discussed since this pro-
is formulated as a multicriterion optimization grmn s veyoften used to model structu-
problem. Since optimization task* in Btruotu- xral desigii problems. The aim of this approach
ral design are often modelled by means of non- is to define the best compromise solution oon-
linear programing, a multioriterion approach sidering all criteria simultaneously and on
to this programing in discussed in the paper. terms of equal importance.
!rhe problem is formulated as follow: find
a vector of design variables which satisfies PROBIRN FORMUfLATIONI
constraints and optimizes a vector function
which presents several nonoomparable arite- The problem is formutated as follows:
ria. ah min-max approach to this problem is i h veto .. is %] s-

peited. The aim of this approach is to do- idteeco
fine thbest compromise solution, i * ., the tisfy the inequality constraints
solutio~ that gives such values of the obj cc-
tive %funtixu . Uiih are as close as possible sj(x) O l,.m(1
to their eparately attainable extremes. Then, the equality constraints
some metho for seeking the optimum are hC)- -. ,., 2
shortly de cribed. These methods are based on hjW - U+9., 2
optimization techniques for one-criterion and optimize the vector function
problems. f(z).(f 1 (x), .. ,fk(x)]T

The optimum defined in the paper gives where X. [X ,....,xI is a vector of variables
one solutioni. However, using the min-max eie nndmnina ulda pc n

aprah we can also influence the priokity of dfndi -iesoa ulda pc ~
the riteria. Seeking the optimum in the min- Here g,(x), h3 ) are linear or nonlinear
max sense for different values of priority
coefficientsa set of evenly distributed solu- functions of variables x,e..,. The const-
tions which are optima in the Pareto sense reate 'iven by (1) and (2) define the feasi-
(noInnfrior solutions) can be easily obtained. ble regh fI. and azW point x in X defines a

feasible solution. The vector function fix) is
To illustrate the advantages of this kTh

a proach, the multioriterion optimization pro- a function which maps the set XIinto kTe
blem for an I-beam desig is presented. The k components of the vector f( x) represent the
problem Is to find the &e:aone of the beam non-commensurable objective functions (perfor-
which satisfy strength and geometric cons- mance criteria) which must be considered. We
trains and optimize two objective functions: use I={1,...,k) to denote the set of indices
cross-section area which is related to the for all the objective functions.
volume of the beam and the deflection of the

* beam. Both functions are to be minimised. in ye assume that all the objective functions
this problem .the criteria are contrary to each are to be minimized. The maiizatio prble
other, i.e., the beet solution for the first fo n betv unto a eeaJ on-!

objetive function yies the worst solution rortedyobjactinimiuntion prole be mlin

.1 fornth second function and conversely, the Identity

Pacing a complex optimization problem MIN12 01 2 OPTDWU
an muin eer often has to deal with a situation

Toseveral nen-omensurable criteria ITe points of references for the multi-
are to be considered. This leads to a multi- cieinotmzto rbe r nalcr
criterion optimization prblest which recently tainty the oxtrom scluticas which can be ob-
evokes a great deal of intereat.A lot of tained by solving optimization problem for
different upproacat to this problem have been eac criterion separately. fsilml~~at these

devlod uc a wightin obetv ehod extrem can be found let io( ) -[z

tri.fe1 1  oh 4 (2,th he be a vector of variables which miniMIzses the
ramcingl (4 *mso (5) an Seohrmthe oal aro.- i-th objective function f1(xi). In other words,
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the rector xo()i CX is such that If there is a set of solutions Xr_1 cX which
satisfies stop r-1, then

xtx stop r V (x*) - min max { zi(x)l
Assuming that for every xaX, fi(x)O O, Z X 1iEi 1

the fractional deviation from the extremum for and then Ir %rli
the i-th objective function can be calculated a tnr), where ir is
from the formula the index for which the value )f

abs(fi(x)- fi(xO(i))) zi(xI in the r-th step is maximal.

abs(f 1 (xO(i))) If there is a set of solutions *_ 1C1 whichsatisfies step k-i, then
or from the formula

abs(fW, f (xO(i?)) stop k vk(x*) - min zW(x) for iri
zix =abs I (6) fjO-id

abs(fi(x)) where vl(x )#*.*,vk(X*) is the set of spi-

It should be mentioned that by applying mal values of fractional deviations ordered
formula M ) all the functions are minimized. noninoreasingly.
However, for the originally stated problem,
the fractional deviations from the extrema Verbally thin optimum can be described
have a different physical interpretation for as follows. Knowing the extrema of the objec-
the functions which are to be minimized and for tire functions which can be obtained by sol-
those which are to be maximized. Formula 15 viag the optimization problems for sash orite-
for the functions which are to be minimized non separately, the desirable solution is the
defines their fractional increment, whereas, one which gives the smallest values of the
for those to be maximized it defines their fractional inoreaents and decrements of all
fractional decrement. Formula (6)works oonver- the objective functions from their extremum
sely. values.

For any x 0 x°(i)the values of zi(x) and The optimum defined above gives us one
solution. However, using the mi-m- approach

z"(x) for the i-th fuv-otion will be different, we can also influence the priority of the orn-
The best compromise solution should give the tenia. In this case the i-th element of the
smallest values of the fractional deviations vector z(x) should be determined from the for-
(both the fractionsal Increments and decrements) mula
for all the objective functions. Zi(x) a maxt{(o i ZJ(x), Ci i(x)} (9)

Let z(x)[z1(x), ... ,zk(x)]T be a vector where 0(i ts a coefficient of the priority of
of the fractional deviations which is defined the i-th criterion. Seeking the optimum in the
in E. The i-th component of the vector z(x) min-max sense for different values of c(i, we
will be evaluated as follows: can easily obtain a set of evenly distributed

solutions which are optimal in the Pareto

I 1 0Formula (7) hoses the maximum from two values METHODS FOR SMEING THE OPTIMUM
5P) and sl(x). Let US discuss shortly methods for seeking

Using the min-max principle of optimality the optimum in the min-max sense. There are
the best compromise solution can be defined as numerous methods for seeking the extremum of
follows: an objective function subject to constraints.

The point x*eX is optimal in the min-max The question arises if these methods can be
sense, if for every 5E6 the following used for seeking the optimum in the min-max
recurrence formula is watisf.ed: sense. In most of these methods, like the gra-

dient method, the successive linear approxima-
step 1 v (xI) - min max{zi(x)j tion method and the direct search method, the

1 X 141objeotive function determines the sequence of
ad tthe steps which gradually Improve the solution.

and then 11 .ji l l, where i 1 is the Sine the min-max principle of optimality has
index for which the value of si(x) a reourrence form it is not possible to use
is maximal. those methods in order to find the optimum con-

If there is a sot of solutions Xl Z which sidering the full form of formula (8). However,
satisfies step 1, then the fArot step of formula (81 can be taken as

a now objeotive funotio. Thus, the new objee-
stop 2 v 2 (x*) a min max {s(x) tive can be written In the form

- v(Z) a mia [a, (W)) (10)

and then I2 .1 1 ,i 2}, where i 2 is the and the optimization problem is to find zxzX
index for which the value of st(x) such thatvim 4 ). AID max Is,:
in this step is a .ial.

.. .... . .... . . . ." oa 10-38 8i 4
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"It is easy to show that in many models Both criteria are to be W-mi sed. It can bethe solution determined by the first step of easily noticed that these criteria are contra-this principle will be the optimum in the min- ry to one another, i.e., the beat solution formx se. the first objeotive function gives the worst
Wony oe-o.riterion optimization techniques solution for the second one and conversely.and programsn. ORTAN allow to use the objeo- It is assmed thatttive function of the form presented above. The 1. Permissible bending stress of the beamauthor has adapted and successfu iy used the 2following methods: material k = 16 kI/cm21. Hooke and Jeeves direct search method(7), 2. Young's Modlus of 3astlclty2. lavidon and Flether's variable metric

method (8) , 2 a 2 x 104 kN/m 2
3. the flexible tolerance method (9) • 3. hximal bending forces P - 600 kE andFor the first two methods penalty function was Q - 50 kN.used in order to solve problems with cont-

feasts. The vector of the decision variable isSome other methods for seeking the opti- x - Cx I 1 '2 , x3 - '4 ]T where the variablesmum in the mmn-max sens based upon the Monte will be given in centimeters.Carlo approach and the trade-off study methodwere described by the author in (10). In these The geometric constraints are as follows:methods the optimum is chosen by comparing no- 10 4 x 1  80 , 10 4x2 4 50lutions which are generated at random (theMonte Carlo approach) or by changing the objes- 0.9 z3 4 5 , 0.9 4 x4 < 5tive functions into constraints (the trade-offstudy approach). 
The strength constraint is as follows:

Since there is no general method for sol- + N kving all one-criterion optiAmization problemsy 
9 gevery engineering task has to be treated indi-

vidual4. The same situation occurs when the where: M and Me are m bending momentsproblem of seeking the optimum n the wxn-bdxsense is considered. Therefore a mltiori- in Y and Z directions respectively; W y and Vtenon optimization system (WC6S) has been de- are section moduluses in Y and Z directionveloped at the Technical University of Cracow respectively.which allows to try any of several techniques For the forces acting as it is shown in Fig.1,in order to find the optimum in the Din-max values of M and Nz are 30 000 kN and 2 500kNee respectively. Section moduluses can beNUIRIcAL 3XA1pa expressed as follows:

Consider the I-beam design problem formu- z2 21 - (x 2 - _z) I  _ 2z 3lated as follows: Find the dimensions of the Wy a - - --------beam presented in Fig. I which satisfy the geo- 6x 1metric and strength constraints and which areoptimal considering the following criteria: 2 + (Z . 2x1. Cross-seotion area of the beam, v -
2. Static deflection of the beam for the 6 xdisplacement under the force P.

A Thusthe strength constraint is

16- I
X2;11 x2- Z3 ) (xI - 2x4)3

Z 
15 000x20

The objective functions can be expressed

a s foov. Cross-section area

2Ix2x4 + x3(xI - 2W4  em2
2. Static deflection

X ~483 I
%here I La the moment of inertia which can be
cal ated from the equation
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After substitution the second objective func- REFERENCEStion is n60 000 (1) Iitman, G. and Marzollo# A., ulticrite-

f2-- - ria Decision Making, Springer-Verlag,

(2) Peschel M. and Riedel, C., Poloptimie-
Since a factory can produce only I-beams , VIE Verlag Teohnik, Berin, 1976.

whose dimensions x3 and x4 are the multiples (3) Wals, F. M. An Engineering Approach:
of 1 cm we have an additional restriction that Hierarchical Optimization Criteria, IEEE
for the optimal solution the variables x and Trans. Auto. Contr., AO 12, 1967.
x 4 should be integers. (4) Ingizio, J. P., Goal Prom n and

Extensions, 1eingtcon Books, o..ath
Books and Jeeves direct search method (7) andComt n y, Lexington, ML, 1976.

was used in order to find the extreme solution
for each criterion separately and Hooke and (5) Zeleny, M., Linear Multiobiective Pro-
Jeeves method together with branch and bound rammLng, Springer - Verlag, New rork -
method were used for seeking the optimum in the Berlin, 1974.
min-max sense. A computer program was based on (6) Hwang, C. L., Paidy, S. H. and Yoon, K.,
the optimization subroutines described by Mthematical Programming with Multiple
J.N.Siddal (11). Using this program following Objectives: A Tutorial, Compt, and Ops.
results were obtainedR

1. The solutions which give the minima of
the objective functions for each orite- (7) Hooks, R. and Jeeves, T. A., Direct
rion separately Search Solution of Numerical and Statis-
a) considering the cross-section area tical Problems, J. Assoc. Comp. Mach.,

io(1) - [60.8, 40.5, 0.9, 0.93) T vol. 8, 1961.
(8) Fletcher, R. and Powell M. J. D., A Ra-

fl(x°(1))- 128 cm2, f2(x°(1) 0.062 om pidly Convergent Descent Method for Mini-
b) considering the static deflection mization, Computer J., Vol. 6, 1963.

x0(2). [80, 50, 5, 5] T (9) Himmelblau, D. N., A lied Nonlinear Pro-gmill[ Mrw-Hill Book Comany, Now
fl(x°12)), 850 cm2 , f 2 (xo( 21 ). 0.0059 cm 0 oWpZany2e

(10) Osyoska, A., An Approach to Mlticriterion
2.* The beat compromise solution Optimization Problems for Engineering

x (80, 50, 1, 2 ] T Design, Coputer Methods in Appilied Mech."*-(0 0 ,2 and Eng.7, . 15, 1978 II

fl(x*)- 276 cm2 , f2 (x*)- 0.015 om. (11) Siddal, J. N., "OPTISEP, Designers' Opti-
mization Subroutines, Report No. ME/71/

The solution x0 was accepted by the desig- DS/REPI, Faculty of Engineering, McMas-
ner and it was unnecessary to seek further so- ter University, Canada, 1971.
lutions optimal in the Pareto sense.

For this example CPU time of execution on

CThER 72 computer was 72 sec.

FINAL REMARKS

The approach to the aultioriterion opti-
mization problem presented in this paper can
be ap lied to models in which all the criteria
have to be considered simultaneously and on
terms of equal importance. The main idea con-
sists in finding the compromise solution which
gives values of the objective functions as
close as possible to their separately attain-
able extrems.

An application to the typical optimization
problem for structural design presented in this
paper illustrates usefulness and versatility
of the approach discussed.

"he Rin-max principle of optimality which
is mathematically formalised has been used in
order to define the optimum. By using this
principle and the methods for seeking the op-
timum, the solution can be obtained automti- 4.
*any (decision can be made by a computer).
this is important in automation of design prob-
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RIGID-PLASTIC MINIMUM WEIGHT PLANE FRAME DESIGN

USING HOT ROLLED SHAPES

R. C. Johnson
Associate Professor

Department of Civil Engineering
Auburn University, AL 36849

Summary 1. All members are prismatic and exhibit bi-
linear moment-curvature relations with strain

Conventional minimum weight structural design hardening neglected.
methods generally assume that a continuous spectra of
shapes are availaole; however, actual sections consist 2. The frame is loaded with concentrated loads
of a finite set of discrete sizes. By utilizing dis- in its own plane.
crete programming techntques, it is possible to devel-
op design methods which work directly with the prop- 3. Collapse involves only inplane deflections
erties of the available sections. A design approach which are small compared to the overall struc-
based on the static theorem of plastic analysis is tural dimensions.
formulated herein. The resulting optimization problem
is a mixed integer type. Alternatively, a pure in- 4. Beam-column action and secondary column mo-
teger linear optimization problem results when the - ments are neglected.
kinematic theorem is used to formulate the problem.

5. Instability, either in the frame as a whole
A multi-level decision making programming problem or in the individual members, does not occur.

is formulated to minimize the frame weight. The algo-
rithm is capable of handling both the pure integer and 6. Member weight is linearly proportional to the
mixed integer problems; however, focus is restricted member plastic moment capacity.
to the mixed integer problem associated with the sta-
tic approach to the design formulation. The algorithm Assumption 1 is the usual idealization for a duc-
may be classified as a branch and bound type and uti- tile material. Assumption 2 is valid since distrib-
lizes ordinary linear programming techniques to test uted loads can be represented by a series of concen-
the feasibility of various designs. A FORTRAN compu- trated loads. Assumptions 3, 4, and 5 pose the most
ter program has been developed to automate the pro- severe limitations on the usage of rigid-plastic
cedure. An example problem illustrating the method is theory. In this study attention is restricted to
included, frames of three or fewer stories where the columns are

subjected to relatively low axial load and are design-
Introduction ed primarily for bending. With this restriction on

the type of problem to be considered, a design based
A significant step in the structural design pro- upon rigid-plastic theory neglecting the effects of

cess is the selection of member sizes for a frame of axial force is satisfactory (1). In the technique to
known geometry subjected to a set of known loads, be used, the effects of axial force can be included
There, of course, exist numerous possible safe designs. with minor additions to the algorithm. This is ac-
A relevant consideration is which of these possible complished by the introduction of the concept of re-
designs represents the optimum design. Comparisons of duced plastic moment capacities. The fully plastic
the total weight of material used in the designs of moment capacity of each section is multiplied by a re-
such a frame are considered to be one method of measur- duction factor which is a function of the member
ing the relative efficiencies of a number of possible axial force, the cross sectional area of the section
designs. Furthermore, structural weight is a para- used, and the material yield stress. The discrete
meter that is readily Incorporable into design formu- section optimization procedure is then cycled; and at
lations due to the linear relationship between weight the end of each cycle the reduction factors are cal-
per unit length of a member and the cross sectional culated. When for two successive cycles the reduction
area of that member. Connection and labor costs are factors are the same, the optimum design including the
likely to be quite similar for two designs in which effects of axial force has been achieved.
the only differences are the sizes of the individual
members. In this respect weight is analogous to cost The total structural weight to be minimized is
and also gives to the designer an absolute basis upon the sum of the individual member weights as is shown
which to compare alternative designs. in Equation 1 below

Conventional minimum weight structural design n A 1

methods assume that a continuous spectra of shapes are W= P A (

available to the designer; however, available sections i
consist of a finite set of discrete sizes. By uti- where P = weight per unit length per unit area
lizing discrete programming techniques, it is possible of member j
to derive design methods which work directly with the A - cross sectional area of member j
properties of the available sections. I ' length of member J

Assumptions If all structural members are made from the same grade

Traditionally the minimi. weight design problem steel, pj is then a constant and may be moved outside
has been formulated by the direct implementation either the summation. For the sections listed in Table 1,of energy considerations based an the kinematic theorem The following area-plastic moment capacity relation-

or of a force method based on the static theorem. Pro- ships were derived from a least squares regression

blems formulated by either of these approaches become analysis:

linear programing problems when certain assumptions beam sections A 0.31 M 0.67 (2)
are made: p

column sections A -.0.37 M 0.71 (3)

P
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Table 1
Plastic Moment Capacities (ft. kips)

(A36 Steel)

Beams

Section Mp Section Mp Section Mp

W36x300 3780 W30xl08 1040 W16x40 218
W36x280 3510 W30x99 939 W18x35 200
W36x260 3240 W27x94 834 Wl4x34 164
W36x245 3030 W24x94 759 W16x3l 162
W36x230 2830 W24x84 672 WI2x31 132
W33x220 2330 W24x76 603 Wl2x26 132
W36xI94 2300 W24x68 528 W14x26 120
W36x182 2150 W21x68 480 W]4x22 99
W36xl70 2000 W24x62 456 Wl2x22 88
W36xl60 1880 W24x55 402 W12xl6.5 61.8
W36xi50 1740 W21x55 378 WlOxI5 48
W33xl4l 1540 W18x55 336 MlOx9 28
W36x135 1530 W21x49 324 MBx6.5 16
W33xl18 1250 W21x44 286 M7x5.5 12
W30xl16 1130 Wl8x40 235

Columns

Section Mp Section Mp Section Mp

W14x228 1280 W12x65 291 W8x31 91
W14x193 1065 WIOx6O 225 W6x25 57
Wl4xI42 765 Wl0x49 181 W6x20 45
Wl4xlll 588 W8x48 147 W5xl6 29
W14x87 453 W8x40 119 W4x13 19
W12x79 359 W8x35 104

In order to employ linear programming techniques, function. Due to the geometric similarity P W sec-
these area-plastic moment capacity relationships must tions, the constants bj and di found in the third and
be linear or piecewise linear. Fortunately, the range fourth terms of Equation 6 dif fer by only a few per-
in plastic moment capacity for sections which might be cent. These two constants as well as the constant 0
used for a particular member is limited. Equations 2 need not be included in the simplified function since
and 3 may be approximated by the linear relations optimizing a certain function is identical to opti-
given by Equations 4 and 5 for the k-th beam and the mizing a multiple of that function: thus, a commonly
k-th column respectively used simplified indicator function for the weight is

(Ab)k = ak + bk(Mp)k (4) nm= + p( Z 1 1(M ). (7)
(Ac)k f ck + dk (Mp)k (5) j=l P

When the linear relationships given by Equations Constraints
4 and 5 are substituted into the weight function,
Equation 1, the structural weight becomes linear in The static theorem ot rigid-plastic analysis
plastic moment capacity. For cases where the identi- states that for a given frame and loading, any safe
cal grade of steel is used for both beams and columns, and statically admissible bending moment distribution
this substitution yields the following function to be corresponds to a loading, P, which is less than or
minimized: equal to the collapse load, Pc. This theorem is em-

nbm nm nbm ployed in design through the implementation of a force

W n a 1 + Z c 1 + E b 1 (14 method. The first step is to introduce a sufficient

J-1 J j J-nbm+l 
J  

J-1 j 
J  

P (6) number of releases to make the structure statically
determinate. The moment at any point, particularly at

nm possible plastic hinge locations, in the structure can
+ Z d J (M be calculated as a function of the applied loads andJ-nbm+l J i P the redundants at the introduced releases. Subse-

- total number of members quently, at each of the NH plastic hinge locations,
where nm - number of members the absolute value of the moment must not exceed the

nbm - number of beam members

nm-nbm - number of column members, plastic moment capacity of that particular member
where the plastic hinge is located. Mathematically,
this is expressed as

Continuous Spectra Formulation NR

Oblective Function iah R +(m) (M) ;(h.l....NH; (8)

The common procedure is to simplify the function J-I,....nm)
to be optimized, Equation 6, in order to achieve a
simplified function proportional to the weight. The R
first two terms of Equation 6 are constants for a (m)h - moment at h due to external loads
given problem and may be omitted since they add the
same constant to each evaluation of the objective (Mp) plastic moment capacity of member j.
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Also, since no member can have a negative weight, the linear programming formulations which may be applied
plastic moment capacity of each member must be nonne- to the static approach. In the first case, one linear
gative. program for each loading condition is solved yielding

(M) >0, (Ji-,....nm) (9) n single loading case designs. Selection of the n
p - largest member sizes for each of the k sections re-

suits in a design which is safe for all n loading
Discrete Section Formulation cases. The redundants are uniquely determined for

each separate design.

The discrete section design problem is to utilize
available section sizes in such a manner that the re- In the second approach, one linear program is
sulting total frame weight is less than all other dis- formulated and solved including all n loading cases
crete section combinations. To achieve this end, the and n sets of redundants which lead to a coupled con-

following procedure is used in conjunction with the straint set. It is likely that the optimum solution

notation used by Livesley (2) and Toakley (3). The for this second formulation will be some linear com-

set of members is consolidated into NG groups. Each bination of the n loading conditions. In such a case,

group consists of all members which are to be designed the individual loading conditions still yield stati-
with identical structural sections. For each of the cally indeterminate structures; therefore, the con-

NG groups, NS possible standard rolled structural straints at the optimum solution represent n of many

steel sections are chosen. For convenience in the statically admissible bending moment diagrams. The

automated procedure, the number of possible sections mathematical consequence of this is that the redun-
dants associated with each loading condition are notis the same for all groups. Only one of the NS sec-

tions is used per group. If (Mp)j is the plastic mo- physically meaningful if they are interpreted as reac-

ment capacity for group j and if mpj k (k=l,...,NS) are tions for the various loading conditions. Mathemati-

the plastic moment capacities of the possible sections cally it is impossible to arrive at unique values for

for group J, then these redundants when in the optimum tableau they ap-
pear in a row with a nonzero slack variable. Each

NS row of the tableau represents an equality between the
(M) = I mpjk 

6
jk , (J=1,...,NG) (10) moment at a potential plastic hinge position plus the

S k= slack variable and the plastic moment capacity of the

NS member in which the potential plastic hinge is locat-

E 6 j=l , (j=1,...,NG) (11) ed. There is no way to distribute this slack moment

k-fiI  to various redundants without an a priori knowledge of
the proper values for the redundants.

6 k=Oorl1 (12)
k =Description 

of Algorithm
prescribe that only one section is to be used per
group. The various plastic moment capacities of the The mixed integer linear optimization problem
sections being considered are known, and the optimiza- given by Equations 13 is a multiple choice problem in
tion problem decision variables are the zero-one delta that for each group of members one section which sat-
variables, 6jk isfies all the constraints and minimizes the overall

structural weight is selected from all those avail-
Substitution of the relationships given by Equa- able. Two basic approaches to the problems of this

tions 10, 11, and 12 into the continuous spectra pro- type are cutting plane methods and enumerations
blem given by Equations 7 through 9 leads to a mixed methods. Cutting plane methods may be inefficient for
integer programming problem nearly identical to that certain types of problems. Toakley (3) found that
formulated by Toakley (3), namely to convergence of Gomory's mixed-integer algorithm (4)

NG NS was unpredictable for discrete section minimum weight

minimize E 13 (13) rigid-plastic plane frame design. Toakley was forced

j=l k=l J k (jk  to terminate Gomory's algorithm and use an approximate
random search technique. Enumeration techniques are

NR NS in certain situations the best methods of solution.
subject to I ahi Ri + (me)hl < I mpjk

6
jk This appears to be particularly true for physical pro-

ii k-l blems where the constraint set and function to be op-
(1..,N; h-I,.NH) timized are well behaved. Tree search techniques, one

4. class of enumeration approaches, are applicable to
NS problems for which the various states can be repre-
. 6 jkf=

1 
, (Jf1,...,NG) sented as connected nodes. The arcs connecting the

k-l nodes represent forward or backward steps from one
6 k-O or 1 state, or design, to another. There are two important3k features associated with tree search algorithms.

Ri > 0. First, they lack mathematical structure and, hence,R can be used to solve a wide variety of problems. Se-
cond, there is a known upper bound on the number of

Multiple Loading Cases steps necessary for convergence which is not the casefor cutting plane methods. For problems with n zero-

When through the solution of a single linear pro- one variables, this upper bound is 2n.

gramming problem the static approach is used to findthe inium eigt dsig ofa frme ubjcte tomul :.gure 1 is a graphical representation of a two
the minimum weight design of a frame subjected to mul- dimensional all integer minimization problem with a
tiple loading conditions, a unique minimum weight is noninteger continuous optima. The region to the
always found. Values obtained for the redundants, right on inoe optina the rea o feai
however, are not necessarily imique. The result is right of and above ABCD indicates the ares of feasi -
that absolute knowledge of the member forces for the bility. The continuous spectra optimum solution ob-
various loading conditionsjectve function is given by lne z -z . One integer

solution may be obtained by rounding u both x, and

For a problem with k section sizes to be deter- X2 to the first integer point above the continuous

mined and n loading cases, there exist two types of
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X2  provision .,L' be made for zigzagging outside these
limits. Point S in Figure 1 represents the integer
restrained optimum solution and may be reached by one
of two branches. Either x, may be increased, followed

4 0 by a decrease in x2; or x2 may be decreased, followed
by an increase in x1. The first branch (increasing x1
at constant x2) initially leads to a solution with an
objective function value greater than that of the

3 rounded up solution and will not be considered. The
first step of the second branch (decreasing x2 at con-

Zr fesible r on stant xl) results in an infeasible solution; however,
this is the only avenue by which S can be reached
since the first branch was rejected because its first

2. 0 M 9 node had an objective function value greater than
the upper bound. When a member size decrease is made

zc which leads from a feasible solution to an infeasible
solution or to a solution for which the objective
function value is less than the lower bound, before

-- ' investigation along this branch may be terminated the
Z' following procedure must be satisfied. Assume that

the members of group k were decreased to reach this
j r infeasible state. From the infeasible state, all

0 groups other than group k are increased one at a time;
X1 and the resulting states investigated. If all of

these states prove to be infeasible or feasible but
Figure 1. Graphical Representation of Two with objective function values greater than the upper

Dimensional All Integer Problem. bound, then the currently investigated branch is con-
sidered to be completely implicitly enumerated; and

drawn through the rounded up solution, line Zr-zr, this control is reverted to the rounded up silution for
procedure does not necessarily yield a true integer re- investigation of other initial branches. If a feasi-
strained optimum solution; however, it is known by the ble solution with an objective function value below
convexity of the constraint set that this solution is the upper bound is found, it becomes the new upper
feasible. Also, the optimum integer solution must lie bound; and an attempt is made to find a better solu-
somewhere in the convex set created by the intersec- tion from this point before returning to the rounded
tion of line zr-zr and the boundary of the constraint up solution.
set ABCD. See the shaded area of Figure 1. The algo-
rithm to be developed investigates integer solutions Allusions have been made to a feasibility test
within this region. for the determination of whether or not a specific

design represents a safe design. In order to assure
The continuous spectra minimum weight design pro- feasibility for a specific design, the constraints

blem, given by Equations 7, 8 and 9, is solved in of Equations 13 must be satisfied to insure that at
order to obtain an indication of the proper range of no point does the bending moment exceed the plastic
discrete sections to be used for each group. This moment capacity of the member in which that point is
solution represents the absolute minimum weight and is located. Examination of these inequalities shows
obtainable if, and only if, sections are available that there are NH inequalities and that there are NR
having exactly the plastic moment capacities given by unknown redundants, Ri . To test the feasibility of
this solution. Hence, the continuous spectra solution a given design, values of the redundants must be
represents a lower bound on the discrete section de- found in order to calculate the bending moments at
sign. Next, reasonable sets of discrete sections-- various potential plastic hinge locations. Physi-
some heavier than those required by the continuous cally, if a set of redundant reactions can be found
spectra solution and some lighter--- are chosen for which satisfies the constraint set, then a safe de-
each group. sign exists. If such a set of redundant reactions

cannot be found for a given design, plastic collapse
By rounding up each nondiscrete member size to of this design will occur at a load level less than

the smallest discrete section available above the con- the desired one; and therefore, this design is un-
tinuous spectra solution size, a solution is obtained safe. Since the number of inequalities, NH, and
which is known to be feasible by the convexity property the number of unknown redundant reactions, NR, are
of the constraint set. The problem is now to investi- not, in general, equal; an infinite number of solu-
gate designs whose weight lies between that of the con- tions to the inequality constraints exist. The pro-
tinuous solution (lower bound) and that of the rounded blem, however, can be expressed as a linear optimi-
up solution (upper bound). If no such solution is zation problem as shown below:
found to be feasible, then the rounded up solution re-
presents the discrete section minimum weight design.
When a feasible solution on a specific branch is found
between the twn hounds. that molutinn heenms thoneo NR



Physically, this linear program represents an attempt
to find a set of redundart reactions such that a stat- 10
ically admissible moment uiagram is obtained based on K
the static theorem. K I

10 b b
If a particular design is unsafe, the attempted

solution of Equations 14 by the dual simplex method
will fail since primal feasibility cannot be attainedfor an unsafe design. This becomes evident when a CO C

negative pivot element for removal of primal infeasi-
bility cannot be found. When a particular design is a

safe design, primal feasibility is obtained along with
a set of redundant reactions which yield an admissible to 10' , lbending moment diagram. It must be noted that the 10'
values obtained for the redundant reactions associated 4d
with a safe design are not necessarily meaningful. In
general, the safe discrete design will not be at a (AD
collapse state as there are not sufficient plastic
hinges. This indicates that the structure is still
statically indeterminate and the constraints can be
satisfied with nonzero slack variables. 2 3 4 5 6

Numerical Results 8 10 |2

In the numerical cases investigated in this study,
a pseudo weight is assigned to the continuous spectra
solution. The area-plastic moment capacity relation-
ships for beam and column sections given by Equations
(2) and (3) are used to calculate an area, and hence
weight, from the required plastic moment capacities 7 9*
obtained for the continuous spectra problem. A dis- 9A
crete section design having exactly the same weight as
the pseudo weight is possible only if discrete sec- POTENTIAL PLASTC HINGE LOCAMNS
tions are available with exactly those plastic moment
capacities required by the continuous spectra solution.

In general the weight of the rounded up discrete
section solution is found to be ten percent higher I!
than the pseudo weight of the continuous spectra solu-
tion. The weight of the best obtained discrete sec-
tion solution is found to be approximately two percent
higher than the pseudo weight of the continuous spec-
tra solution. In all examples problems considered for
which an exact discrete section solution is available, JR,._
the method developed herein converged to the same op- 

L R3

timum design. It is suspected that for the majority t
of typical plane frame problems, convergence to the R!

3  
1

exact optimum solution will occur when the limited
tree search algorithm developed herein is used. In (C) REDUNDANTS
order to assure that the exact optimum discrete sec-
tion design is obtained, the additional computational Figure 2. Single Story, Two Bay Frame
effort would increase computer time by an estimated
factor of ten for all problems. R1 - 25.00 k, R2 - 3.33 k, R3 - 33.33 ft.-k

Example R4 = 11.67 k, R5 - 3.33 k, R6 - 33.33 ft.-k

The geometric configuration and loading for a In order to compare weights of the continuous spectra
single story, two bay frame are shown in Figure 2a. solution and various discrete section solutions, it is
The same section is to be used for both beams. Simi- necessary to assign a weight to the continuous spectra
larly, all three columns are restricted to be identi- solution. This is accomplished using Equations 2 and
cal. These restrictions lead to two groups for the 3 and the unit weight of steel to calculate a pseudo
five members (group b for beams and group c for col- weight of 1838 lb. For the set of sections chosen,
umna). Potential plastic hinge locations and the see Table 3, the discrete section optimal design con-
choice of redundants are illustrated in Figures 2b sists of those sections marked with asterisks. The
and c respectively. Table 2 lists the moment expres- total frame weight for this solution is 2000 lbs. The
sions at the potential plastic hinge locations. Posi- weight of the rounded-up design (beam - W 14x26,
tive moment is defined as that which causes tension on column - W 6x20) is 2240 lbs.
the broken line side of the members as shown in Figure
2c.

Solution of the continuous spectra problem re-
sults in the required plastic moment capacities and
redundants shown below.

b.am Mp - 100.00 ft.-kips{column ?Ip - 33.33 ft.-kips

a ... . 5



Table 2. Moments at Critical Points Table 3. Sections for Example Problem

Potential plastic Moment expressions beam column
hinge locations Section Mp Section MP

(ft-k) (ft-k)

1 20R -20R2+R3-20R 5+R6-400 W14x34 164 W8x31 91
1 Wl6x3l 162 W6x25 57

2 10R 1-20R2+R3+10R 4-20R 5+R6-200 *W14x26 120 W6x20 45

3 -20R2+R 3+20R 4-20R 5+R6-100 W14x22 99 *W5x16 29

4 20R4 -20R5+R6-10 
Wl2x22 88 W4xl3 19

5 1OR4-20R 5+R6

6 -20R5+R6

7 20R1+R3+R6

8 20R 1-20R 2+R3-20R 5+R6-400 
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using available sections. The algorithm consists of Elastic-Plastic Structures, Department of Civil
two basic parts. First, a search is conducted for a Engineering, University of Manchester, England,
node which represents a design having a weight between 1966.
an upper and a lower bound. Second, when such a de-
sign is located, an investigation is conducted to (4) Gomory, R. E., "An Algorithm for the Mixed-In-
determine whether or not the design is safe. Compari- teger Problem," Publication P-1885, The RAND
sons of the results obtained by this method with those Corporation, 1960.
of other reported methods indicates a substantial re-
duction in computational effort to achieve an optimum
integer restrained solution. Also, the significant
reduction in frame weight from the weight of the
rounded up design is sufficient to make utilization
of the automated procedure practical for design pur-
poses.
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LIGHT GAGE STEEL DESIGN VIA THE METHOD OF MULTIPLIERS

Nesrin Sarigul and Richard Gallagher
College of Engineering
University of Arizona

Tucson, AZ 85721

that was previously solved in Ref. 2 and for a new
1. Introduction problem. The method of multipliers is found to be

generally effective in these applications, although
Cold formed light gage steel shapes would appear questions remain as to the choice of the penalty para-

to be an attractive target for structural optimization meter in order to achieve a convergent solution.
procedures. In contrast with rolled sections, where
shapes and dimensions are fixed by the economics of 2. The Method of Multipliers
production, there is scope for choice of dimensions in
cold formed steel in order to achieve the objective of The Method of Multipliers is a method in the class
minimum weight or minimum cost. At the same time, of penalty function methods. Consider an optimization
light gage steel shapes are manufactured in relatively problem in which the minimum of a function W(x) is
large quantities and economies of weight or cost should
result in total savings that justify the expense of the sought, where x is the set of design variables. Suppose
numerical optimization effort, the constraint conditions are of the form:

Relatively few optimization p ocedures for this g (X) > 0 (j = 1, ... J) (inequality (2.1)

class of problem have been publishe . Seaburg and constraints)

Salmon (1) used a gradient projection scheme for this hk (W) = 0 (k 1 .... K) (equality (2.2)

purpose. Ramamurthy and Gallagher (2) reported the use constraints)

of the geometric programming approach. Neither of
these optimization approaches has been the most popular Then a penalty statement of the minimization problem

of mathematical programming tools for structural opti- can be written as

mization. That attribute can be assigned to penalty
function methods. P 

= 
W(x) + Q (R, g, h) (2.3)

Penalty methods have been popular in structural where Q is the penalty ter., a function of the penalty

optimization for approximately fifteen years; a good parameter R and the constraints g and h.

account of past work is given by Moe (3). All methods
described in Ref. 3 are in the class of SUMT (Sequence In the SlIMr approach the penalty factor R is in-

of Unconstrained Minimization Techniques). In these a creased in each successive minimization and the con-

function is formed by appropriate combination of the straints are incorporated in Q as given in the limit

constraint conditions, the function is multiplied by a R - -. This increases the curvature of the surface
"penalty factor", and the product is added to the basic whose minimum is sought and a stage is often reached

objective function. An unconstrained minimization is where the minimization process is difficult to

then performed for a chosen value of the penalty factor, accomplish.

resulting in a solutiun for the set of design variables.
These calculated variables, together with a new value In the Method of Multipliers the following penalty

of the penalty factor, are then employed as the basis function is constructed

for another unconstrained minimization, and so on until = + RE[<gj + 04> - 04 + RE [(h + T -k

convergence. k k k -k

Extensive numerical studies of the performance of (2.4)

penalty function methods
(4
,
5) 

have demonstrated that In this, the penalty parameter R is fixed. The adjust-
the traditional approach, outlined above, is not as able parameters are a ani 

T
k , The meaning of the

robust as was earlier assumed. Consequently, new i ta

avenues in penalty methods have been explored. One of bracket operator is that

these, the method of multipliers, has proved to be par- <(gi + 0j) > - 0 when (g + 0a) < 0 (2.5)
ticularly attractive and is adopted here as a technique
for the minimum weight design of light gage steel 2
sections. <(g + O) > = (g + aj) for (g + a ) >0 (2.6)

The method of multipliers was suggested by Hestenes The parameters a and Tk are fixed during the exe-
(6) and Powell (7) and was ampl]fied by Miele (8) for i s
the equality constrained probl m. Schuldt, Gabriele, cution of a minimization stage. Then, prior to the
Root, Sandgren and Ragsdell (9) extended it to inequali- next stage, these parameters are updated. A suggested
ty constraints and thoroughly explored its performance rule for updating is, for the mth stage

on the Eason and Fenton (4) series of problems. Subse-
quently, Root and Ragsdell (10) devised enhancements of o (,-1) g(2.7)
the method which permitted the treatment of bounds on (m4-l) M
the variables and which facilitate scaling of the objec- Tk - hk + Tk (2.8)
tive function and constraints.

In the limit, oj and Tk go to zero. It has been provedWe first outline the method of multipliers, fol-

lowed by a brief description of the computer program (9) that the solution obtained in the limit is a Kuhn-

used for calculations based upon it. Then, the nature Tucker point.

of the optimization problem of cross-sections of cold
formed steel members is described and the relevant merit As noted above, in the Method of Multipliers R is

function and constraint conditions are given in detail, held fixed and each constraint is supplemented in the

Numerical solutions are obtained for a design problem manner described in Eq. (2.4). The parameters added to
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i

the constraints are changed from one minimization stage centroidal (1-1) axis and the top center lines of the
to the next. The effect of this format of the penalty top and bottom flanges, respectively. I is the
term is that there is only a moderate effect on the e

surface whose minimum is sought (there is no effect at effectiei of the tpflatge crowhicis use

all for linear constraints). The difficulty of the effective width of the top flange, Xe, which is used

minimization effort is not increased as the parameters in the calculation of I , is obtained from the effec-
a and Tk are reduced. Since any difficulty in this tive width equation (Eq. 2.3.1.1. Ref. 13).

process will require the use of the maximum number of
significant figures in the computations the method is x 253 55.3
advantageous for computers with 8 or 16 bit registers. = 253 - 55.3

Strategies for performing the minimization and Eq. (3.3), which is an equality constraint, is valid
determining when to terminate the computation are
embodied in the BIAS computer program used in this work. when
The program is discussed in Section 4. x2/x 4 > 171/rf (3.4)

3. Problem Data - The Hat Section otherwise, xe = x2 ,

3.1 Section Geometry b. Stress Constraints Due to Negative Bending

The geometry of the hat section is shown in Figure Moment Mn
1. The corner radii are taken to be zero. The width
of the unstiffened bottom flange is d = xi, and that The condition that the direct stresses in the

of the stiffened top flange is w fx 2 ° h = x3 is the flanges due to the applied negative bending moment are
of te siffnedtopflane i w x ' 3less than the allowables (0.6F ) can be written as

depth of the vertical web. The thickness of the section y

is t = x4 . Subsequently, we introduce the effective Hnyn < 0.6F (top flange) (3.5)

width b 
f 
x5. All design variables must be zero or I y

greater. Mnynb < F (3.6)

I c

where F is the allowable bending stress, Yn is the

FIGURE i distance between the centroid and the top center line,

HAT SECTION Ynb is the distance between the centroid and the bottom

center line, and I is the moment of inertia of the
W Aentire section.

The llowable bending stress in compression, Fc,

h is dependent on the ratio, x1/x4 (Eqn. 3.2.b Ref. 13).

For the present problem xl/x must not exceed 144

d d Thus y
#+---4

Xl < 144 (3.7)

X 4 F-*
y

3.2 Constraint Conditions c. Stress Limitations Due to Shear, V

The constraints are principally those which are Similar to Fc, the allowable stress for shear, Fr'
defined in the AISC Code (13), as follows: is a function of the web depth-to thickness ratio,

a. Constraints Due to Positive Bending Moment MH 3/x,4 The expressions for F are dependent upon the

p range of values ,f x3/x4 given by Eq. 3.4.1 a and b of

It should first be noted that the code stipulates Ref. 13. The chosen range for the hat section is

that the stress on the extreme fiber of flexural mem- (
bers shall not exceed 0.6 of the material yield stress,x3 > 547 rF (3.8)
Fy. x 4 y
y

The condition that the direct stresses in the For the ranges considered the shearing stress Fr
flanges due to the application of the positive moment is restricted as follows (Ref. 13)
M (compression in top fiber) are less than the allow-

able can be written as Fr < 83 ?00

M y 0. O6F y (top flange) (3.1) 3/4)

P pand, since the shearing stress is related to the shear
V by F r  V/2xx

pb/ 0.6Fy (3.2)
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Altogether, therefore, there are 8 inequality Numerical results were obtained using the Univer-
constraints (3.1, 3.2, 3.4-3.9) and one equality sity of Arizona Interactive Graphics Engineering
constraint (3.3). Laboratory ECLIPSE S/230, 16-bit word (in the single

precision) minicomputer system. In the given examples,
3.3 Objective Function double precision arithmetic (64-bit word) has been

used. This gives approximately 15 decimal places of
The weight per unit length is chosen as the objec- precision.

tive function. Multiplying the area of the section
by the unit weight of steel, we have 5. Numerical Results

W=6.xx +3.4xx +6.8xx (We apply this procedure to two different design8 4 2 x4 3 8 4 (3.10) problems. One of these, solved previously in Ref. 2,

is a problem which was suggested by a design analysis4. The Bias Computer Code problem given by Yu in Ref. 14. In this problem a
three-span beam is uniformly loaded on the outer spans

In the solution of the problems the BIAS computer resulting in a positive moment M of 134.2 in.K. and

code, developed by Root and Ragsdell , is used. a negative moment N of 66.436 in.K. accompanied by a
This code adopts the Method of Multipliers with some n 2
computational enhancements (10) which improve the shear force V of 20.3K. Fy = 40,000 lb./in.
effectiveness of the method. These enhancements are
variable bounds and problem scaling. The same initial design as in Ref. 2 was employed:

Variable bounding (a. < xi < bi , i = 1, 2, ...N) x I 2.35, x 2 - 14.5, x3 - 9.5, and x 4 - 0.105, with

-- - - W = 13.637 lb./ft. The overall stopping and linekeeps the variable at the approximate bound in the search convergence criteria were chosen as 10
-4

, and
case the upper or lower bound is encountered and the partial derivative parameter was taken as 10-

7
.

adjusts the unconstrained search to reflect the A convergent solution, in accordance with these cri-
bounded variable, teria, was achieved in seven stages.

To avoid the difficulty of an ill-scaled variable A "stage" is an unconstrained minimization for a
or constraint BIAS scales the variables and the con- given set of values 0. and T ; an iteration is one
straints in a way that the contributions of the J
individual variable to the gradient of the penalty step within the DFP minimization process. Table 1
iniidul arable tothepgradien the p y shows, for the cumulative number of iterations, span-
function are all approximately the same. ning all seven stages, the progress of the design

Another enhancement is available which helps to variables. This same data is plotted in Fig. 2. The

update the R value if it has been chosen too small. resulting design was x= 1.531, x2  3.677, x3 - 8.881
and x4 ff 0.103, withi W ff 8.556 lb./ft. These values

In the program, unconstrained minimization has been agree with W 8.556 r tdnf. 2.

carried out in the program by the Davidon-Fletcher- agree with the solution reported in Ref. 2.

Powell method. The calculation of the gradients is It should be noted that the values of x and

(12) It solbentdtathvausfxaNdone by forward differences, Coggins' algorithm is (the vertical web depth and the thickness of the sheet)
used for the line search, did not change after the first stage. In view of the

The user must give the objective function, the convergence of x3 and x4 after the first stage the

constraints and the following parameters: the number overall weight did not change significantly thereafter.
of design variables, number of inequality constraints,
number of equality constraints, the overall stopping In the second design problem we seek the propor-
criterion, the line search convergence criterion. Any tions of a hat section for a positive bending moment
legal FORTRAN programing coding is allowed in defin- of 281.25 in.K. and a shear of 3.75 K. These section
ing the constraint values. The determination of the forces represent a uniformly loaded, simply supported
value for the overall stopping criterion, the line beam. Five different initial solutions are attempted,
search convergency criterion and penalty parameter are as defined in Table 2, each with the same value of R
problem dependent, and tolerances employed in the previous example. All

initial designs except case 3 were feasible..4 The program proceeds as below:
Every case except 4 converged to a solution in

First, the program sets the values of a and Tk to the neighborhood of 12.39 lb./ft. The case 4 initial

zero. Then, if there are no equality constraints, and weight was approximately 44 times larger than any

no inequality constraints are violated, it performs other initial design.

the Davidon-Fletcher-Powell unconstrained minimization.
Otherwise, it scales the problem. In the unconstrained
minimization, termination occurs when either the norm
of the gradient becomes small or the changes in the
elements of the design vector become small.

Termination occurs if the relative change in the
objective function between two consecutive stages is
small, or if there are more numbers of unconstrained
steps than the allowed maximum steps,

Then, it updates aj and Tk and again repeats the

same operation starting with the unconstrained
minimization.
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6. Concluding Remarks 12. Coggins, G.F. "Univariate Search Methods", Im-
perial Chem. Ind., Central Instr. Lab. Res. Note,

The performance of the method of multipliers in 64/11, 1964.
the selected examples gives promise for the utility
of the method. Considerably greater computational 13. American Iron and Steel Institute. "Specification
experience in practical problems of cold formed light for the Design of Cold-Formed Steel Structural
gage steel design is first needed, however, before Members", 1968 ed. Parts I, II, III, (1974).
this view is confirmed. One difficulty in this is to
identify a representative range of such practical 14. Yu, W. -W., Cold-Formed Steel Structures, McGraw
problems. Hill Book Co., N.Y. (1973).

A limitation of the computer program employed in Acknowledgement
this work is that stationary points of the penalty
function are, in general, infeasible. Also, the The authors wish to express their appreciation to
selection of the convergence criterion, partial deri- Prof. K. Ragadell of Purdue University and to the Pur-
vative criterion, and overall stopping criterion is due University Research Foundation for the use of the
very important to convergence. In certain examples, BIAS computer program.
not reported here, two different combinations of these
parameters were tried, and no convergence was achieved.
Since the solution depends on these parameters, more
research work on their selection can be done. Also,
the programs should be modified in such a way that if
the convergence has not achieved in several steps new
parameters will be considered.
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DESIGN VARIABLES Objective Number Number

Function of ofTEST X(d) X2(w) X3 h) X4 (t) X5(b) (Weight) Stages Iterations

T 1.000 4.267 18.144 12.094 4.247 17.498 40
10.577 3.58 2 75.594 -  0.101- 3.586 12.396

2 1,000 4 18,140 0,10 4.20' 21.701 3 542 0 0.577 3.582 15.394 0 -.0-36- 12.396

3 2 O. 50 213 9.076 0. 061 2.175 4.374 983 0 0.50 3.579 75.387 0.103 3.503 129 85
4 T 7.300 8.0 1.500 10.000 15.'700 88.400 __

4 _ M6_676 9.50
I 7.300 8 500 20 500 ', , 21.794 76

5 0 0.577 3.582 15.393 0.103 3.585 12.394

* Initial values
** Optimum values TABLE 2

W/Wi nit

d/di nit

w/w
init

1.0

0.9 .

0.8

0.7 ..

0.6 \

0.5-

0.4 -

0.3 . W/Wi ni-t

0.2"

0.1

0.0 11 , , , I I S I , I I I
0 5 1O 15 20 25 30 35 40 45 50 55 60 65 70

Number of iterotions

FIGURE 2.
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OPTIMUM DESIGN OF GRILLAGES INOWUDING WARPING

Dr.Mehmet Polat Saka
Civil Engineering Department

Karadeniz Technical University /
Trabzon, Turkey

Summary criteria. When this is achieved, the objec-
tive function automatically attains its op-

A method is presented for optimum design timum value. A brief review of structural
of elastic grillages made of straight thin optimization including optimality criteria
walled beams. The design problem is formula- approach was presented by Venkayya [3 1 .In
ted by matrix displacement method. Emprical optimum-control approaches the application
relationships are used to relate the beam of calculus of variations are involved. A
cross-sectional properties to each other so presentation and review of these techniques
that each beam element has only one design was given by McIntosh 1 4
variable which is its moment of inertia.
Joint displacements are also treated as in- Among these methods, the mathematical
dependent design variables. This requires to programming procedures does not only appear
include the stiffi~ess constraints as polyno- to be extremly general in their range of
mials of the variables in the design problem. applicability, but flexible and easy to
Constraints on stresses, displacements and adopt for computer programming. There are
cross-sectional moments of inertia are also large number of mathematical programming
considered. The effect of warping is inclu- algorithms that can be employed in structu-
ded by employing Vlasov's theory. - ral design. Selection of the suitable one

for the solution of a design problem is
The minimum weight design proble ob- sometimes another optimization problem.

tained by such a formulation turns out to be However, review of the design algorithms
a nonlinear programming problem. Approxima- presented so far shows that structural en-
ting programming is adopted for its soluti- gineers have found the approximating prog-
on, because the constraints involved are in ramming quite powerful . This method line-
the form of polynomials that can be diffe- arise the nonlinear problem by Taylor ex-
rentiated automatically. Simplex method is pansion and then employs simplex method to
employed after linearization. Move limits obtain its solution. This technique is used
are required to obtain the convergence.The- in various structural design algorithms by
se are arranged automatically by the program. Reinschmit ( 5 1, Romstad and Wang (61,
The examples solved have shown that this way Pope [ 7 ] , Pleury and Schmid [ 8 1 and
leacb to obtain the final design after rela- Saka [ 9,10 1 . In these works the topology
tively small number of iterations. Practi-al of the structure is considered to be ape-
examples are given for the application of cified and cross-sectional properties of
the method. the elements are treated as design variab-

les. Later, the same method is employed in
Introduction structural shape optimization. Notable in

this field are Dorn , et al 1 111 , Majid
The rapid development of structural op- and Saka 1 12, 13 1, Pedersen ( 14,151 and

timization techniques in the last two deca- Saka C 16,17 1.
des has given sufficient confidence to
structural engineers to consider more prac- In this paper, an application of the

4 tical design problems. Amorp the design pro- approximating programming in the optimum
cedures presented so far, three types of design of elastic grillages is presented.
approaches to structural optimization may The same design problem was also considered
be distinguished which are not totaly inde- by Moses and Onoda [ 18 J where the results
pendent of each other, obtained by methods of stress-ratio, cut-

ting-plane and usable-feasible gradient
In mathematical programming procedures, were compared. Kavlie and Moe 1 19 1 used

the objective function is minimized directly SUNT for the solution of the same problem.
by various numerical search techniques while In both design procedures, the effect of
prescribed design constraints are observed warping was neglected. It is also reported
to be satisfied. The design problem is hand- that a large number of analyses are invol-
led in general without paying any attention ved in the design process. Present method
to its physical characteristics. Several re- formulates the design problem by matrix
views are available, some of which contain "displaeement method. Joint displacements
an extensive reference list. Those by Schmit are treated as design variables as well as

1 1, Nliordeon and Pedersen 2 ) cover more sectional properties. This leads to inclu-
than 100 papers. On the other hand, in opti- sion of the stiffness constraints as poly-
mality criteria approaches, a criterion re- nomials of the variables in the design
lated to the behaviour of structure is gene- problem. Constraints on stresses and disp-
rated. A search procedure is then developed laements are also considered. The number
to find the design satisfying this specified of iterations involved in optimum design
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is small, generally less than 10. The effect may be used to evaluate the integration
of warping is considered by employing constants for the grillage elements rigidly
Vlasov's theory, connected to each other.

Warping in grillage elements When y=o , = byf and 0

When y=L , 0= e a d = (4)
by5a and dy =

ZIY 
dy

z Where 8 byf and eby are the rotations of
beam ends and is the rate of twist.

dyUsing equations (2), (3) and (4) the torque

Y hX in the beam is obtained as

My=- j .- 0 Sinh cKL ( - (5)
y 2Cosh aL- LSinhoL-2 'by byf)

x Z where L is the legth of the beam. The bimo-
ment in the beam is given by

Y2

,- Y dy2

y YSimilarly, by employing the equations (3),
(4) and (6) the bimoment at the first end
of the beam is obtained as

Y t B-GJ . Cosh aL-i ( 0 bys - byf)(7 )
S 2Cosh oL- LSinhoL-2 b f

The bimoment at the second end of the beam

B=GJ CoshtL- 1 ( - b )(8)
L 2CoshgoL- oLSinhocL-2 f by

Y Y It may be noticed that when the beam
end rotations are equal to each other, no
torque emerges in the beam. On the other
hand, if one end of the beam is fixed then
the equations (5), (7) and (8) can still be

Figure 1. A grillage element used by only equating the rotation of that
end to zero.

Grillage elements as shown in figure 1 In grillage elements with a bending
are usually made of thin walled beams such hinge at one end, the torque is obtained as
as I, ,E shapes. In such beams, according
to Vlasov's theorems [ 201 , even when no y =GJ-oshAL 'by (9)
external twisting moments are present,tor- y Sinh - o)h(L
sional sti sses can be present. A torque
acting on a such beam is a combination of and the bimoment at the other end of the
pure and flexural torques which is given by beam is
the following differential equation: B=-GJ SinhwL ( (0)

3 t (l)Sin L-aLCsh by byf

dy dy3  For -grillage elements with a different end
where G is the modulus of rigidty and E is conditions, similar expressions for torgue
modulus of elasticity of the material of and bimoments may be obtained.
beam, J is torsional moment of inertia and Mathematical model
r is warping constant. 0 is angle of twist
and Nt is the total torque. If equation (1) In the formulation of the design prob-
is derived with respect to y, considering lem, the joint displacements are treated as
that torque is constant along the beam independent design variables in addition o

d2 the moments of inertia of grillage elements.
-- -o -a 0 (2) The other cross sectional properties of the

dy4  dy2  element are related to its moment of inertia
is in such a way that each beam element intro-

is obtained where oc. duces only one design variable.

The general solution of this equation is

- A Cosh cty+Csinhoy+Dy+H (3)
where A,C,D and H are constants of integ-
ration. The following boundary conditions
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bI  b 2  ib5
J =abI I , Iy= a I h= a A B -Y -A B -Y

23B C D -B R Hba4 ib b6  (11) -Y D F E H P (15)
b-a 4  1 Z - a 5 5  , A= a 6  I fs, - -........ ........

b -A -B Y A -B Y

b B R H -B C D
s=a7 1 -Y H P Y D F

where J , Iy, Z and A are respectively the Here,2

torsional moment of inertia, sectional mo- A=EI,B= --1WI,C= -LM.1 -I -+o2
ment of inertia about to y-y axes, sectional 2 L2
modulus and area of element. h,b,s are shown L L
in figure 1. The constants (ai , bi, i=l,..,7) 6ECos
may be obtained by applying least square D=(T- _EI)Sie Coa,Y= - , (16)
approximation to logaritmic values of the L 2

above sectional properties which are given L
in steel manuals such as AISC, DIN [ 21 E. 2 2 2Es 2 T 2

2______ A I-T4= E00os I+TSine ,R= To5s4
Using the matrix displacement method L L

with the design variables mentioned, it o, 22
H= ~ ~ E~s _ (2T+TSinACo

becomes necessary to include the stiffness =- (22I+T)Si -- TSin
constraints as polynomials of the variables L L
in the design problem. Therefore, the prob-
lem is to minimize a is shown in figure 1.

W= W(I) If warping is not considered T= 2-J (17)
L

Subject to

K i(l)-d-Pi 0 ,i=l, . k If warping is considered
T= GJ oSinhc L

S(I,d) '40, i=k+l,... ,m (12) T= G s.hoy-S inhoLL (18)I - ""i 20oshocL- oL 6inhaL-2

- pd <0 In these expressions I and J are respecti-
I ~I v~uvely the unknown moment of Inertia and tor-

iu sional moment of inertia of grillage element,
E and G are modulus of elastisity and modu-

the first of which is the stiffness const- lus of rigi&y and L is the length of the
raints, the second is the stress constra- element. O= -/Y' and for I sections
ints, the third is deflection constraints EP
and the fourth is the upper and lower bounds h
on moments of inertia. Pi is the external t= Y" as given in r 20 ].
load acting at a joint. J is the vector of 4
unknown moments of inertia, Id is the vector
of joint displacements Op and lpd are the Employing the relationships (11), the
permissible values imposed on stresses and equations (17) and (18) may be related to
displacements respectively, unknown moment of inertia as

Using the relationship (11) the objec- T. --  a (19)
tive function will have the form L 1c I4l

NG b2 Sinh(c 3  ) (20)
W. 2. Pi Ai Li- 5 piLiaIi (13) T-c1 I 2 c 4 c4 Sinh c4i-l Li= 1l i 6 6

im il20osh( c31 )-031 Shc31 *)-2

in which Pi and Li are the material density where [ 2

and length of elements in group i, G is the G a1
total number of different groups in grillage. 01= , c 2 =l. 5bl-0.5b2 -b 3

The stiffness constraints 0.25Ea2a
'  (21)

The stiffness constraints are equalities 0 GalL2 c .5b -0.5b-b
and they have the form 3 2 1 2-b30. 25Ea2 a3

i( ) d - = 0 (14)

where 1(1) is the overall stiffness matrix in which values of ai, bi are given equati-

and f Is the external load matrix. The on (11). It can be seen from equations (16),
contribution of a single grillage element, (19) and (20) that the contribution of an
linking joints f and s as shown in figure 1, grillage element to overall stiffness matr
to the overall stiffness matrix is is expressed as only function of its unknown

moment of inertia.
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The stress constraints in which ai, bi are given by equation (11),
Cn and C4 are given by equation (21). In

In grillages made of thin walled beams, ths away, both stresses caused by bending
the governing elastic stress at the outher moments and bimoments are related to the
fibres is a combination of stresses caused moments of inertia of grillage elements by
by bending moments and stresses caused by equation (23) and (26). Expression for U
bimoments [ 20 1 . similar to (27) may be obtained for diffe-

rent end conditions. Shear stress constra-
- c I ± a (bi i oti (22) ints is also considered.

- Qi < (28)where (Yci and (Yti are the permissible i -Awi p2
compressive and tensile stresses, 0 'bi and

ompresive tle stresses , c y bandg where Qi is shear force in element i, Awi
O-wi are the stresses caused by bending is web area and Tpi is the permissible

moment and bimoment respectively in member shear stress. Using equation (11), the
i. shear stress in the element may be expressed

In the grillage element linking joints f in terms of its moment of inertia as
and s as shown in figure 1, employing equa- 1-c8 r bi
tion (11), the stresses due to bending 1 =I 4bll b2 -bl3 -bll bl2 b [3 d
moments at the first and second ends are
expressed in terms of its moment of inertia (29)
as UXds

wherer 1-b K]5 2-*- 1  a 2  2 12E b 2  6Esina b- 6ECos-Al-b5 a; -l _a23 --f bl2 2 bl=
a 1 32 -13- 22 bll= 1 2  

' 13[ a a2 ) -a 1 1 a1  -a 3 c7 L
Lal 2 -a2 12 13 idJ c7= a3 a7, c8= b3 + b7

where Equation (22) implies that for a section of
an element, it is necessary to consider

a 6E a = 4EsinA a - 4ECosp four independent stress constraint to cover
a5L2 the possible stress reguirements. However,

5a5 a5 at each iteration, the joint dfsplacements
(24) are available either from the result of

analysis or after carrying out the simplex
a22= i a23 method for the linearised problem. Using

asL a5L these values, it is possible to determine
the sign of the maximum longitudinal stress

On the other hand, stresses due to bimoments and shear stress at either end of a grilla-
are ge element. Hence, it becomes possible to

By (25) introduce only one constraint for the lon-
O-W gitudinal stress and one constraint for the

shear stress; total of two stress constra-
where B is bimoment, w is sectorial area ints for each member.
and [I is warping constant. Bimoment in the
element is given by equations (7), (8) and The deflection constraints
(10). The sectorial area for I section is
w - 0.25 bh where b and h is shown in figu- Inclusion of joint displacements as
re 1. Once again, substituting equation(ll) design variables in the design problem re-
in (7) an (24), the stress due to bimoment duces the deflection constraints to upper
is obtained as bounds.

a' [0 _,Co U Sinp o u Co9Uisinp] 3d < pd (31)

1 where I d is a vector of permissible disp-
f (2) lacements. Deflections are unrestricted in
81 (26) sign. Mathematical programming techniques

however, operate only with non-negative
ids variables. It is therefore necessary to

where C. 0osh(C I C4) -1make the substitution
U cI u 51 c 3  - 1 (27) xj Y j - ej (32)

2Cosh(C3 1
4 )-c3I SSInh(C 3I 

4 )-2 and impose a deflection constraint of the

from

5 a a 6 bl-b 2-b3+b4  xj , X3j
2 aa3 ,)j < Xpdj + ej
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where 7j is a new non-negative variable in which 7 W , 7S and VU are respecti-
that replaces xj and ej is a constant that vely the gradient vectors of objective
is the most negative value x, can possibly function, stiffness and stress constraints.
take. The bounds for the vertical displace-
ments can be obtained from specifications. Tw(VO) = I ( W)
In the case of joint rotations, the bounds 0io
are made large enough to cover a wide range.
The value of e=0.02 radians is convenient, -(o) = ( "Si) ( S )] (3R)
because linear structural theories are only --Si -0
applicable for small deflections with L ° ax dI 9 I < 0 .0 2 T rB !The approximating programming _7(V) =  (-.i) (

It is shown in previous sections that the d

objective function and the constraints are The derivatives of the nonlinear constraints
This turns the design problem to a nonlinear with respect to design variables can be cal-
Thisour ngthedei problem omatinr- culated directly. Hence, the derivatives of
programming problem. The approximating prog- tesifesadsrs osrit ie

ramming is adopted for its solution. This the stiffness and stress constraints given

method makes use of the first two terms of a in (35) and (36) with respect to the moments

Taylor expansion. When applied to nonlinear of inertia and deflections are

design problem of (12), the following line- a ; as.
ar programming problem is obtained. )Si = 1Kii)=K.

Minimize W=w(VO)+7w(VO) [vlvo] 8 I d' =

Subject to = -(39)

Siy)+ ~ [V..V] = 0 1 =d -)~l = ( .Ti)sO(yo)+ VaSj 0 ) [l VoB ° (vmi(Yo) [>-o  0
X-x 0 After solving the linear programming prob-
-d-3pa lem of (37) by simplex method, new values

(l-m) iI' < (l+m)lO of design variables V are obtained. This
mprocedure is repeated until convergence on

where Y= I 3d]T is the vector of design the objective function is obtained.
variables in which the submatrix I contains The selection of move limits are car-
the moments of inertia of different groups ed out differently in various research

and Xd contains displacements of N joints. rks. In tiser, it isrfoun suable
The i th stiffness constraint has the form works. In this paper, it is found suitable

choose the value of 0.90 for move limits to

S,() = K- (35) begin with and then gradually reduce by
Ki()4d i = 0.10 at each iteration. In the case where

The stress constraint for member i has the convergenge is not obtained although the

form value of m is reduced to 0.10 then the ite-
rations are continued with this particular

Ci(y) = R ()'4d -api<O (36) value. Examples solved have shown that the
p number of iterations required to reach the

The vflues of every function is known at )E final design is around 10.
and V is the unknown variable vector. m is
the preselected percentage which is known Design procedure
as move limits. These are required to prevent
fluctuation of iterations and encourage the
convergence of the original nonlinear prob- The flow diagram of the design proce-
lem. When the linear programming problem of dure is given in figure 2. The procedure

, (34) is rearranged can operate both from a feasible or an
1_ 0 infeasible initial design point. The only

Minimize W- Vw(v°).yl+ w(V°)- 7w(VO).V°  restriction for this point is that it has
tt _ _ to satisfy the stiffness constraints. The

e tinitial values of the moments of inertia
v ( l- may be selected by using the engineering7S 1 . . . . ..1Si V) o- (o judgement.

( > . )-. °)  (37)

il

1 (l9m)I-17
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i 1 2 3 4
Start ai  0.00874 0.1285 2.5758 1.7025

I bi  0.9409 0.887 0.2666 0.2153

Input data,initial design point i 5 6 7

ai  0.778 0.8827 0.1247

b. 0.733 0.476 0.23725]cycle the member 1 ____
cl tTable 

1. The values of ai, b.

Construct the contribution stiffness Example 1
matrix and stress constraints of a

member, lizr.arize and store them in As a demonstration of the methoddesign
the variable coefficients matrix of of a simple grillage shown in figure 3 is

considered. This grillage is subject to ver-
tical load of 100 KN acting at B. The verti-

No cal displacement of joint B were limited to
20 mm. The bounds on rotations were taken as
0.02 radians. The beams are made out of the
same section.

dd the deflection constraints and

move limits

L 3m

SUse simplex method Yes 2 m /-

-onver gne No feasible Analyse 1 B
Solution 100kN

f zes Figure 3. A simple grillage

Iteration Without warping With warpingro 4 volume IxOm 4 volume

Figure 2. The design procedure No Ix7mm4 xlO
6 me 3 Ixl7mm_ 4 xlO6mm3

It may be noticed from the flow diagram 0 9.800 49.061 9.800 49.061
that the inclusion of the joint displacements 1 17.349 64.389 17.761 65.112
as independent design variables leads to a 2 26.358 77.138 26.796 79.190
simple computer programming. No matrix inver- 3 29.720 83.192 32.337 86.602
sion is involved. An analysis is only carried 4 30.461 84.172 33.490 88.058
out when the current imposed move limits 5 30.477 84.194 33.527 88.104
fails to obtain an optimum solution. As a 6 30.477 84.194 33.527 88.104
result, one analysis at most may be required

at each optimization iteration. Table 2. Iteration history

The convergence criterion utilized to There are four design variables in the T
end the algorithm is that the change in the design problem. These are V= C I Z, xi 0y1 T•
objective function on two succesive cycles Usiag the equation (15) the stiffness const-
will be less than preselected small percen- raints will have the from
tage of its current value.

Design examples (A1 +A2 )Iz 1+(B 1+B2 )IOX1 -(Y1+Y2)Ioyl+lO=O

(B1+B;;)iz 1 +(C1(I)+C2 (I))x 1+(D1 (I)+D 2 (I))QyI=0 (40)

In the examples solved in this paper, -(y +y 2)IZ +(D(I)*D2(1))xI+(F1(I)+F2(1)yI=0
the value of E,G,O-c,Ot and I' wert takes
as 210 KN/mm2 , 81 KN/mm2 , 0.14 ]N/mm , where Ai, Bi and Yi are linearly related to
0.14 KN/mm2  and 0.09 KN/mm2 respectively unknown I as shown in (16), but Ci, Di and
throughout. The values of aj and bi of equ- Pi are nonlinear function of I which is also
ation (11) are given in table 1. These are given in (16) and i is the member number.
obtained for the I shape rolled sections Similarly, the stress constraints are cons-
given in [21 3 . It should be noticed that in tructed by using the expressions (23), (25)
the calculation of these elements the values and (29). The following non-negativity subs-
of the sectionsl properties are taken in the titutions are required as explained in (32)
unit of centimetres (1 cm = 10 mm). , -0. 2 , 0 ^,-0.02 (41)

- l'1-' 24l)3
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The initial design point is choosen to be The design problem has 8 variablesinfeasible point at which the non-linear which are the moments of inertia of twostiffness and stress constraints are line- groups and six displacements of two joints.arized. After adding the deflection const- The same grillage was designed both consi-raints which are only upper bounds and move dering and not considering the effect oflimits, the linearized problem is solved by warping. As shown in figure 5 convergencesimplex method. The iteration history of was obtained after only 5 iterations inthe design is given in Table 2. both cases. Initial and final designs are
given in table 3. It may be noticed thatWhen the effect of warping was neglec- the moment of inertia 9f member 1 has inc-ted, the optimum va!.ue of the moment of reased from 4.27xlO7mm4 to 12.307xlO7mm4inertia of the beam was obtained as when the effect of warping was included.30.477xi07 mm4 . The same value has increased This example clearly shows that dependingto 33.527x0 7 mm4 when warping was included, on the loading, optimum design withoutAs a result,l0* of increase was required in including warping will not be adequate.

the value of the moment of inertia in this
particular example, Example 3

Example 2 As a final example, design of the gril-
lage shown in figure 6 is presented. TheA grillage shown in figure 4 was desig- member grouping and loading of the grillagened both with and without considering the are also shown in the figure. The limitati-effect of warping. The dimensions and member ons on the vertical displacements are 40 mmgrouping of the grillage and the loading are and on the rotations are 0.02 radians.also show- in the figure. The vertical disp-

lacements of joints were limited to 30mm and The design problem was initiated fromthe bounds on rotations were 0.02 radians. an infeasible point. There are 21 variables
Z 3 and 68 constraints altogether in the design

problem. The minimum volume of 87.7758xlOmm3
was obtained after 7 iterations. The optimum

100 kN/m Y values of the moments of inertia are givenin table 4. It is noticed that the stress22 2 constraints were dominant in the design prob-5OkN/1m Sm lem. As a result while, the stresses at po-
ints A and B were at their bounds, the
displacements of joints were under the limi-
tations. Thq value of bending stress was
0.127 KN/mmz and the warping stress was

_50 5m 

0.013 KN/mm2 at these points.

F Figure 4. A design of grillage

Without warping With warping
Initial Final Initial Final
design design design design

x107 mm4  5.000 4.270 3.000 12.307
127M 

20kN 200kN
10 50.000 92.326 40.000 96.927 2

Volume m 1
xlO7m 4  31.974 42.185 28.576 44.006

Table 3. Initial and final designs 3

.2 2 2 L
E 4m 4m 4 mHE 50 ! _

~ o U0
X

30 1- with warping
E

20 1]- without warping Figure 6.

1 0 ,
1 2 3 4 5

Number of iterations
Figure 5.
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In2ttial Final 6. Romstad, K.M. and Warg, C.K., Optimum
design design design of framed structures, ASCEStruc.

Div., Vol.94, 1968.

x m3.000 10.42 7. Pope, G., Application of linear program-
ming techniques in the design of optimum.

12 structures, Proc. of AGARD, Symp.Struc-

x102m 4  50.000 125.209 tural optimization, Istanbul,Oct., 1969.

3 7omm4  50.000 44.424 8. Fleury, C. and Schmit, L.A., Primal and
__ _ mm_ _dual methods in structural optimization,

Volume ASCE.Struc.Div., Vol.106, ST5, 1980.

xlO7mm4  59.593 87.774 9. Saka, M.P., Optimum design of structures,
Univ. of Aston,Birmingham,U.K., 1975.Table 4. Initial and final

design 10. Sala,M.P., Optimum design of rigidly
jointed frames, Computers and Structures,

Conclusions Vol.11,1980.

A general pizocedure for optimum elas- 11. Dorn,M.W. and Felton,L.P., Optimization
tic design of grillages is presented. In of truss geometry, ASCEStruc.Div., Vol.
the case that the grillage elements are made 95, STIO, 1969.
of thin walled beams, the effect of warping
becomes important. It is shown that by ma- 12. Majid,K.I. and Saka,M.P.,Optimum shape
king use of the matrix displacement method design of rigidly jointed frames,Proc.of
this effect can easily be included in the S'mp.on Appl.of Comp.methds.in Engr.,
formulation of the design problem. The limi-
tations on displacements as well as stresses Univ.of Southern California,Berkeley,
are also considered. The treatment of the CaliL, 1977.
joint displacements as independent variables
simplifies the formulation of the design 13. Majid,K.I.Saka,M.P. and Qelik,T., The
problem and leadsto easy computer program- theorems of structural variations gene-
ming. Several other examples solved which ralized for rigidly jointed frames,Proc.
are not given in this paper showed that the ICE,Vol.65,London,1978.
number of iterations required to obtain the
final design was small, indicating the effi- 14 Pedersen,P.,On the optimal layout of
ciency of the method. multi-purpose trusses, Computers and

structures, Vol.2, 1972.
Grillages made out of I sections are

considered in this paper. However, conside- 15. Pedersen,P., Optimal joint positions for
ration of C sections or any other shapes space trusses, ASCEStruc.Div., Vol.99,
does not introduce any difficulty. The only ST12, 1973.
amendment required is to include the neces-
sary relationship among the warping constant, 16. Saka,M.P., Structural shape optimization
the sectorial area and the moment of inertia -A review, XV th Yugoslav congress of
of the section considered, theoretical and applied Mechanics, June,
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Introduction are fabricated and erected annually. In terms of
cost, framed structures form about 15.26% of all

For several years, the authors have worked in precast concrete products. Table 1 shows the quant-
co-operation with the largest U.K. manufacturer of ity of precast concrete for framed buildings during
precast concrete portal framed buildings with the aim the period 1971 to 1979. The influence of the 1973
of producing a computer design and detailing program oil crisis and the subsequent recession are clearly
for agricultural and industrial buildings. From 1977 seen in the table. Indeed, it is the reduction in
to 1979, rescarch was undertaken into costs of fab- the total marked size and the resulting manufacturing
ricating, delivering and erecting portal framed overcapacity which generated the need for the manu-
buildings and this work allowed the authors to write facturer involved in this project to try to increase
a FORTRAN IV program which determines the precast his market share by applying optimization at the
concrete manufacturer's cost of providing a building design stage.
to a client's specification. During 1979, a design
program was written, also in FORTRAN IV, which TABLE 1. Output of precast concrete for framed
selected sizes for structural elements and cladding buildings in the U.K. (tonnes).
components. By maintaining compatibility of data
between these two programs, it became possible by
the end of 1979 for a design engineer to enter data
describing a building and for the computer to select Year Output (Tonnes)
the sizes of all components and hence determine the
cost of a feasible design solution. 1971 400000

1972 516700

These two programs were linked to a third pro-

gram which uses Rosenbrock's optimization algorithm 1973 735000
to iterate towards the least cost building. Finally, 1974 405000
during 1981, a fourth program was written which takes
the data describing component sizes for the optimum 1975 450000
cost building and produces a general arrangement 1976 480000
drawing together with a written specification, both

--,an a drum plotter. 1977 465000
- 1978 495000

During the course of the project, an 
IBM

contouring package was used to investigate the 1979 540000
sensitivity of the primary optimization variabiz&."
Although this was of little value to the manufacturer, In order to ensure that the data used in the
the cost surfaces produced gave the authors invalu- cost model was accurate, a detailed study was under-
able information on the unimodality of the cost taken of the working methods of one typical precast
response surface and helped in selecting the most concrete manufacturing plant.
appropriate optimization algorithm. Figure I shows the structural elements which

comprise the building and this figure shows that each
This paper describes the four programs and element is manufactured in its own terretory within

shows some of the data obtained during the cost the plant. Such an arrangement is helpful in
response surface sensitivity analysis. It shows allowing time study methods to be applied to each
the drawings produced by the final program and draws type of element individually. Figure 2 shows the
conclusions regarding the merits of cost optimisation. uence of operations involved in the manufacture

of each type of element. -hese operations form the
\basis of the cost model pr dram described in the next
section. Although figurus 1 and 2 apply only to the

Manufacture of Precast Concrete structural elements, costs are also determined for the
Portal Framed Industrial Buildings. remaining components of the building. However,

because these components are bought by the precast
The precast concrete industry in the U.K. has a concrete manufacturer, their price to the precaster is

workforce of about 28,000 which represents nearly used as their cost. Therefore it is unnecessary to
2.3% of the total construction workforce. Between investigate their manufacture. This arplies to all
1971-78 the total outputs of the construction industry cladding components.
and precast concrete industry are respectively estim-
ated at £m42169 and £m1604. That is, the precast For each of the structural elements shown in
concrete industry's output is 3.721 of th totil Figure 2, the following operations were studied:
construction industr)la output. I. Cut and bend reinforcement to schedule.

2. Assemble reinforcement, ready mould and
Of the 250 precast concrete firms in the U.K. place cage in mould.

10 are fabricators of framed structural components 3. Place and vibrate concrete with finishes
on a large scale. Studies carried out on these types and stack where necessary.
of structures show that an average of 0.5 million tonne 4. Demould element and stack.
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Operation times were approximated to the nearest Fabrication Constant = W/(X.We)
6ocond. Operations (3) and (4) could not be studied i=l
concurrently for lack of personnel. At some in-
stances operation (1) or (2) was executed for more where We represents the weight of every ith type of
than one element. Each of the four operations was element summed over the range of all j elements ob-
timed for ten cycles and the mean times were taken, served and M is the total manhours needed to manu-
Figure 3 shows the results of the study. Sizes of facture all the j elements. Table 3 gives Fabric-
each of the five elements vary according to the par- ation Constants for each structural element.
ticular design. Studies were made on element sizes
of weights ranging between 0.14 - 1.28 tonnes. The The reliability of the results in fable 3 can be
results presented in Figure 3 assume a linearly pro- measured from the following statistical analysis.
portional weight of one tonne for each element. Assume a Gaussian distribution for the overall produc-

tion levels shown in Figure 3.
Table 2 summarises the work gang and 

equipment

used in each operation. Readying the mould takes F(t) = (1/ 2)I)e- 2/2
the form of cleaning and coating the interior with a
thin film of oil. Lifting reinforcement cages is
done mainly with gantry cranes, portable wheelers and and the standard deviation is given by =

manually. Vibrating tables are used. Gantry cranes
are used to demould column and rafters. Purlins are a = v/((Wi_W)

2
/n)

demculded manually and gutter moulds are dismantled
to ensure no damage is done to the delicate sections. The standard deviation was computed to be 6.76 kg

and the mean daily output was 46.144 tonnes.
TABLE 2. Work Study Sheet.

Haulage Costs

Operation Number of workmen Equipment The oldest and simplest hiring system which the
Col Raf Pur Ral Gul haulage contractor uses is the one that makes hiring

charges on an hourly basis. There is another system
1. Cut and bend I I I I I Cutting machine which makes charges on radial mileage basis and which

reinf. to is more popular. With this system trucks having up
schedule to 10 tonnes capacity, and trucks having over 10

2. Assemble reinf. 2 2 1 2 1 Gantry cranes tonnes capacity are caregorised separately. The
Ready Mould used to carry haulage cost is then as shown.

heavy cages Haulage Cost = Rate * Tonnage

3. Place and Vi- 3 2 1 2 2 Wheelbarrow
brate concrete, for concrete For a given tonnage of structural elements, the num-
dinishes and distribution, ber of trips is computed and the appropriate rate
stack gantry cranes used to price the haulier's charges.

for stacking.

4. Demould and 3 2 1 2 2 Gantry cranes Foundation Costs

stack for demoulding Foundation problems associated with the structure
cols.& rafters are generally uncomplicated. There is usually a low

contact pressure between column bases and the soil,
typically up to 150 kN/m

2
. Foundation design for th(

structure therefore entails provision of column bases
Analsyis of Factory Output, which can be easily constructed from standard moulds.

A typical column base comprises unreinforced footings
In order to complement findings of the work of about one meter deep.

study, output of the same factory over a continuous Cladding Costs
sixty day period has been analysed. The period
covers about the same duration as the work study. For Various cladding materials i,ay be specified
each element, output levels and the frequency at which including asbestos, steel profile sheeting and brick-
they are manufactured (days) are presented on histo- work. A common arrangement is foi brickwork to be
grams (Figures 4-9) built to a height of 2m and for lightweight material

to be fixed over the remainder of the sides and the
Fabrication constant is defined as the number roof. The program allows for this and for the in-

of manhours taken to manufacture one tonne of finished clusion of windows, personnel doors, sliding doors and
precast concrete, i.e. folding doors. The cost model program costs all

TABLE 3. Fabrication Constants for Structural cladding panels, fixing components and flashing as
Elemsnts orequired. Fixing costs are included. These were
Elements obtained during time study observations and the

erection rates are sown in Table 4.

Structural Element Daily Output Fabrication Constant TABLE 4. Rate of erecting cladding
(Tonnes) (Manhour/Tonne)

Column 14.5 L 5.0 Rate
Activity M

2
l/ManhourRafter 12.8 6.33

Purlin 10.9 3.78 Fixing roof sheeting 1.3

Eaves Gutter 5.1 11.36 Fixing Side Sheeting 1.25

Sheeting Rail 6.5 5.71 Erecting a brickwall 0.278

9-22

-L



Erection Costs = 92.06n+9.49
Erection costs for Structural Elements Therefore the cost model function may be formally

Observations were made of several sites through- stated as:

out the U.K. and the cost of erecting the various BUILDING C05T = f(x y n k w h)
structural elements is shown, in terms of manhours,
in Table 5. Structural Design Program
TABLE 5. Rate of erecting Structural Components The design procedure is fully automated and ex-

cludes the use of design charts. Discrete steel

Structural areas are selected during the design procedure. TheElement Workmen Rate design algorithm proceeds as follows:Llement Hours) Firstly, analysis routines estimate dead, imposed

Column 4 2.8/pair and wind loads, to be used to estimate bending moments
and shear forces. Trial design of the various elem-

Rafter 4 1.8/pair ents is then carried out. For a column, trial dimen-
sions coupled with other design data are input to the

Purlin 4 0.2/each program which computes and selects appropriate design
bending moments. The program tests for slenderness

Sheeting Rail 4 0.4/each and then designs accordingly either for a short or
long column case. In the process the neutral axis

Gutter Beam 4 0.75/each depth is varied and and at each stage compressive and
_. _ _ _ _ tensile steel areas are iteratively computed. There

exists for each complete iteration an optimum steel
area and a corresponding neutral axis depth. By

The Cost Model Function using stored cost data, the least cost column is de-
signed.

The following are the optimisation primary Secondly, to design a rafter using a parabolic
variables:- stress block, the program selects the maximum bending

Span of the structure x moment along the rafter and tests for the position of
the neutral axis in relation to the beam's flange.

Frame spacing y Accordingly, a design is carried out for a neutral
Number of bays n axis depth position either within or outside the

Number of spans k flange.
Finally, purlins, sheeting rails and gutters are

Roof pitch w treated as simply supported beams spanning between

Height to eaves h bays. As each element must be topologically compat-
ible with the rest of the structure, tests are carried

The overall cost of the structure is the sum of out at each stage to ensure that a functional and
the following costs: stable structure is being designed. Frequently, in-

1. Fabrication costs compatibility causes the program to reject otherwise
2. Haulage costs feasible designs for individual elements. In the

3. Foundation costs event of a failed design, an option for data adjust-

4. Cladding costs ment and improvement is offered. The design cycle is

5. Erection costs repeated as often as necessary until an acceptable de-
sign is reached where all constraints are satisfied.

that is the global coat of the structure is: All elements in the structure have to be trans-

Building = (Foundation + Haulage + Foundation ported from the factory to the erection site. Unlike
cost cost cost cost in-situ construction the structural frame is erected

+ Cladding + Erection by connecting various members securely to one another

cost cost ) to form a stable unit. For instance, full continuity
is required at the rafter/stanchion section which

Let - means that the connection at the eaves must be design-

A=0.5xtan (0.01750) ed to transmit bending moments, shear forces and tor-

sion. Two important factors that govern the design

B=O.7Ayn - 3.lyn-0.5A-0.2 of connections are:
C:(yn-O.15)/(A-O.15) i. A partial safety factor 101. higher than that for
!A adjacent members should be provided against fail-

D=2.73(h+O.762) (nk+n+k+l) ure to ensure that concrete members fail before
the connection.

* In terms of the primary variables alone the terms ti. Connections have to be located at convenient sec-
in the above equation can be written as follows:- tions hve tocbe loce at cein sec-.j tions in the structure since at certain sections

in the structure stress concentrations can occurFabrication (31.22(0.7h0.0533) (nk+n+k+l) if connections are used, with consequent spelling
st + 78.02(0.0 A+0.0485) n and splitting of the concrete st the contact
+720.08ynk+375.91yn+418.94(ny+ynk) surfaces.
+(D-+5.A5A(k~ok )+73.4Bynk+2Oyn+.35.1lyn)
HalaeCot 5.15A(C0.O)h.0.0533) (nk 3.l) Figure 10 shows a simplified flow chart for the

Haulage Cost = 7.15((0.07h+0.0533) (nk+n+k+l) design program. It can be seen that the elements
+2(0.0450O.O438A) (nk+k)+(O.)2052yn) designed correspond with those manufactured as shown
+(O.124yn)+O.ll59(yn+ynk;) in figure 2. This division of the building has been

adhered to in each stage of the project.Foundation 2 2g.62(nk+n+k+l)

Cost OPTIMISATION TECHNIQUE
Cladding Cost = k(B.194+27.59B+lB.B]C+l.37yn

+Cla.di)+516(yn+x-2.25) The purpose of this optimization exercise is to j
9-23
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seek a feasible optimum cost design of the building. 3. A grid of 100 designs has Leen used to prepare
A number of design variables are identifiable but for each surface.
practical purposes only six primary variables were is-oltd ael:4. Haulage distance = 40 miles
olated namely:

x span of the structure (lateral column to column
dimension) Effect of Varying Frame Spacing and Number of Spans

y frame spacing (longitudinal column to column
dimension) Lower and upper bounds of 3-11 m for frame spacing

n number of bays were imposed on 1000 m2 and 2000 mL buildings, and 4-
k number of spans 22 m on 3000 m

2 
and 4000 m2 buildings. Roof pitch

w roof pitch was maintained at 140. All buildings were clad with
h height to eaves (vertically from ground level) single skin sheeting. Variables other than frame spac-

In terms of these six primary variables the ing and number of spans were held constant.

global cost of the structure can be determined. The cost surfaces in Figues 12 to 16 are strongly
Therefore, objective function is formally stated as unimodal. On the 1000 m

2 
surface the optimum resides

minimize f(x, y, n, k, w, h) in a well-defined trough located at (4, 6.0m, £8432.32)
lying in the mid-west. There are no local depressions.

subject to design constraints. Two classes of design Buildings with spans below 5 m and above 10 m are un-
constraints are identified: economical. The 2000 m

2 
surface has a well-shaped opt-

i. Analytical constraints imum located at (5,8.0m, £150 15.04). It is separated

ii. Cost and design constraints are built into the by a saddle from two local depressions located in the

design program whilst the cost constraints are essen- south-east. In the north-west another saddle separates

tially the client's requirements. During the field the optimum from a deep local depression. On the

survey it was found that the client's requirements 3000 m
2 
surface the optimum is located at (2, 10.Om,

can be restricted to the following primary variables: £12100.11) in a deep trough separated by a saddle from
two local depressions situated in the south-east.

1. Building area North-eastern slopes have become steeper. Buildings
2. Height to eaves, with frame spacing below 8.Om and above 14.Om are not

Therefore, the objective function is subject to economical. The optimum for the 4000 m
2 
surface is

inequality constraints of the form: at (2, 12.0m, 12.0m, £26092.12). A saddle in the
south-east separates the optimum from a shallow local

gj Cx ) O depression and a conical hill has formed in the north-
west of the optimum. Another local depression is

Most structural design problems are non-linear located north-east of the optimum. Steep sides of the
with constrained optima. A number of algorithms trough to the north-east and south-west of the opti-
have been used to evaluate different problems and in mum indicate that designs with frame spacing about
each case an appropriate justification is offered for 14 m and below 6 m rre sensitive to coat.
the choice of algorithm. Rosenbrock's algorithm has
been used in the present work. The algorithm in this
case is selected for two reasons: Response Surfaces for Different Pairs of

Primary Variables on 1000 a
1 

Buildings.

1. Being one of the pioneer methods it 
has been test-

ed and found to be powerful in several engineer- It is possible to produce coat contours for any
ing problems. two primary variables, whilst keeping the other four

2. Being a search technique, Rosenbiocks algorithm variables constant. Four sets are further selected

can be attached conveniently to a design program to illustrate the process. In each case the building

without requiring major amendments to either. area is fixed at 1000 m
2
.

This factor was of particular relevance in this
instance. The original Rosenbrock algorithm is Building Span and Number of Spans
modified to take into account constraints.

The lower bound for span is 8 m and the upper
The search continues until cost savings become bound is 26 m. The number of spans ranges from I to 10

minimal or until 100 iterations are completed. Fig.ll The cost surface shown in Figure 16 has an optimum at
shows the flowchart used. In fig.ll the output node (2, 20.0 a. £9415.84) in the north-west residing in a
labelled 77 indicates that a further optimization U-shaped valley. The wall to the west valley is steep
attempt should be undertaken, using a different set of but slopes gently in the east. There are seven local
initial primary variables. Therefore, if 77 is depressions to the south-east of the optimum and an-
reached, before a return to GO, a subroute is entered other in the north. The most attractive local de-
which generates a new set of starting variables before pression would cost 1.05% more than the optimum.
optimization restarts.

Cost Response Surfaces Roof Pitch and Frame Spacing

Using an IBM contour interpolation package, an
investigation was undertaken of the relative sensitiv- The lower bound for roof pitch is 10 and the upper

ity of the primary variables and the unimodelity was bound is 370; frame spacing varies from 3 m to 12 m.

investigated. In order to allow data to be present- Sandwich construction roof cladding is used and on the

ed in a meaningful marner, two primary variables were sides of the building a combination of single sk'n

allowed to vary while the remainder were held constant construction and brickwork is used. The 1000 m
l 

cost

at sensible values. The following asswuotiors were surface shown in Figure 17 has a U-shaped valley with

made when producing ',e cost response sur.aces: a gentle sloping bed. The optimum resides in the
south at (6.0, 40, £17129.16) and buildings with frame

1. Design wind speed = 45 m/s spacings between 4.5 m and 9.0 m are the most econom-

2. All prices and costs are at 1979 levels ical.
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Building Span and number of bays that most of the cost of developing the system was in

researching data for the cost model and in producing
Roof and vertical cladding types are as used as output and input of a robust and commercially accept-

previously described. The roof pitch is fixed at able standard. The time spent on programming the
140 and only single span buildings were considered, optimization algorithm was negligible, although it is
The cost surface shown in Figure 18 has an optimum of considerable commercial value.
at (3, 32.0 m, £18874.30) in the north-west lying in
an elongated U-shaped valley. Two local depressions In managing and supervising the development of
appear in the south and hills have formed in the north- the programs, the authors paid full attention to the
east. Single and double bay buildings are very ex- structuring of the data.
pensive within this range.

In general, data files were constructed prior to
FmSc d number of bays writing programs which operated on them. Programs

should be seen as means of transforming data rather
A lower bound of 3 : and an upper bound of 12 m then ends in themselves. Often, the prior generation

for frame spacing were ifoosed on 1-10 bay 1000 m2 of data files greatly facilitated program writing since
buildings. The cost suffice shown in Finure 19 is the latter could then be defined in terms of the trans-
strongly unimodal and has an optimum at (:, 7.0 m, formation required. The authors are of the firm
£8789.27) in a V shaped valley. Two local depressions opinion that in all program development, data structure
are formed in the south-east of the optimum. The most modelling is of the essence.
economical buildings are those with frame spacing be-
tween 5 m and 8m, with 2-4 bays.

General Arrangement Drawings and Specification

The initial general arrangement drawing program
was written independently of the optimization programs
but the data structure was made compatible. The whole
suite has now been linked together to run on a 16 bit
64K bytes NAKED MINI System, driving a 9 cm/sec 90 cm
wide BENSON drum plotter (3 pens), using a 10 Mb move- I
able/fixed plotter disk system for on-line program and I
data storage. The conputer is run by the precast con-
crete manufacturers who participated in the project and
drawings of optimized buildings are produced in re-
sponse to sales enquiries. The system allows the -

manufacturer to respond quickly to an enquiry and to j L
produce general arrangement drawings and a price al-
most immediately. Drawings are produced at a scale ----

of 100:1 as shown in figures 20 and 21. Larger build- _ __
ings such as that shown on figure 20 are drawn on AO
size paper while smaller bu.1 

4
ngs are drawn on Al

sheets. The software decides which sheet size to use.
The specification ror the building is written in the - C

right hand column. E r_

Personnel doors, windows, roller doors and sliding
doors are selected interactively from a cctalogue of
available styles and sizes. Their position is speci- ,,
fied by distance from grid lines.

The &ata to define a building such as that shown
in figure 20 requires approximately 25 minutes to Z-IA

generate. The optimization requires approximately 30 J
minutes comp,,'er time and the drawing takes up to 3
hours, but do-s not require personnel in attendance. _J
The system can process up to 6 such buildings in 24 __ __ f
hours. Previously, drawings such as that in Figure7fl
20 required at least one man week. An editing I j
facility allows the designer to modify locations of II i

archectural detail so that fresh drawings can be pro-
vided if a change in building specification is re- -

Figure 22 shows an enlarged cross-section and the II
elevations corresponding with this cross-section are ' ,9
shown in Figure 23. It is perhaps a tribute to the
skill of the programmers of this part of the project i.
(3 final year civil engineering undergraduates' that
the drawings are often taken o be manual draw ngs. " .......

Conclusions

This paper shows that it is possible to apply
optimization in a commercial situation and that the
cost/benefit is considerable. It is interesting

9-25

* W - ,



Figare z. FAVRiCAT'ON PROCESSES FOR No, of Working
STRUCTURAL COMPONENTS 24Days

1 20

*!- n end f 16

1 12

Irnpr ap 41 0 12 14 16 M0 20
Precast Concrete

ConcVt. Tonnes)
8atchwe FABRICATION OF

COL UMN S

No. of Working
Days

2

Precast coilcrelp
E.1ract Reject(TonnZ.)

figure 5. FABRICATION OF RAFTfERS

No. of Working
Days

-o 2w

E I!e8 16

H ~E L

C,0 8iin

Li c)

EvO T6441 w 1 -14 17 21

4,- Precast Concrete

0z
'A0 JFigure. 6. FABRICATION OFTes

- vnp Nol ofWrkn

*0 4 0

No, ofWrkn

Li)

0- <

LL

j 9-26



0 iI S

LL 0)r)2

Z DUCIncement X int Feasihil
0 n

iIn ~ LL

C))

C 0)

<L Copt iCmdCmueS

00

0 40ys o

0 no

dd
-. nlo ual yes Ro.ate Set Step ,

7 r uybaio Axes size 0

____CONSTRAINED ROSENBROCK
ALGORITHM

1 20
z

. I F
- M(

UC t

- .Q
-a_ "I-

- .0 *n

-7 1 'e -

000

1 12 3 5 6 10
0; wr 1?. No. of Spans

OPTIMAL RESPONSE FOR 1000 M2
BUILDI NGS

9-27



1N ~

2 0

FrameFropa Ig \\ 
1 ( i-c'5inc' O ~ >

2 
\ N

20 "0m' 5

Framne>~ 14 \~Spn\\

Spacing

\\RK 10

59-2



3 -12 N\~-

29 Frame \\

5 i -'cK

13-3"

1 2 3 4 5 6 7 8 9 10
3 4 57 8 10 1 12No. of Bays

Frame~ ~ ~ ~ Spcn m)I-.9 OPTIMAL RESPONSE FOR 1000 M2
F .~ 17. OPTIMAL RESPONSE FOR 1000 M2 BUI LDINGS

BUIL DINGS

40.',---'li

Min) 4 opti mnI

resI io
2T

28

F irel 18. OPTIMAL REPNS BFOR 1000 M2

9-29



-10

F--a

SECTIONd A-A

WEST ELEVATIONJ

EAST ELEVJATION

ri, 23.

9-30



--- /I

/

D-P 9 &S3REINFORCED CONCRETE MEMBERS
OPTIMIZING RELATIONSHIPS

Louis M. Laushey
University of Cincinnati
Cincinnati, Ohio 45221

Summary Introduction

Beams, columns, and beam-columns of reinforced The design theories and codes for reinforced
concrete are analyzed to determine the optimum designs concrete beams, columns, and beam-columns are based
that result in the least total cost of materials. The on methods that assume the design loads will produce
analysis and results are generalized to be adaptable stresses equal to or less than specified maximum
to both elastic and ultimate design methods, including allowable stresses in each material. Cost is
any shape of stress block in the concrete. presumed minimized because the materials would be

stressed to their allowable limits.
A typical linear programming objective function

defines the variable part of the cost of the The ratio of unit cost to stress capacity of
materials. A Lagrangian Multiplier specifies the each material is seldom considered in selecting the
design moments, axial loads, or combinations. The relative amounts of concrete and reinforcing steel,
objective function is simply (CcAc + CsAs); with Ac  nor in the choices from among the materials with
and As being the determined c c o c different ultimate and yield strengths. The cost of

optimum areas of concrete the member or structure is almost always estimated

and steel for loads per inch width, and Cc and C. only after it has been designed.

the costs of unit volumes of the concrete and steel. This paper presents methods that define and

C /f include the relative cost effectiveness of the
The ratios Cc/fc and Csf/s and C ,/f prove to materials, and their cost, before the design is com-

a a pleted. The most economical quantity and grade of
be the clue to the selection of the grades and each material is suggested for beams, columns, and
quantities of the concrete and reinforcing steel, beam-columns. Both elastic and ultimate design
The optimum percentage of reinforcing steel for methods are included.
balanced design was found to be Cc/C s . For the

optimized designs, for stress blocks in the concrete Variable Costs Only Considered

that are rectangular, parabolic, or triangular, the
optimum percent of steel was found to be The final cost of the member or structure is,

C /C of course, the sum of many costs, some fixed and
c /f , being only slightly less than Cc/C s .  some variable. Fixed costs are all those unchanged

l s h ls tn C for alternate designs within the range of practi-
1 + (- ) cality. Fixed costs include administration, super-

s s vision of construction, probably most of the design

costs, and perhaps the cost of formwork, placing
Stresses in the equations are generalized. The and finishing. Variable costs are the costs of the

concrete and steel maximum stresses f and f. are two materials, their sum depending on the amounts
ca

adaptable to the yield strength for ultimate design, of each and their unit costs. The designer can be

or to the usual specified working stresses for flexible in the determination of the variable unit

elastic design. costs, including both current unit costs of
materials and those from any other source. Most

The resulting equations for least cost include conveniently, an estimated multiplication factor

only the variable part of the total cost. Fi.ted could be applied to the unit costs of the materials

costs are set aside temporarily, since their to be delivered to the construction site.

derivatives in the optimization are zero. Fixed
costs then can be added to the minimized variable Fixed costs will drop out in the optimization
costs when estimating the total coat, process, since their derivatives are zero. Fixed

costs can be simply added later to the minimized

The efficiency of the materials, defined by variable cost for the estimate of the total cost.
C /f and C /if, change over time as prices fluctuate Table 1 gives a convenient conversion to the

with changing economic conditions. The percent of ratio Cc/C . The dimensions of the quantities in
teel to be selected should then change also with c r

the current relative costs of the materials, the ratio are dollars per square inch, per unit
Designers might consider changing from a fixed per- length of member.
cent of steel, for a selected combination of /C (O.l5)(S/cu.yd.)
materials, to more or less steel as the relative cost Cc/a (S/ton)
.f concrete to steel increases or decreases.

Concrete Steel S/ton
Comparisons are made between the percent of $/cu.yd. $600/ton $800/ton $1000/ton $1200/ton

s'eel required for bending by the usual elastic
baianced design method and the optimized comparable 40 1.002 0.75% 0.60% 0.50%
triargular stress block, and between the relative 60 1.50% 1.11% 0.90% 0.75%
economies of optimized elastic and ultimate designs. 80 2.00% 1.50% 1.20% 1.'3%
For columns, the most economical grades of materials 100 2.50% 1.87% 1.50% 1.25%
and percent of load carrying steel is suggested by
the efficiency ratiA C c If and C /fs . Table 1
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Generalized Stresses: 3 Cost = 0 = C -3 f fAji
c s S

The stresses f and f can be chosen by the
c s

designer to suit the design method and specifi- Cost 0 = C - 3 f
cations. Using the ultimate design method, A s  s s
f = 0.85 f' usually; and using the elastic method, C Ac c C d

f = 0.45 f' usually. Similarly, for the ultimate d = _-% (. ')fd.

design method, f = f y, and for the elastic method ost Stee

f is some fraction of the yield stress, f C C (1)
sy M M

Throughout, f and f are generalized, to be C Ac a an c a _ pren fsel 2

consistent with the design method and codes. andC d = p (percent of steel) (2)
s

Cost/Stress Ratios Results show the percent of stcel should be the
ratio of the costs per unit volume of the concrete to

The ratios Cc/f c and Cs/f s are measures of the steel, and the cost of the concrete should equal the
c c cost of the steel.

economic efficiencies of the materials. The

dimensions are dollars per square inch divided by The cost of both the concrete and steel should
pounds per square inch, for equal lengths. The C
ratios are simply the cost in dollars per pound of be XM, and the total cost of both, 2 3M = 2 M (- )
load carried. Throughout, it is assumed that the 

j

length of the member has been prescribed. Minimized
variable costs are therefore for a unit length of 2M C

s
member. Or Total Cost = ( -) (3)

s

Width of Beams Further analysis discloses the interestiitg result

that since
It is well-known that narrow, deep beams are

most efficient of materials. If generally, I f kd = f A
2 -l2 c s

M a bd
2 
a Ad, then area A is proportional to d

The optimization process proved this fact. Differ- 2f A 2f
entiation with respect to the width of the beam k = (_s)(s) = ( )

indicated a beam of zero width. Since practical fc c
considerations of ceiling height and steel placement
demand a beam of reasonable width, the analysis is f f f C
made throughout for a beam of selected width. More Defining fcd =1 c k sc
precisely, the moments and loads are those for a c 2 fck- = = C
one-inch width of beam. c c cs

C C
Design Of Bending Members Then C -c (4)

s s
Balanced Design Method

Thus, the ratios of unit cost to average stress

fc, should be the 3ame for each material.

akj Alternative Stress Blocks

SSFig. 2 shows three different stress blocks:

(a) Rectangular, for ultimate design: a=l, =.5

(b) Triangular, for elastic design: a=0.5, B=0.33

..- (c) Parabolic, as an option: a=0.67, B=0.375

Fig. 1. Balanced Design Stress Block f

The variable part of the cost that can be mini-
mized is:

Cost = C cd + CsAs + X [M - fsAsjd]

The value of j in balanced design is As
1 ( nfc . ZT7

J = 1 - nfc, determined from the strengths

and moduli of the materials selected. In the Fig. 2. Alternative Stress Blocks
following differentiation of the objective function,
j is then a constant.
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The variable part of the materials cost is 3 Cost
___ = A 0= C - Af

sA s 3As

Cost = Ccd + CsA + X[M - fsAs(d- --s)]
c a sa OLfc a Cost

3 Cosot = 0 = C - Af
3d = 0 = Cc - '[fsAs

] = 
Cc - '[fsdp 3A c c

cost Cs_~fs 2f2A S/ 26fsp A requirement for the optimum is that

o-s=C-f sd - s -=C -A{f d(l - =Cs/fs = Ce/f c  (9)
s c c

Solving the A equalities gives Where the designer is given the option to select
the amount of steel within a range, say 1% to 8%, he

Cc/C s  should consider choosing the minimum when
c C /fs > Cc/fc and the maximum when Cs/f s < Cc/f c .p 2 C /f (5) as c

1 + - ( c) More astutely, he might consider searching for
S /different grades of steel and concrete that have

nearly the same ratios of C/f. Then both materials

a/d 1 would carry the same load per dollar expended, and
C /f (6) the column design would be optimal.

2B + o (C /fc)It is recognized, however, that the steel has
C c other functions than sharing the applied load. The

Cost of Concrete = AM importance of the steel in adding coherence to the
1 B(a/d) (7a) column must definitely be a determining factor in

selecting the grade and percent of steel to be used.

Cost f Stel = M (1 - 2a(a/d)
Cost of Steel = 1 - (a/d) (7b) Eccentric Load

Cost Ratio Steel Referring to Fig. 3, where the concrete stress
to Concrete = I - 2B(a/d) (7c) block is generalized again

2M'C 2lCc/fc

Total Cost = 2XM = ( 2M CR,(i + c2 C -) (8)
d f s O oC/fs F__ _ _ _

Comparison of Eqns. 5-8 shows a similarity to
Eqns. 1-3. The difference is that the balanced
designs do not involve C c and Csa in k or a, and J. In

comparing the major results, for percent of steel and
total costs:

(a) The percent of steel is Cc/C s (Eqn. 2) for

the optimized balanced design, and somewhat less in
Eqn. 5 by the reduction amounting to the inverse of Fig. 3. Eccentric Load

2B Cc/fc
(1 + - Cs/f

2M C (af a) = C = F+T and fA = T
(b) The total cost ib -d ( faj) for the optimized s

5+
balanced design, and somewhat less in Eqn. 8 by the F F+T

C /f

a M = Fe = C(d/2 - 8a) + T(d/2)

Design Of Axially Loaded Members d _ F )+ Td
(F + T)( f -2

A generalized approach that envelopes the choice c
of design method or code specifications is used here
again. In all situations Fd + Td (F + T)

2

2 af
c

F=Af +Af
as CC

and Cost CcA + CsA + X[F -f As- fcAc
]  

Cost Ccd+CsAs+'[M --- fsAsd + 12
c c as 9 a a

1
CotC 2 - f d+ f A
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aCost F
ad 0 = Cc - X[f + fsAs

]  
Elastic and Ultimate Designs. The comparison of

2 these two optimized methods must consider the load

factor LF applied to M for ultimate designs. Elastic
aCost 0 s= C - 2d (F+fsAs)fs1 or ultimate stresses must be used to conform with
As  a f af the elastic or ultimate moment.

s c
After some algebra For the triangular stress block using elastic

loading limits

Cc F 2 Cc/C s  1 2M C

C-d~ 2 fc scost L
P2 C /f (10) se

Cs/fs where f is the maximum elastic working stress in

pf the steel

fcf +f d For the rectangular ultimate stress block
c c

Eqns. 10 and 11 show the effect of the eccentric C 21 C f 2M(LF)Cs(1.1+)
axial load F in reducing the required percentage of Cost = 2M(LF) s, + -h =

steel and increasing the area of the compressive d sy
stress block, compared to pure bending.

Comparison of Methods where f is the yield stress of the steel.

and Conclusions

The ratio of optimized materials costs forBeams in Bending. The optimum total cost was ultimate to elastic designs would be
found to be 2XM for all design methods and all
concrete stress blocks.

f
C Cost Ultimate f

For the balanced design method, X = and Cost Elastic (LF)(f-)(l.lj±)
5~ sy

p = Cc/C s . For stress blocks that are rectagular,

triangular, or parabolic, where the designs using Conclusions. The scope of this paper was not intended
C C to include current prices and thus show more
te f pd' precisely the savings that could result from optimum
a s d esigns. A comprehensive survey would be needed for

Cc/C s  different types of construction, under different
and p 2a C /f Their cost, compared to the conditions in different locations of the country.

1+ -( c c)
oC s Although optimum designs might prove to offer

C If only small savings in the cost of construction, they4cc
balanced design, is the amount 1 + ( C7f-)(j). are at least as easy to use as the present design

a s methods. Of consideration in their usage is the
Cc/fc opportunity for a better understanding and appli-

The size of (4/3Z;---) is of the estimated cation of the economics involved in the mutual

s  interaction of two materials working closely to-
approximate order of 0.1, since Cc/C s is probably of gether.

the order of 0.01 (see Table 1) and fs/fcof the
5 cFinally, optimum desig- "ovide flexibility

order of 10. For this approximation as an average in choosing compatible grades of materials and their
of 0.1, the value of j would have to be at least relative amounts for the most economical cost.

1
1 + 4/3(0.1) - 0.88 in the balanced design to be as
economical as the optimized elastic design. Further
determination of competitive costs must be determined
in each practical application using the more exact

C If
amount of c c
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ACCESS COMPITER PROGRAM
M -?~o ~- FOR THE SYNTHESIS OF LARCE STRUCTURAL. SYSI'EMS*

C. Fleury , R. K. Ramanathan', M. Sa limi . I. A. Sihmit Ir.

S, mmary A number ,I invest igators (I, 2) hijve dealt with
the difficulties t ited above b% tuplin j a user

Recent extensions to ACCESS-3 computer program for oriented gvneral-purpose analvsis progrim such is
structural synthesis are described herein. The origi- SPAR with an efficient general-purpose optimiation

nal program was limited to the optimization of rela- program such as COMIN 'r SUM. he resiI g co It

tively small problems having truss, membrane and tion of programs have 'ntributed uotal \ t i widUr

shear panel elements. The new extensions include: acceptanice 0 the I,,rmal , t inizat in ,qt~r,, h.s

restructuring of the program to allow efficient out- viable design tools.
,,f-core solution of the large matrices encountered

during analysis, approximate problem generation and An' a I teroat ive approah t, ren.sdv the samc. diI I i-

gradient evaluation, increasing the number of degrees- culti.s is implemented in the capabilitv descrihed

of-freedom per node from 3 to 6, and adding a tri- herein. The approaIh .-iims at dcvt'loping an analysis-
angular plate element which admits combined membrane synthesis computer program whih can handle the opt i-

and bending behavior. mization of large structural systems with high elti-

ciency. It is based on the premise that greater

Like its predecessor, the new version of the pro- efficiency ian be achieved by creating a dedicated

gram combines the approximation concepts with primal special-purpose rather than a general-purpose

or dual formulations to create a highly efficient analysis-synthesis program. Such special-purpose

optimization tool. However, to focus on the greater analysis-synthesis program is developed ) introduc

efficiency of the dual approach, extensions were im- ing new capabilities and extensions to the existing

plemented in the program to allow using the dual ACCESS-3 computer program (3). The ACCESS-3 program

formulation for structures with pure or combined bend- waq selected because it combined approximation con-

ing and membrane behavior, subject to constraints on cepts (design variable linking tetporary deletion of

frequencies, displacements and stresses. This re- uncritical constraints, and the generation of high

suited in two dual options; a simple dual and an ex- quality explicit approximations for the retained con

tended dual. Examples are given to compare the rela- straints) with either a primal or a dual formulation

tive computational efficiency of each of these to create an extremely efficient tool with several

schemes, optimizers to choose from. However, being a research

type program, the original ACCESS 3 was intentionaliv

limited to the solution of relatively small problems
I. Introduction having truss, membrane or shear panel elements.

In spite of the many recent developments of com- In order to htandle the opt imization of structures

puter programs for the optimization of structural with relatively large number of degrec'-ol-freedom,

systems, there has not been a corresponding degree of design variables and c-nstraints. the program was

their utilization by the civil, automotive and aero- restructured to revise the preprocessor, allow the

space design community. Many of the design problems use of six degrees-of-freedom per node, and per-it

that can truly benefit from a formal optimization iuit-of-cire solution of the large matrix equations

procedure typically involve relatively large number encountered during the analysis phase. Also, finite

of degrees-of-freedom, design variables, and con- elements which admit pure bending or combined bending

straints. They also require the availability of vari- and membrane (axial) behavior were added to satisfy

ous types of finite elements for structural modeling, the need for a more comprehensive collection if ele-

While these requirements do not present significant ments. This required extensions that preserve the

difficulties from the point of view of achieving an high efficiency of the dual formulation.

optimum design€ they place real limitations on the

economic advantages of optimization methods as routine The following section gives the theoretical back-

design tools. ground with emphasis on the dual formulation and tile

reasons for requiring special finite element formula-

tion depending on the element type. Sections 3, 4,

and 5, respectively, describe the scope of the new
__________________capabilities, numerical examples and cionclusiions.

*This paper presents one phase of research 
carried

out at the Applied Mechanics and Technology Section,

Jet Propulsion Laboratory, California Institute of

Technology, under contract NAS 7-100 sponsored by the I
National Aeronautics and Space Administration. The
work was supported by Drs. S. Venneri and L. Harris, The structural optimization problem treated

Materials and Structures Division, Office of Aero- herein is one in which the total weight W is to be

nautics and Space Technology, NASA. The programming minimized by determining the member sizes a1 such

support by C. Wong and J. McGregor of the Jet Pro- that their behavior constraints (on deformations,

pulsion Laboratory is gratefully acknowledged. stresses, and frequency) and side constraints are

'Aerospace Laboratory, University of Liege, Belgium. satisfied. This leads to the mathematical program-
2
Civil Engineering Dept., University of Southern ming problem of the primal form:

Calif., Los Angeles.
3
Applied Mechanics Technology Sec., Jet Propulsion N

Laboratory, California Institute of Technology, Minimize W w1 ai (.)

rs -ae n a. 
i- I

4
School of Engineering and Applied Science, University

of California. Los Angeles. Subject to' behavior constraints
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h (a -U (a) 2t 0 j=I,2 .... M (1.2) It was this view which led to the adoption in ACCESS-3
-ij ~ of the highly efficient dual formulation.

and side constraiinLs on tile i
t h 

design variable In the dual formulation the primal problem of
equations (2) is replaced by maximization of the dual

.1
- 
ai 

- 
ai (1.3) function X(d), subject to non-negativity constraints

on the dual variables d.
where

w. is a coefficient that is constant for each of Maximize
the N-groups of linked direct design variables

a I N d . A x (d ) - d .

denotes a typical behavior constraint having - i. i
J an upper bound L. on the current value U.(a), =1 jIEm (3. 1)

and ai, 4i are the upper and lower bounds on the
direct design variables al.

subject to d. -0 j (3.2)
Although the objective weight function (1.1) is J

linear in ai, expression (1.2) for the behavior con-
straints hj is nonlinear and implicit. This implicit w 2
nonlinearity is computational ly burdensome, especi- where x = x if (3.2
;illy when dealing with large statically indeterminate iC(
structural systems. A complete finite element analy- I
sis is required for each numerical evaluation of the
behavior constraints, and many iterations are usually wirequired before achieving the optimum design. x, 

= x i  if - e _ (.4)

Ci

I. Axial and Membrane Behavior

In the original ACCESS-3 code (3). the implicit otherwise xwth C A dj CA
nnlinearity is rermved for the axial and membrane (A wi5
elements by replacing the direct design variables ai jEm
by their reciprocal (intermediate variable), and by
expanding the corresponding behavior constraints in The efficiency of the dual formulation of equa-
d first order Taylor series. This results in the f1l- tions (3) is due to the fact that maximization is
lowing convex, separable and explicit primal problem performed in the dual space whose dimension is low
with linear constraints and nonlinear objective compared to its primal counterpart, and depends only
fuonc tion: on the number of critical constraints (acrCm) in each

stage. Also, the non-negativity constraint (3.2) is
N algebraically simple. Once the dual variables dj are
N known, one can compute the values of the intermediate

Minimize W = /x (2.1) and hence the direct design variables xi, ai in
closed form.

Subject to 2. Combined Bending and Membrane (Axial) Behavior

FUO + N The key to the high efficiency of the dual formu-
L(x) j- U 0j xI - x0 - 0 lation of Eqs. (3) lies in starting with an explicitj j -Jxl and separable form of the approximate primal problem

that is demonstrataly convex. This assures the
N equivalence of the primal and dual formulations (i.e.

U C - A no duality gap). For axial and membrane elements,

1  ~ 0 j E m (2.2) high quality explicit approximations were obtained oy
i=l using the transformation (2.4) between the direct

design variables ai and the intermediate variables xi.
ndxt-< x i  x t  (2.3)

and i 5 x i (2a. Extended Dual. In the case of pure bending,
since the bending rigidity of a plate element with

where xi  1 I/a (2.4) thickness tt is proportional to t
3
, it is seen that

i the same transformation (2.4) mayinot yield high

quality approximations for the displacement, fre-

The Ctj coefficients represent gradients of the quency and stress behavioral constraints. In this

response quantity of interest with respect to xi. regard, a number of possible transformations have

These coefficients are assumed constant within each been suggested (4). For example, in the pure bending

design stage or iteration. Also, m is the set of of plate/shell elements, introducing intermediate
retained behavior constraints for the current stage, design variables yt. I/t assures separability and

and xi and x1 are respectively, the lower and upper convexity of primal problems with displacement or
move limits for that stage. frequency constraints. In combined membrane and

bending, both transformations xi - 1/ti for membrane
While the primal problem in equations (2) may be and yi - I/t3 for bending may be used simultaneously,

partially solved as a sequence of unconstrained min- depending on fothe type of behavior constraints.
imization subproblems (using an interior penalty func-
tion formulation) before resizing and performing a new With respect to the constraint type, it is pos-
analysis, it is more efficient to fully exploit the sible to first decompose the total stiffness for ele-

convex, separable and explicit form of equations (2). ments in the I-linked group Into a membrane component
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k and a bending component kB, so that to a closed fo, solution as was the case in equa-
tions (6.3, 4, 5). As such, a numerical solution

I kA ( must be invoked. For this reason, the extended dual
k X. i k scheme was not implemented for the stress couW-raints.k1 = i 3 i(4

1L X.

b. Simple Dual. It should be noted that having
to compute two sets of gradients in the extended dual

Superposing the reciprocal forms used successfully above (for combined membrane and bending), may or may
in the pure membrane and bending problems suggests an
explicit approximation of the form: not be computationally advantageous depending on the

rate of convergence to the opti'im design. This leads

N one to the view that 'aopting the xi transformation
o B of equation (2.4) may be omputationally rewarding,

h (x) U _ CA + B 3 ? 0 Em even though it does not yield high quality approxi-
l (C mations of the displacement, frequency, or stress

constraints for combined bending and membrane be-
havior. In this co-P, an explicit approximation of

A B any of these constraints may be written as follows:where C and C~j, respectively are matrix coeffi-

Cients representing gradients of the displacement or N
frequency membrane component with respect to xi, aid h. (E C x. 0 jEm
bending component with respect to yi" The correspond- h - ij
ing dual formulation then takes the form: i=1

Maximize 
which A + ) with CA and CB respec-

ic i i ij ij
N w A E 3 tively are matrix coefficients renresenting gradients

,(d) + dj C + with respect xi for the membrane and the bending com-
I L - 1 i I ponents of the response quantity in question. With

j jEm equation (8) for the simplified dual, the combined
membrane and bending behavior reverts to the original

d (6.1) dual statement of equations (3), in which C . is now
Zd Jj replaced by C1 ~ 13j Em Cij

"

From the above theory, it is clear that in ,rder
to take advantage of the powerful dual formulation,

subject to d. ? 0 yjEm (6.2) one must cast the element matrices (such as stiffness
J and mass and their gradients) as coefficients of the

selected intermediate variables. This must be done
during analysis, generation of the approximate prob-

A x2 B 4 lem, and gradient evaluation. The required form of
where xi , if C i i + C 2i 

5 
W (6.3) these matrices de:pends on the element type. Since

this is not usually needed in general-purpose analysis

if cAX - w B 4 programs, these requirements seem to favor the devel-

i  i i wi (6.4) opment of special-purpose analysis-synthesis capabil-
ity over modifying general-purpose analysis codes.

Otherwise xi is obtained from a closed form solution
of the fourth order equation 3. Scope of New Program Capabilities

A2 B x4 The structural synthesis problem stated by equa-
-wi + i  + C i = 0 (6.5) tions (1), (2) and (3) for axial and membrane behavior

was carried out in the original ACCESS-3 program
usir, the approximation concepts approach along with

The following notation his been used above various optimization algcrithms; PRIMAL2, NEWSUMT,
DUALI and DUAL2. The major limitations of the pro-

A A and CB B (6. 6) gram were that during the analysis phase, the complete
and Cjl 3_ i stiffness matrix of the structure for static analysis

jem jEm problems, and the complete stiffness and mass matrices
for frequency analysis problems were required in core.

As for the stress constraints for combined plate Moreover, the preprocessing data for each element such
membrane and bending behavior, they may be approxi- as thickress, area, length, density, direction
mated by the explicit expression cosines, and unit stiffness and mass matrices were

kept in core. These requirements severely limited the
N size of structural problems that could be analyzed

(x) -' (Ujxi 5 Bx2~ ; em (7) and optimized using the ACCESS-3 code. The program
3- -i + Siji ; was also limited to the solution of problems that

i= I could be modeled only by axial, membrane, and shear'

A B panel elements having a maximum of three degrees-of-
where the Sij and S matrix coefficients, respec- freedom per node.

tively represent gradients of the stress membrane To overcome the above limitations and enhance
component with respect to xi, and the stress bending the program capabilities the following extensions
component with respect to Yi" were implemented:

Although it is still possible to employ equation 1. Each node in the structural model is now
(7) in constructing the dual problem, the resulting allowed to have as many as six degrees-of-freedom
relationship between xi and d does not lend itself per node. This is a necessary step to permit the
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inclusion of a larger variety of finite elements, triangular plate elements were used instead of rec-
tangular elements. Figure I also shows the symmetric

2. A triangular plate membrane-bending element model of one quarter of the plate, and Table I lists
(5,6) was added in order to broaden the class of prob- the applied loads. The plate material properties
lems that can be optimized by the program. The addi- are: modulus of elasticity = 28 x 106 psi, Poisson's
tion of a rectangular plate membrane-bending element ratio = 0.3, and weight density = 0.248 lb/in

3
. The

as well as several beam elements with various cross imposed constraints include: minimum gage = 0.02 in.,
section shapes are under development. upper and lower bounds on the out-of-plane displace-

ments = ±0.02 at the center (node 1) and at the

3. With regard to the ability to handle large corner (node 64), and maximum allowable Von Mises
size problems, the data management scheme was restruc- stress 0v = 25,000 psi imposed on all finite elements
tured and the original in-core solution algorithms in the model.
were replaced by out-of-core solution schemes. The
stiffness, mass, and connectivity matrices for each Instead of Von Mises criteria:
group of linked elements are now stored group by
group on direct access files. After generation of [2 2 [22 + 1

all the group matrices is completed, they are recalled v xy
group by group during the assembly of the global

matrices and the evaluation of the displacement and Reference (I) employed Hill's criteria:
frequencv gradients.

To compute the stresses luring a given design x y x v
matrices along with the connectivity array are stored L 12 12
on a separate direct access file. These stress ma-
trices are recalled element h, eL@. nt when forming Table I Applied nodal forces for Example I
the stress constraints. Subsequently, they are re-
called selectively when forming the gradients for Applied nodal forces,
the retained potentially critical or critical con- Nod., number(s) in pounds
straints. This removes the necessity to save all
element property data (in the high speed core during 1 357.34
the entire analysis and approximate problem generation 2-7 142.86
pha~es. 8 200

9, 17, 25, 33, 41, 49 171.43

Thre algorithm for solving the static and eigen- 57, 64 192.86
val 'e problems use the same out-of-core solution 58-63 214.86
teciniques of Ref. (5). The subspace iteration tech- 16, 24, 32, 40, 48, 56 257.14
niq~ie along with the Sturm-sequence check is used for
finding the eigenvalues. It involves breaking of the
global stiffness, mass, and displacement/load matrices The optimization starts with a feasible design
into blocks. At any one time, only two blocks of having uniform thickness t i = 0.71 for all 98 ele-
either the stiffness or the mass matrix along with ments in the 32-linking groups. The corresponding
two blocks of the displacement/load matrix must be total weight for the quarter plate is 5.2824 lb.
in hih speed storage. The total number and size of After 12-stages, the design converged to 2.3859 lb
each block are internally computed depending upon the when the simple dual approach was used. Figures 2
number of unrestrained degrees-of-freedom and band- and 3 respectively show the optimum distribution of
width of the entire problem, as well as on the size plate thickness and the total weight iteration his-
of available blank common storage. The decomposed tory. At the optimum, the out-of-plane displacement
stiffness matrix is computed two blocks at a time and at the corner (node 64) was near critical, and the
saved on direct access files. These ate subsequently stresses for most of the elements were either
recalled during back substitution, during eigenvalue slightly critical or near critical. In Ref. (1), the
solution and during evaluation of the displacement same example was solved using a primal formulation
gradients. with cubic extended interior penalty function. The

differences in the thickness distribution and in the

4. In order to capitalize on the greater effi- total weight between the present results and those of

ciency offered by tho dual approach, both of the Ref. (1) may be attributed primarily to the employ-

simple and extended cvial formulations discussed in ment of different stress criteria as mentioned above.

Section 2 were implemented in the program. The ex-
tended dual can be used only for displacement and To illustrate the ability of the program in

frequency constraints. However, the simple dual handling the optimization of larger problems, the

formulation (DUAL2) as well as the previously avail- same four-point supported plate was solved as half

able primal formulation (NEWSUMT) can be used for the the plate, rather than one quarter. This more than

displacement, frequency, and stress constraints in doubled the number of unrestrained degrees-of-

problems having membrane (axial) and bending behavior, freedom, and doubled the number of elements as well
as the number of linked design variables. The same
stress, displacement, and minimum gage constraints

4. Numerical Examples were imposed as before. Here again, starting with
0.71 in. uniform thickness, the optimum was achieved

Example I after 12-stages, and the correspondinp thickness dis-
tribution was symmetric to the third significant fig-

Plate supported at four points. *This example tire. The results were Identical to Figs. (2) and (3).

consists of a 10 x 12 in. rectangular steel plate for
which similar results has been previously reported Example 2
(I). The plate is subjected to line loads along the
central and boundary lines as In Fig. I. The finite This example is intended to compare the computa-
element model and design variable linking scheme tional advantages of the simple and the extended dual
used are essentially those of Ref. (I), except that schemes discussed in Section 2. The problem selected
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is the four point supported plate of Fig. 1. The Table 3 Optimal thickness distrihui,,n, E:xample 4
constraints used here are those on minimum gage on all
elements and on the out-of-plane displacements at Group No. 5 4 3 2 1
nodes I and 64. However, no stress constraints are
imposed. The optimum thickness distribution and the Primal 0.5255 0.5212 0.5201 0.5200 0.5201

total weight iteration histories are shown in Figs. 4 (10-stages)

and 5 for the two options. The move limits used were Simple dual 0.5252 0.5209 0. 197 0.5196 0.5196
the same in both cases. (5-stages)

Contrary to what may be expected, Fig. 5 shows
that the results of the extended dual seem to be con-
sistently inferior :o the simple dual. Although the 5. Conclusions
first is based, on more accurate approximation of the .
constraints tan the latter. Furthermore, the ex- A special-purpose analysis synthesis code was
tended dual required about 50% more computations per developed to handle the optimization of structural
stage over the simple dual. systems with relatively large number of degrees-ol-

freedom, design variables, and constraints with high

Examp, 3 degree of efficiency. The code is versatile in that
it combines the widely-used approximation concepts

To assess the results obtained in the previous with either primal or dual formulations. The primal

example, further comparison between the two dual op- approach is known to have the advantage of applicabil-
tions was made for the cantilever plate problem in itv to a wide class of problems with various con-
Fig. 6. The plate consists of 10 elements linked in straint types. However, Examples (1) and (4) show

5 groups (underlined is the group number). The that the simple dual apprc.ach is more efficient than
material properties are: elasticity modulus = lOx the primal, in addition to its applicability to prob-
106 psi, Poisson's ratio = 0.3 and weight density = lems with constraints on frequencies, displacements
0.3 lb/in.

3
. A mome.t = 225.0 lb/in, is applied and stresses, with or without bending behavior. It

about the y-axis at the free end at each of node I should, therefore, contribute to a wider acceptance
and 2. The maximum allowed out-of-plane displacements of the formal optimization procedures as viable design
at nodes I and 2 are ±0.5 in., and lower bounds are tools.
placed on the lowest three eitenvalues squares (2.8 X
105, 5.0 x 10

5
, and 10.0 X 10). On the other hand, although the extended dual is

based on more accurate approximations of the dis-
Starting with a feasible design having 0.5 in. placement and frequency constraints over the simple

uniform thickness, the optimum thickness distribution dual scheme, Examples (2) and (3) seem to indicate
was computed (see Table 2). At the optimum, both the that their relative efficiency is problem dependent.
simple and the extended dual produced near critical For this reason, further investigation and testing
constraints on the first eigenvalue and the end dis- of the extended dual scheme will be carried out.

placements. Unlike the previous example, the intera-
tion histories shown in Fig. 7 for this example show

that the extended dual was more efficient than the

simple dual.

Table 2. Optimal thickness distribution, Example 3 References

Group No. 5 4 3 2 1 I. Prasad, B., and Haftka, R. T., "Optimal Structural

Simple 0.4391 0.3732 0.3734 0.3167 0.3000 Design with Plate Finite Eltments," Proceeding of
Dual the ASCE, Journal of the Structural Div., STII,
(6 stages) Nov. 1979.

Extended 0.4231 0.3975 0.3628 0.3149 0.3000 2. Sobieski, J. S., and Bhat, R. B., Adaptable
Dual Structural Synthesis Using Advanced Analysis and
(4 stages) Optimizatien Coupled by a Computer Operating

System," Paper No. 79-0723 presented at the AIAA/
ASME/ASCE/AHS 20th Conf., St. Louis, Missouri,

April 1979.

Example 4

3. Fleury, C., and Schmit, L. A., Jr., "Dual Methods
The same cantilever plate problem of the previuus and Approximation Concepts in Structural

example was used here to compare the performance of Synthesis," NASA-CR-3226, Dec. 1980.
the primal approach of equations (2) using NEWSUMT,
and the simple dual of equations (3), (8) using DUAL2. 4. Fleury, C., "Optimization of Large Flexural Finite
The Imposed constraints for this problem consist of Element Systems," presented at the NATO Advanced
maximum out-of-plane displacements at nodes I and 2 Study Institute on Optimization of Distributed
of -0.5 in., and maximum yield stress of +100,000 psi Parameter Structures, Univ. of Iowa, April 1980.
(for all elements) based on Von Mises criterion.

5. Bathe, K. J., Wilson, E. L., and Peterson, F. E.,
In this case, the starting uniform thickness of "SAP-4 Structural Analysis Program for Static and

0.5 in. was infeasible for stresses. The minimum Dynamic Response of Linear Systems," Report No.
weight was achieved by both schemes; after 10 itera- EERC 73-11 June 1973, Univ. of Calif., Berkeley.
tions using the primal approach, and after 5 itera-
tions when the simple dual was used. The optimal 6. Clough, R. W., and Felippa, C. A., "A Refined
distribution (Table 3) had near critical stresses Quadralateral Element for the Analysis of Plate
which governed the design. The iteration histories Bending." Proceedings of the Second Conf. on

in Fig. 8 clearly show the superiority of the simple Matrix Methods in Structural Mechanics, Wright-
dual over the primal approach. Patterson Air Force Base, Ohio, Oct. 1966.
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A PROGRAMING SYSTEM FOR RESEARCH AND APPLICATIONS
&IN STRUCTURAL OPTIMIZATION

Jaroslaw Sobieszczanski-Sobieski* and James L. Rogers, Jr.**
NASA Langley Research Center

Hampton, VA 23665

Abstract SPAR - a particular analysis program used in
PROSSS

The paper describes a computer programing 
system

designed to be used for methodology research as well
as applications in structural optimization. The Introduction
flexibility necessary for such diverse utilizations is
achieved by combining, in a modular manner, a The purpose of this paper is to describe a
state-of-the-art optimization program, a production structural optimization program, called a Programing
level structural analysis program, and user supplied System for Structural Synthesis (PROSSS), which
and problem dependent interface programs. Standard uniquely combines the almost unlimited flexibility
utility capabilities existing in modern computer required of a research tool for method development,
operating systems are used to integrate these with the reliability and simplicity of use expected
programs. q2bAs approach results in flexibility of the from an application tool.
optimizat ft procedure organization and versatility in
the formulatilon of constraints and design variables. To provide a rationale for the implementation
Features shown, in numerical examples include: (1) approach presented, the paper begins with a review of
variability of structural layout and overall shape the requirements posed by the intended uses of the
geometry, (2) static strength and stiffness program in both research and applications. The
constraints, (3) local buckling failure, and (4) implementation options are examined next, leading to a
vibration constraints. The paper concludes with a programing system alternative as a logical choice.
review of the further development trends of this
programing system. The principal components of the system, the way

they are integrated, and the execution options are
examined; and numerical examples are provided to

List of Symbols illustrate the salient features pertinent to research

and application. Included in the examples is a
F - objective function description of a version of the system operating in a
- - function in general sense, denotes F distributed manner on a mainframe and a minicomputer.

or g
g - constraint function The paper concludes with a brief review of the
K - stiffness matrix development trends stemming from the system capabi-
L - load lities and the current directions of the
m - number of constraint functions state-of-the-art evolution.
n - number of design variables
P - load factor used as a variable
Pt - magnitude of the target level for P Structural Optimization Application
t - thickness and Research Requirements
u - vector of displacements
v - velocity In general, the function of the optimization

- vector of design variables procedure is to find a vector of design variables
Xi  - a design variable that minimizes an objective function F(i) while
zi  - vertical displacements in a box beam satisfying constraint equations g(l). In a standard

- cumulative constraint notation:

Subscripts: F(X) min ()

i - design variable subject to
j - constraint function
o - original value in extrapolation gj( ) < 0 1 < J - m (2)

Acronyms: In various applications, the variables in eq. I

and eq. 2 acquire different meanings, and solution of
A-O Processor - program converting the analysis the equations with acceptable efficiency and accuracy

program output to the optimization may require a fairly elaborate numerical process.
program input Therefore, building a computer program to support bothCONMIN - a particular optimization program the development and application of structural
used in PROSSS optimization methods poses a unique challenge of

O-A Processor - program converting the optimization making the software flexible and adaptable, yet

program output to the analysis reliable and easy to use.program input

PROWS - Programing System for Structural Diversity of Applications
SynthesisSynthesis_ The need for flexibility and adaptability stems,

in part, from the need to be able to use the program
H Read, Multidisciplinary Analysis and Optimization to optimize structures of various types, e.g., an
Branch, LAD aircraft fuselage, a large space truss, or a nuclear

:: Computer Scientist reactor vessel. A single program general enough to

answer all analysis needs for all the types of
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structures of interest, and efficient enough to Considerations Leading to Programing
perform well in an optimization loop at a reasonable System Approach
cost, is not available. Consequently, an open-ended
library of analysis programs has to be used. Regardless of the manner of iuplementation, the

basic function of an optimization pro>)LIr Is t)
In addition to the variety of types of carry out an iteration shown by a flowchart in 'igure

structures, a variety of optimization problem formula- 1 in which a search algorithm and an analysis
tions that differ by unique definitions of the design algorithm are labeled Optimizer and Analyzer. The
variables, constraints, and objective function will be procedure can be implemented on the computer in a
,f interest for each type of structure. Therefore, number of ways illustrated in figure 2 and reviewed i%
these portions of the code in which these formulations this section in order of increasing application
are embedded should be easy to replace. flexibility.

Diversity of the Optimization Techniques and The discussion begins with a "closed box"
Procedures approach which is the least flexible, but potentially

the most efficient in execution, the simplest to use,
A distinction between an optimization technique and progresses to the concept of a programing system

and an optimization procedure will be useful in this of potentially complete generality. Between these two
discussion. An optimization technique is a search extremes, the concept of concentrating the searsh and
algorithm whose function is to find a constrained analysis functions in separate subroutines is
minimum in a space defined by the design variables in discussed.
which the objective function and constraint functions
are computed by another algorithm--an analysis Special Purpose "Closed Box"
algorithm. A few examples of optimization techniques
are: (1) a nonlinear mathematical programing using an By definition, the inner workings of a "closed
interior or exterior penalty functions (Sequential box" program (fig. 2(a)) are set up for a
Unconstrained Minimization Technique, SUMT, ref. 1), predetermined scope of applications but not for easy
(2) a usabld-feasible direction algorithm, ref. 2, (3) access and modification by the users. This leaves the

a linear programing algorithm (e.g., ref. 3), and (4) users with the input data as the only means for
optimality criteria methods, such as the fully controlling the program functions within a range of
stressed design method. An optimization procedure is options prescribed by the program developers. This
an entity of higher order and as such may command adaptability limitation is an inevitable consequence
execution of several optimization techniques, analysis of the "closed box" approach.
algorithms, and auxiliary housekeeping and
user-interface algorithms. Two examples of On the other hand, developers of a "closed box"
optimization procedures are: (I) a simple arrangement program, being free of the user access and modifi-
in which the executions of a search algorithm (an cation considerations, can gear the program
optimization technique) and an -inalysis alternate organization for maximum computational efficiency,
until the search algorithms localize a constrained frequently by means of dispersing and intertwining the
minimum, and (2) a more complex arrangement in which a search and analysis functions with each other. Thus,
linear programing algorithm is combined with the exact in addition to being efficient, the program is
and approximate analyses to solve a nonlinear practically impossible to "tinker" with and,
optimization problem as a series of linearized sub- therefore, maintains a permanent configuration and a
problems. repeatability of results. These are important

features expected from a production tool in an
By its very nature, the optimization methodology engineering organization that might be concerned with

development requires use of many existing techniques a large number of applications of a limited variety
and procedures and a continual creation of new ones, and driven by stringent project deadlines.
hence, only a program of practically unrestricted
flexibility in its organization will qualify as a test Search and Analysis Algorithms as Subroutines
bed for such development. If the same test bed
program is also to be used for solving quickly and Under this approach, shown in figure 2(b), the
efficiently the application problems as a routine user has available the two basic elements of an
support of ongoing design projects, then there is a optimization procedure in the form of separate
need to reconcile the seemingly contradictory require- subroutines. It is up to the user to assemble these
ments of "researchy" flexibility on one hand, and the subroutines in a functional program and to include

reliability and relative constancy expected from a various convenience features such as stop and restart,
production tool, on the other hand. intermediate result displays, and special termination

criteria.
Hardware Adaptability

This implementation approach has the advantage of
An additional consideration in development of an modularity, so that everything that depends on the

optimization program for research and applications is physics of the program can be isolated in the analysis
a need to capitalize on the opportunities periodically subroutine while the best available search algorithm
created by improvements in computer hardware. One can be selected and coded in the search subroutine.
such recent opportunity is distributed computing However, the obviously attractive option of using
which, potentially at least, should improve preexisting codes for these subroutines is restricted
computational efficiency by judiciously exploiting by the practical limitations the main
special features of the dissimilar computers in a program-subroutine organization imposes on the
network, and performing calculations in parallel subroutine size.
whenever possible. It will be shown later that
software flexible enough to meet the requirements Programing System
pointed out in the previous two sections can also be
adapted rather easily to distributed computing. In comparison to the main program-subroutines

arrangement, the concept of a programing system shown
in figure 2(c) is the next logical step toward greater

application flexibility. In a programing system (term
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introduced in ref. 4), a user must furnish problem explicit command. A string of such commands
dependent code modules in addition to input data, in interlaced with the input numerical data is written by
contrast to an ordinary program or system of programs the user for the problem at hand, and will be called a
which need only the input data to execute. A runstream in this paper. The data base facilitates an
programing system allows the use of large stand-alone efficient and selective data transfer from SIAR to
programs, or even systems of several large programs other programs, and the individual processor control
for the analysis and optimization functions, and allows the user to limit the number of processors
isolates the definitions of the design variables, executed repetitively in an optimization loop. For
objective function, and constraints in separate this purpose, the analyzer is divided into a
problem dependent, user supplied programs executed nonrepeatable part executed once at the beginning of
between the Optimizer and the Analyzer. The system is the procedure and a repeatable part executed many
controlled by an executive command language and other times in the optimization loop. Specifically, for
software utilities that constitute a connectiyg invariant overall geometry, the nonrepeatable part
network, thus, in principle, any optimization generates nodal coordinates, material properties,
procedure can be implemented, including optimization constraint data and defines the loads. Tie repeatable
problems that in their analysis require many engineer- part generates solutions of the load-deflection
ing disciplines in addition to structures. An example equations.
is a system for optimization of airframes including
aerodynamic loads and aercelastic effects, described Computation of gradients. Most of the efficient
in references 5 and 6. The concept of a programing mathematical optimization algorithms require not only
system for optimization in general is a multifaceted the objective function and the constraint values but
subject for which literature references exist (e.g., also their gradients to be evaluated for a given set

refs. 4 and 7), therefore, the focus of the discussion of input values of the design variables xi. The
which follows is on a particular programing system gradients can be computed by a finite-difference
specialized for structural optimization, technique or by an analytical technique. An example

of an analytical gradient is the differentiation of

the matrix load-deflection equation, Ku = L, with
Features of the PROSSS System respect to a design variable xi. The result is a

matrx equation

The particular system to which the attention is a u a K e at

now turning is called PROSSS for Programing System for K a u . u + a ()
3tructural Synthesis. Its principal components are, 1 1 1
in general terms: optimizer, analyzer, processors
interfacing optimizer to analyzer (0-A) and vice versa from which au/3xi can be obtained at a relatively
(A-0), and the connecting framework. Executions of small computational cost by reusing the previously
these components can be sequenced in various ways as decomposed stiffness matrix K, as shown in references
required by a particular optimization procedure. The 10 and 11. In SPAR, the analytical gradient
components and the procedure execution options are computation is implemented by means of runstreams
reviewed in this section. which are established specifically for this purpose

and are a permanent part of PROSSS.
Analyzer

0Optimi zer

The function of the analyzer is 
to compute values

of the behavior variables which characterize the The function of the optmizer is to calculate a
physical object's response to the input quantities. new vector of design variables ' on the basis of the

values of the objective function and the constraints,
Overall characteristics. In PROS, the analyzer and, optionally, their gradients returned by the

is the finite-element program SPAR documented in analyzer in response to a previously defined vector
reference 8. SPAR was selected for the analyzer's X.
function because of its computer efficiency,
modularity, and data base capability. Input In POSSS, the optimizer is the program CONMIN
quantities consist of structural cross-section (ref. 12), which is based on the mathematical
dimensions, material properties, element connectivity nonlinear programing technique of usable-feasible
data, nodal point coordinates, and loads. Output directions. In this report, CONKIN is viewed as a
quantities consist of displacements, internal forces, "black box" and attention is focused on the type of
stresses, eigenvalues, and eigenmodes for vibration data it requires from the rest of the system, and on
and buckling, etc. Another output quantity is the its execution options, since these features influence
structural mass which is commonly used as the organization of the programing system.
objective function. The library of finite elements in
SPAR is adequate for analysis of skeletal and The following execution modes are available in
thin-walled structures. CONMIN:

SPAR is a collection of individual programs (a) Execution that requires current values of
(processors that communicate with each other throgh a the objective function and constraints.
data base as indicated in fig. 3). The data base
consists of one or more files which contain data sets (b) Execution that requires current values of
output from the different processors. Each data set the objective function, constraints and
has a specific identifying name with which any their gradients.
processor can access it for input. Subroutines
documented in reference 9 are available to store and (c) Execution accelerated because of the
retrieve the SPAR data sets by name from the SPAR data linearity of either the objective function
base. These subroutines can be executed by FORTRAN and/or the constraints.
CALL statements and hence can be used to make the SPAR
data storage accessible to non-SPAR FORTRAN programs. In PROSSS, program CONNIN is embedded as a subroutine

in a program which calls it, and saves Intermediate
SPAR executes on a processor-by-processor basis; data for restart.

each processor execution is commanded by a separate 1
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Interface Processors reference 5. The CDC-NOS furnishes the user with a
repertory of commands (job control language, (JCL))

The optimizer provides input information to the for executing programs in sequences, including if-test

repeatable part of the analyzer through an branching and transferring to a labeled statement, and

Optimizer-to-Analyzer (O-A) Processor and the analyzer for manipulation of permanent and temporary files.

supplies the information to the optimizer through an These capabilities are common in most current operat-

Analyzer-to-Optimizer (A-O) Processor. The O-A and ing systems, consequently such systems as IBM's MVS

A-O processors are user supplied and problem or UNIVAC's Exec 8 could function as a connecting
dependent. Capability of adding these two programs is network instead of CDC-NOS.

the basis for the system's generality.
Execution Flow Options

Optimizer-to-analyzer processor. The function of

the O-A Processor is to convert the design variables A variety of execution flow options can be set up

to a set of input parameters written in a format using the components described previously. Organiza-

required by the analyzer. In the case of structural tion of each flow option depends on how the optimizer

optimization, these parameters are structural member is used, and on whether gradients are required as

sizes and nodal point coordinate data which are actual input to the optimizer and, if so, whether these

physical quantities and are seldom directly gradients are generated analytically or by finite

equivalent, one-to-one, to the design variables output differences. The flow options currently available in

by the optimizer. Thus, in a typical application, the PROSSS are the five shown in Table I.

conversions within the O-A Processor are not limited

to formal changes only but also include such commonly Basic flow options. The two optimization

used techniques as variable linking,scaling, and procedures in Table I are: nonlinear mathematical

changing from direct to reciprocal variables (e.g., programing (NLP) and piecewise linear approximations

ref. 13). In PROSSS, the O-A Processor reads an (PLA). Under the conventional NLP approach, the

output vector I from CONMIN, computes the structural objective function and constraints are treated as

parameters, and embeds them in a runstream written for nonlinear functions of the design variables. In the

the SPAR executfon. PLA procedure, which has been successfully used in a
number of applications (e.g., refs. 13, 16, 17) the

Analyzer-to-optimizer processor. The function of nonlinear optimization progresses as a sequence of

the A-O Processor is to compute the objective linear optimization subproblems (stages). A linear

function, tiiM constraints, and their gradients (if approximation based on the Taylor series expansion,

required) and to provide them in the format required f = fo , VfoT A, is used to compute the objective
by the optimizer. To do so, the A-O Processor function and the constraint functions within each

extracts the pertinent behavior variables such as subproblem (stage). Side constraints on x control

stresses, displacements, natural vibration the linearization error.
frequencies, mode vectors, or buckling loads from the

SPAR data base and combines them with the allowable Efficiency of PLA stems from replacing the full

values to forT the constraint equations. Frequently, analysis of the physical problem with approximate
the allowable values are functions of I (instead of analysis by linear extrapolation, which in structural
being constants) as, for example, in the case of local applications requires a computer time of at least an

buckling constraints (e.g., ref. 14). Computation of order of magnitude smaller than the full analysis

such variable allowable values can be included among time. Additional time savings result at each stage
the functions of the A-0 Processor. This processor because the optimizer executes faster when the problem
may also be equipped with a logic to limit the set of is defined as linear (mode c in section "Optimizer").
constraints to those whose probability of remaining or The number of consecutive linear stages required for

becoming active is high, as proposed in reference 13. overall convergence depends on the degree of the
Organization of the A-O Processor, ill.ustrated by the problem nonlinearity.

flow chart in figure 4, is problem independent, but
the processor contains a section of code (box 4) which The analysis capabilities with respect to calcu-

does depend on the problem at hand and must be lation of gradients in Table I are: (1) computation
tailored to it. In addition, the parameters in the of the behavior variables without gradients; (2)

call statements to the subroutines (box 3) (see ref. inclusion of gradients computed by finite differences;

9) that access the SPAR data base depend on the kind and (3) inclusion of gradients computed analytically.

of data seps that need to be extracted as required by

the particular constraints and objective function. Each of the five resulting options shown in Table
I requires its own organization of the procedure

Connecting Network flow. The organizationally simplest and most complex
execution options, 1.1 and 2.3, respectively, are

A connecting network (executive software) is illustrated by flow charts in figures 5 and 6. The

required to carry out a computational process such as other options are described in detail in reference 18
shown in figure 1. It is also required to enable the and documented in reference 19. The flow chart in

user to monitor progress of the optimization process, figure 5 is self-explanatory. In figure 6, the boxes
and to stlp and restart without loss of information 2, 3, and 4 may be regarded as functions of a single
generated before the interruption, main program which calls the optimizer represented by

box I.
In PROSSS, the CDC-NOS (Network Operating

System)
1 

docmented in reference 15 serves as the Auxiliary Option for Fully Stressed Design

connecting network using the approach described in (FsD). If strength constraints are present in the
problem, then convergence of all the foregoing

optimization procedures can be improved by using a
1
Use of commercial products and names of manufacturers limited number (e.g. 3 to 5) of FSD iterations to

in this report does not constitute an official generate initial cross-sectional dimensions of the
endorsement of such products or manufacturers, either structural members. Allowable stresses used in the

expressed or implied, by the National Aeronautics and FSD procedure can include material allowables (e.g.,
Space Administration. yield stress) and local buckling stresses which are
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functions of the cross-sectional dimensions as frames and longerons were studied. Finite-element
described in reference 20. model of the computationally largest variant (referred

to as variant 1) is shown in figure 8. This variant
Two Basic Forms of the System is built up of membrane panels to represent skin, and

beam elements (axial, bending and torsional
PROSSS exists in two basic forms: Skeleton Form stiffnesses) simulating transverse frames and

and Specialized Form. The Skeleton Form consists of longerons. Each -2ame and longeron may be regarded as
the following: a lumped representation (ref. 14) of several real

frames and longerons. One end of the shell is clamped
(1) The problem independent component programs around the circumference, the other end is loaded by

such as SPAR, CONMIN, and the programs controlling concentrated loads simulating distributed forces
execution of the linear stage optimization (figure 6) equivalent to a transverse force and torque. This
and FSD procedure, variant has a large cut-out and a floor, and

represents a simplified model of a transport aircraft
(2) The SPAR runstream files for analytical fuselage segment.

gradients.
This structure was expected to constitute a

(3) Th, procedure files, demanding test case for the following two reasons.
First, the model contains 798 degrees of freedom, so

(4) The sets of JCL statements for each option, it is a computationally large problem as far as
optimization by mathematical programing is concerned.

To be used in a specific application, the Secondly, the overall bending state of stress in a
Skeleton Form has to be turned into a Specialized shell of this type depends on the in-plane stiffness
Form. Problem dependent Interface Processors and the of the frames; therefore, the design variables that
input data, including the SPAR runstreams, must be govern the member cross-sectional dimensions become
created and stored as files. In addition, standard strongly coupled (e.g., ref. 14) and the optimization
names in the JCL statement file corresponding to the process is more difficult to converge.
option chosen must be replaced with names selected for
the problem dependent files. Variant 1 was optimized by PLA using

finite-difference gradients (Option 2.2) and the 10
Once the Specialized Form has been set up for a design variables shown in figure 8. As indicated in

particular application, it can be protected from the figure, many structural parameters are linked to a
unauthorized alterations by using "software locks" single design variable, so that 10 design variables
(passwords) on all its files except the input data govern the cross-sectional dimensions of all 356
files. Several such Specialized Forms can be created elements in the finite-element model. Variables x,
from the common Skeleton Form for a variety of appli- through x6 govern the cross-sectional areas of the
cations as illustrated in figure 7. Each such beam elements which have a channel cross-section whose
"frozen" Specialized Form can be used as a "black box" proportions remain constant as its area changes.
for a given class of problems that differ only by Thus, the cross-sectional area becomes a single
their input data. It is important to realize that variable that governs all the beam stiffness
although a Specialized Form is intended for use as a parameters. Variables x7 through x10 govern the
"black box" whose user is concerned only with the membrane panel thickness. The optimization
input and output data, it never becomes a previously constraints were on the beam element stresses and
defined "closed box" because it is always modular and equivalent stresses (Huber-von Mises stress) in the
accessible for modification, panel elements. The iteration history of the design

variables is shown in figure 9. Convergence is quite
In industrial organizations, preparation of the good considering the problem size and use of the

Specialized Forms would fall naturally into the domain piecewise linear approximations. As expected, the
of the staff specialist, while their application would elements flanking the cutout have "grown" in the
be the task of the production oriented engineers. In optimization process, as illustrated in figure 10.
research applications, the system modularity permits
its major components SPAR and CONNIN to be replaced To further demonstrate the adaptability of the
with other equivalent programs, and execution flows procedure, a simplified variant 2 of the shell
different than those described previously can also be structure was formed by eliminating the floor and two
constructed. Thus, PROSSS can be used as a test bed end bays and substituting rods for longerons.
for development of new optimization procedures as well Initially, the structure was optimized with stress
as an application tool. constraints only. Subsequently, the resultant

structure was optimized with an additional overall
shell buckling constraint which required a 21 percent

Numerical Examples increase of the buckling load over and above the
buckling load computed for the structure optimized

Examples prenented in this section illustrate with stress constraints only. Both optimizations were
PROSSS as an application tool and as a research test carried out by Option 1.1. A comparison of these two
bed. The application examples have been selected from results showed that the structural mass increased by
a larger sample (given in ref. 18) to show the variety 9.6 percent because of the additional buckling
of design variable formulations, types of constraints, constraint. Additional optimization of this variant
and some of the execution options. The purpose of the (with two loading cases) was carried out with stress
research examples is to illustrate usefulness of constraints using only analytical gradients (Option
PROSSS in trying out improvements in the ways of 2.3). Use of analytical gradients was found to reduce
conducting the optimization, including the case of the the execution time to approximately one-sixth of that
system distributed between a mainframe and a mini- required for Option 1.1. Three design variables,
computer. one for longerons, one for transverse-frames, and one

for the skin were used in this case.
Application Examples

Locations of the node points in the
Example 1: Stiffened cylindrical shell. Several finite-element model were considered as design

variants of a circular cylindrical shell reinforced by variables in a further simplified variant 3 of the
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shell structure. This variant has the cut-out interpreted for purposes of usable-feasible directions

eliminated, is subject to only one loading case algorithm as a hypersurface which is continuous

(transverse force), and has the longerons restored to through the first derivatives, providing the gi
the beam form. Previously defined cross-sectional functions are also continuous.

variables were retained. The three geometrical

variables governed locations of the three intermediate The stiffened cylindrical shell, variant 3 of

frames. Optimization using Option 1.1 with stress and example 1 above, optimized for minimum mass subject to

overall shell buckling constraints resulted in individual strength constraints was taken as a

translation of the frames toward the loaded and reference case. The single cumulative constraint was

unsupported end, as seen in figure 11. introduced to replace 190 constraints by modifying the
A-O processor. Relative to the reference case, the

Example 2: Portal framework shape optimization. results indicated a slight (3 percent) reduction of

A framework shown in figure 12 has been optimized with the objective function, an increase of the total

geometrical variables only to demonstrate the number of iterations from 6 to 8, and the optimizer

structural shape optimization. The variables defined memory requirement reduced by 99.7 percent.

in figure 12 are intended to allow the frame to

transform into a truss. The constraints were imposed Influence of the move limits. It is expected

on stress and horizontal displacement as indicated in that the results of a piecewise linear optimization

figure 12. Optimization, carried out by means of procedure such as Option 2.3 in PROSSS depend to some

Option 1.1, has indeed produced the expected transfor- extent on the move limits allowed in each linear

mation of shape to an almost triangular truss. A side stage, but the extent of that dependence is not

constraint on the length of the top horizontal member, known. To shed some light on the dependence, the same

necessary to preserve that member's nonzero length to stiffened cylindrical shell was optimized using PROSSS

avoid a matrix singularity, has kept the top of the Option 2.3 by systematically changing the relative

frame from shrinking to a point, move limits. The result is shown in figure 14 as a
plot of the objective function versus the relative

Example 3: Torsion box vibration. This example move limit value imposed on all design variables and

demonstrates a "tuning" of the stiffness and mass maintained constant from one linear stage to the

distributions to achieve a prescribed change in an next. The plot indicates that a wide interval of the

original structural vibration mode shapes. The move limit values exists where the optimal objective

structure is a torsion box shown in figure 13(a), function is practically independent of these values,

built up of membrane panels, with thicknesses as the while the dependence is strong outside of the

design variables indicated in the figure. Because interval.

concentrated nonstructural masses are affixed to one

side of the box as shown in figure 13(a), the A leading variable technique. The same stiffened

vibration modes for a structure that was initialized shell used in the two preceding examples was optimized

uniformly to a minimum gage exhibit a distinct for minimum mass subject to individual strength

torsion-bending coupling in the first four modes, constraints using a somewhat unusual technique.

This is illustrated in figure 13(b) by displacement of

segment AB seen in view C. To reduce that coupling, The two basic elements of the technique are: (1)

the constraints of (z2 - zl)/z I < 2 are imposed on the adding the load magnitude P as another variable to

free end vertical displacements zI (point A) and z2  the vector of design variables whose initial values

(point B) in modes I through 4. The result is a set were set large for the structural design variables but

of new modes shown in figure 13(b) which comply with very small for the load variable, (2) restricting the

the constraints. The thickness changes required to load variable P by constraints, g I - P/Pt and

meet the constraints are indicated in figure 13(c). 0 <P <Pt, in order to make P grow to, and remain

There are increases of thicknesses t3 and t5  in at, the desired level of fully-developed load Pt.

the SPAR beam directly supporting the concentrated Under this formulation, the load variable becomes a

masses, and t4  in a panel that forms a counter- "leading" variable which grows to its target level

balance to the fixed masses. "pulling" the entire design toward its final state.

Research Examples The technique is of interest because of its

implications for those cases where conventionally

Cumulative constraint. A direct search method formulated optimization fails to find a feasible

such as usable-feasible directions method in the design. (The design feasibility per as was not an

current PROSSS optimizer has a drawback--namely a issue in the example case itself.) In such cases, it

large computer memory is required to leap track of is usually easy to identify a ihysical quantity which

each individual constraint in application to is not a natural design variable but whose reduction

structures with numerous stress constraints, such as in magnitude renders the initial design feasible.

the stiffened cylindrical shell in the previous group Such physical quantity may then be converted to a

of examples. To overcome this drawback, a cumulative leading variable of a suitably low initial value, and

constraint (ref. 7) wan tried. The constraint is, in therefore remove the difficulty of finding a feasible

essence, the same as the well-known exterior penalty design.
function and is formulated as:

A good example of this would be an optimization

- E (<g>)
2  (4) of a strength-sized wing structure for a required

J J flutter speed and a minimum of a flutter structural
mass penalty. In this case, the velocity v would be

a candidate for a leading variable, analogous to P,

where and the required flutter speed would be analogous of

9j, if gj > 0 Pt. A natural starting value for v would be the
flutter velocity of the strength-sized structure.

<gj>-,
0., if gU 5 0 Implementation of the technique required changes

only to the O-A and A-O processors and produced a

The cumulative constraint S) is a single measure result illustrated in figure 15 by a plot of the

of many constraint violations and its zero boundary is objective function versus the consecutive iterations.
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The final result is practically the same as in the Optimization Algorithms
reference case, and examination of the stress
constraints as they were changing over the iterations Several improved optimisation algorithms became
illustrated in figure 16 for the constraints active at available in recent years. Particularly, promising
optimum, shows that they were never significantly among these are: The augmented Lagrangian technique
violated. The only constraint that was ever strongly and the primal-dual methods (e.g., ref. 22). Programs
violated was the computationally trivial one imposed based on those algorithms are logical candidates to
on the load variable (leading variable), convert the current single optiniser in PR06S5 into a

library of optimisers.
Distributing the system between a mainframe and a

minicomputer. To test the system adaptability to Optimum Sensitivity
different hardware configurations, a version of PROSSS
was constructed placing the analyser and the A-O It was shown in reference 23, that information
processor on the CDC mainframe computer and the about sensitivity of the optimum solution with respect
remainder of the system on the PRIME minicomputer as to problem parameters can be generated at a relatively
shown in figure 17. It was found that the modular minor cost. An example of such sensitivity informa-
organization of PROSSS was essential for expeditious tion might be a set of derivatives of the optimum
development of the distributed version. The distri- cross-sectional areas and the structural mass with
buted version of PROSSS was verified (ref. 21) for respect to the allowable stress value. It was also
correctness of its results as compared to the demonstrated in reference 23, that accuracy of extrap-
mainframe-only version and was used to explore system- olation based on such derivatives is quite good for a
atically the relative efficiency of the five PROSSS fairly wide interval of the parameters. The modular
options. Results of the efficiency results are organization of PROSSS should make insertion of the
plotted in figure 18 and show that Option 2.3, and PIA sensitivity analysis and the associated extrapolation
with analytical gradients as, by far, the most capability a relatively straightforward task.
efficient one.

Multilevel Optimization
This distributed implementation, documented in

detail in reference 21, has advantage of the optimal It is now widely recognised that a multilevel
use of the best features of each type of computer-- optimization scheme which breaks one large problem
namely, the mainframe computer capability to perform a into a hierarchy of separately solved but coupled
massive numerical analysis and the minicomputer flexi- subproblems has a potential of making truly large
bility and fast interactive response helping in the structural optimization applications practical. One
preparation of the problem, judgmental control of the such scheme is proposed in reference 24. There is
execution, and review of the results. The main also a possibility to build a multilevel scheme on the
resulting benefit is improved productivity of the basis of the optimum subproblem mensitivitiesto the
"man-machine system" manifested by a very significant parameters which themselves are the meter problem
reduction of the calendar time needed to complete design variables.
optimization tasks. Various factors leading to that
reduction are examined in reference 21. The fairly complex organization of the

computational sequences and the associated data flow
Summary of the Examples required by the multilevel schemes should be well

supported by the flexible organization of PROW5S.
Summarizing the application examples, the

following observations are noted. Transforming the Distributed Computing
system from one optimization option to another was
simple to accomplish by changing the sequence in which Starting from the two-computer version of PR0535
components of the system were called for execution, referred to in the research example section, a more
Adaption from one variable and constraint combination ambitious undertaking may be initiated of a
to another was carried out by changes in the O-A and multicomputer network in which advantage would be
A-0 processor codes. These adaptations as well as taken of distributed processing. This concept fits
changes from one structure to another did not require well in a multilevel optimization scheme, became many
any changes to the Connecting Network nor to the subproblem optimizations could be performed
Analyzer and Optimiser. simultaneously on many computers acting in parallel.

Similarly, the research examples demonstrated Shape Optimization
adaptability of a programing system to the algorithm
procedural changes that reached deep into the problem In comparison to the wealth of experience with
formulation and yet required only minor and very cross-sectional optimination to structures, the
localized modifications to the system modules, experience with the optimization of the overall shape

is very limited. The P1088 capability to work with
It mas a routine matter to monitor the statue of various types of design variables including those of

the optimization process by means of displaying the overall geometry encourages exploration of the shape
intermediate data files. Stopping and restarting were optimimation. A development already initiated in this
facilitated by storing intermediate data. direction involved optimisation of truaesee eSi an

analytical gradient technique in which the derivatives
This monitoring and interaction with the process of the stiffness matrix with respect to the shape

was particularly easy and efficient in the distributed design variables were computed by means of finite
version owing to the quick response of the difference.
minicomputer in the interactive mode. Connecting Network and Hiah -Lamume

PR0888 Develosment Trends The operating system and its command langme
(JCL) are an ultimate In flexibility and continue to

Became of its test bed mature, P3088 undergoes support the P3088 development. Their drawbecke are
continual developent; some possible future changes vulnerability to the operating system change ad the
are sumarisd in this section. overhead penalty of the system operations. One sams
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available now for improvement in this regard is an problems and then used as a "black box" by production
Engineering Analysis Language (EAL) (ref. 25). The oriented engineers.
EAL is a system of programs and a data base which is a
successor to the SPAR program and is operational on many The system development trends are reviewed in the
different types of computers. It is enhanced by a areas of the optimization algorithms, including
command language that possesses a FORTRAN-like multilevel schemes, optimum sensitivity analysis,
capability of loop, branch and jump. In addition to distributed computing, overall structural shape
the standard structural analysis processors (the same optimization, and use of an improved connecting
ones as in SPAR), the EAL library of programs can be network and higher level command languages.
routinely augmentedby user supplied codes. Thus,
implementation of PROSSS in EAL may be done by adding
to EAL the optimizer, the O-A and A-O processors for References
each application, and by translating the JCL
procedures for the PROSSS options to the EAL command (1) Fiacco, A. V.; and McCormick, G. P.: Nonlinear
language (runstreams). Programing: Sequential Unconstrained

Minimization Techniques. John Wiley and Sons,
Still, the EAL is not the English-like language New York, 1968, Section 2.4.

many users would like to have available to command a
computer. Such language can, in principle at least, (2) Zoutendijk, G.: Methods of Feasible
be provided so that an engineer could issue, for Directions. Elsevier, Amsterdam, 1960.
example, a command: "OPTIMIZE TRUSS FOR MINIMUM MASS
AND STRENGTH CONSTRAINTS." For a command such as this (3) Garvin, W. W.: Introduction of Linear
to have the intended effect, a translator program Programing. McGraw-Hill, New York, 1960.
standing between the user and the EAL would have to
generate a corresponding sequence of the EAL (4) Schrem, E.: From Program Systems to Programing
instructions. However, the exact meaning of all the Systems for Finite-Element Analysis. Paper
words used in the command would have to be coded first presented at U.S.-Germany Symposium:
into the translator program, hence, the loss of Formulations and Computational Methods in
flexibility. Finite-Element Analysis. MIT, Boston, MA,

August 1976.
A reasonable option appears to be to equip the

specialized versions (see the previous discussion of (5) Sobiessczanski, J.: Building a Computer Aided
the Skeleton and Specialized versions of PROSSS) with Design Capability Using a Standard Time Share
an English-like language for a production oriented Operation System. Proceedings of the ASME
user, while allowing a researcher to use the EAL Winter Annual Meeting, Integrated Design and
command language directly. Analysis of Aerospace Structures, Houston, TX,

November 30-December 5, 1975, pp. 93-112.

Conclusions (6) Dovi, A. R.: ISSYS - An Integrated Synergistic
Synthesis System. NASA Contractor Report

A computer programing system is described which 159221, Kentron International, Inc., Hampton
combines an optimization program, a structural Technical Center, Hampton, VA., February 1980.
analysis program, and user supplied problem dependent
interface programs, for use in the structural (7) Sobiesoczanski-Sobieski, Jaroslaw: From a
optimization method development and applications. "Black Box" to a Programing System: Remarks on
Standard utility capabilities existing in modern Implementation and Application of Optimization
computer operating systems are used to integrate these Methods. Proceedings of a NATO Advanced Study
programs. This approach results in flexibility of the Institute Session on Structural Optimization,
optimization procedure organization and versatility of University of Liege, Sart-Tilman, Belgium,
the formulation of constraints and design variables. August 4-15, 1980.
Features of the programing system are illustrated by
numerical examples, which include design variables of (8) Whetstone, W. D.: 3PAR Structural Analysis
cross-sectional dimensions and overall shape and System Reference Manual, System Level II, Volume
constraints on static and dynamic behavior. Included I. NASA CR-145098-I, February 1977.
in the examples is a version of the system distributed
between a mainframe and a minicomputer. (9) Giles, G. L.; and Haftka, R. T.: SPAR Data

Handling Utilities. NASA TM-78701, September
Five options are described for organizing the 1978.

optimization procedures. The options comprise various
combinations of nonlinear mathematical programing and (10) Fox, Richard L.: Optimi mtion Methods for
piecewise linear approximations with analytical end Engineering Design. Addison-Wesley Publ. Co.,
finite-difference gradient techniques. Because of the Reading, Mass., 1971.
system's inherent modularity, other software
components could be substituted for the particular (11) Storaasli, 0. 0.; and Sobiessezanski, J.: On
ones used herein to achieve a similar capability, the Accuracy of the Taylor Approximation for

Structure Resizing. AIAA J., Vol. 12, No. 2,
The system can be used in the following two basic February 1974, pp. 231-233.

ways: 
(12) Vanderplaats, Garret N.: The Computer for

(1) As a research test bed for development of Design and Optimization. Computing in Applied
optimization techniques and analysis oriented towards Mechanics, N. F. Hartung, ed., AND - Vol. 18,
optimization applications. In this role, the system American Soc. Mech. Eng., c. 1976, pp. 25-48.
offers flexibility of execution and sequencing
including restart and monitoring capabilities. (13) Schmit, L. A.; and Miura, H.: Approximation

Concepts for Ifficient Structural Synthesis.
(2) As an application tool that can be adapted NASA CR-2552, March 1976.

by a specialist to a very wide scope in types of
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(14) Sobieazczanski, Jaroslaw: Sizing of Complex Table I Optimization flow options
Structures by the Integration of Several
Different Optimal Design Algorithms. AGARD No Gradients Gradients Supplied to
Lecture Series No. 70 on Structur-l Procedure Supplied to Optimizer
Optimition, AGARD--70, September 1974. OptimizerAnalytical

(15) Control Data Corporation; NOS Version 1
Reference Manual, NOS 1.3. CDC No. 60435400, NLP 1.1 1.2 1.3

September, 1979. PA Not 2.2 2.3

(16) Starnes, J. H.; and Haftka, R. T.: Prelimtnary Applicable
Design of Composite Wings for Buckling, Strength
and Displacement Constraints. A Collection of
Technical Papers, AIAA/ASME 19th Structures,
Structural Dynamics and Materials Conference,

Bethesda, Md., April 3-5, 1978. AIAA Paper No. START
78-466.

(17) Anderson, M. S.; and Stroud, W. J.: A General
Panel Sizing Computer Code and Its Application INITIALIZATION
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17, No. 8, August 1979, pp 892, 897.
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2, February 1981, pp. 142-149.
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Fig. 2.- Approaches for implementing optimization
methods.
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Abstract The pure sizing optimization problems are
especially crucial when complex structural forms are

The optimization code contained in the SAMCEF involved and when composite materials such as
('Systime pour l'Analyse des Milieux Continua par reinforced resins are employed. In these cases it
El ments Finis") is built to loop on the static and becomes difficult, if not impossible, for the
dynamic analysis modules. As a result all the designer to have an intuitive understanding of the
possibilities offered by these modules are still structural mechanics that is sufficient to lead to
applicable, as well as those of the auxiliary modules, optimal sizing of the various members. Furthermore
like mesh generators, plotting capabilities, etc. It the designer is most of the time unable to take into
also implies that, given a finite element model, the account global constraints in the structure, like
user may ask for one or more optimization steps, global flexibility, restrictions on displacements,
without anything else to do than to define the frequencies of vibration, buckling modes, etc. It
design constraints. The design variables are taken is only possible to verify a posteriori that such
as the transverse sizes of the finite elements, i.e., constraints are satisfied. Again these global
the cross-sectional areas of bars and beams or the constraints become more important in the context
thicknesses of membranes, shear panels and flat of highly complex, indeterminate structures. In
shells. The objective function to be minimized is the aerospace industry, the necessity of designing
defined as a linear function of the design variables high performance structures has motivated significant
and it cor esponds, most often, to the structural research efforts to derive algorithms permitting a
weight .s8he constraints impose limitations on the rapid and systematic exploration of the design space
design #wibles (side constraints and linking) and to determine the optimum material utilization.
on quantitl6s describing the structural response
(behavior cdstraints), i.e., stresses and displace- It is worth pointing out that optimization
ments under multiple static loading cases, natural methods should be considered as especially useful in
frequencies and critical buckling loads. The the preliminary design phase. Using them when the
optimization strategy converts the initial nonlinear design is practically frozen, with the hope of an
programming problem into a sequence of explicit ultimate improvement, is often disappointing. This
problems of algebraically simple separable form. is due to the fact that the optimization of a detailed
Various primal and dual optimization schemes are design implies the formulation of a large number of
available to solve the explicit subproblems. The constraints, some of which are not easily quantified.
approach presented can be viewed as a generalized At the preliminary design stage, however, the con-
optimality criteria technique as well as a lineariza- straints are usually more global and therefore more
tion method in mathematical programming. Several easily handled by the available formulations. It
examples of application to various structures will is also important that optimization methods be
be offered to demonstrate the efficiency and developed as auxiliary modules of the existing
generality of the SAMCEF optimization module, finite element program used by the designer. This

avoids to duplicate the costly operation of establish-

Introduction ing the finite element model and insures that all the
facilities available in the general purpose program

Because good designers consider structural remain available, including computer graphics, data

optimization as a technique that should take into base systems and other computer aided design

account all possible aspects of the design, they are capabilities.

often reluctant to the concept of structural synthels
methods developed in connection with finite element Problem Statement
progrs. Bowever, when examining the design process,
it Is often possible to isolate a phase during which The optimization module that has been developed
the shape of the structure is mre or lees frozen for the SANCEF (1) general purpose program is
and the problem is limited to giving adequate based on the following concepts. The design
dimensions to the various members. Such a situation variables are taken as the transverse sizes of the
s frequently encountered in the aerospace, naval or structural mbers, namely, the cross-sectional

automobile Industries, where the external shapes are, areas of bar and beam elements and the thicknesses
to a large extent, dictated by aso- or hydrodynamic of shear panel, membrane, plate and flat shell
considerstios or by styling, while internal forms elements. The objective function to be minimized
are often determined by various non-structural is defined as a linear function of the member
requiremmmts. If the ultimate goal of the designer sizes aI

can be identified as corresponding to the minimization
of an explicit function of the member sizes, and if n
the limitations on the design can be defined as, W = X P I a
eventually Implicit functions of the member sises (1)
too, such as displacements, stresses, eigen-
frequencies, etc., then the problem is tractable by
automatic algorithm. They allow the designer to where ti is a geometrical factor such that the
speed up significantly this part of the design process product I a is the volume of the element (e.g. rib
ead to explore more systematically the various I i
feasible designs. length or panel area) and pi i a scalar quantity

associated with the element. In most Cases pi is
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simply the material density, in which case W is the
weight of the structure. The n design variables ai  Kq= gZ (6)
represent the member sizes of either individual
finite elements or, if design variable linking is
used, of groups of finite elements corresponding where K is the structural stiffess matrix and gI
each to the idealization of a given structural member, represents the external forces acting in the Ith
In this latter case the number of design variables, n, loading condition. Once the displacement vectors q
is smaller than the number of finite elements, are known, the stresses in the various members are

evaluated from the equations
In addition to design variable linking, which

can be viewed as assigning simple equality constraints, a T
the design variables are subjected to the side ke t q9  (7)
constraints

Ai ai i = 1, n (2) where tk denotes the appropriate row of the stress

matrix for the kth element. Note that for a membrane
element the stress matrix is made up of three rows,

where a, and i are lower and upper limits that while is reduces to one row for a bar element.

reflect fab'ication and analysis validity considera-
tions. The main constraints in the weight minimiza- Optimization Strategy
tion problem are the behavior constraints, which
impose limitations on quantities describing the Initially the class of finite element models
structural response. The strength of the structure considered in this paper will be restricted to
must primarily be considered in the design require- thin-walled structures (assembling of bars and
ments, which results in stress limitations. For a membranes), for which the stress matrices are
specified set of external loads, the elastic limit independent of the design variables and the stiffness
of the materials may not be exceeded. In bar and matrix exhibits a linear form in the design variables:
shear panel elements the tensile stress limit is
determined by the elastic properties of the material,
while the compressive limit is generally reduced n n
to take into consideration, in a simple manner, a K -

Ki - i i (8)

safeguard against local buckling. In more general

elements, like membranes, beams and plates, the
stress limitation must be placed on some equivalent where K is the stiffness matrix of the ith element
stress (e.g. Von Mises criterion). Becuase the i

stress constraints are usually considered with when ai = 1. In this case it is possible to generate

different loading conditions, they will be written first order explicit approximations of the stress and
in the form displacement constraints by introducing a certain

number of additional loading cases in the structural

- k i3, ) analysis phase. The stress constraints can also be
I, c dealt with by stress-rationing, which corresponds to

adotping zero order explicit approximations (fully

where I is the load index and a is the allowable stressed design concept). The optimization strategy
k is then to transform the primary problem into a

stress limits in the kth element. The displacement sequence of explicit approximate problems which are
constraints considered in SAMCEF are defined as upper easily tractable by mathematical programming algorithms.
bounds on some linear combinations of the displacement
degrees of freedom q used in the finite element model: Using first-order explicit approximations of

the behavior constraints is equivalent to linearizing
u b 

T 
q J 

= 
1, f (4) them with respect to the reciprocals of the design

variables. This observation leads to the key idea
for generalizing the optimization strategy to other

where b is a vector of constants. The displacement types of constraints and to more sophisticated finite
j elements. It will be shown that constraints on

constraints read thus as follows: natural frequencies and on critical buckling loads
can be well approximated by expanding them in first

J U 1, f (5) order Taylor series in terms of the reciprocal
variables. Also this rather general process will be
extended to pure bending elements and flexion-

extension elements.

where uj denotes the value of uj under the Ith

loading condition and u iis its upper limit. Note First Order Exlicit Approximation

that this treatment includes the usual nodal The virtual load technique is used in SAMCEF to
displacement constraints, the relative displacement generate explicit approximations of the static
constraints, the slope constraints, etc. response quantities. Considering a virtual load

vector given numerically by b (Eq. 4), it
The optimization strategy used in SAcsaEF has

been primarily developed for dealing with stress and follos that any displacement constraint (Eq.5) can be
displacement constraints, and extended later to the expressed as the sum of the contributions of each

case of frequency and buckling constraints. Therefore, element:
this paper will be initially focused on static
response quantities, which are evaluated in SANCF. bjT qT n c t

by a displacement finite element method. The static u 
=  

q, 
=  

K q l Z a < (9)
structural analysis is thus performed by solving the
systems of linear equations
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with

cijfi (qj K i q1) ai
2  (i0) a a q -i qj (14)

In these expressions qj and q, are respectively the for any design point on the scaling line (2). It can

virtual and real displacement vectors and i is the therefore be concluded that the explicit forms (Eq. 13)

element stiffness matrix appearing in Eq. 8. In a represent first order approximations of the constraints

finite element model, the stresses are also linear on the scaling line. Geometrically, it means that each

combinations of the displacement degrees of freedom, real restraint surface is replaced with a tangent

just as the displacement constraints defined in Eq. 4. surface at its point of intersection with the scaling

Therefore the above procedure can still be employed, line (Fig. 1).

By introducing a virtual load vector given numerically
by the appropriate row t k of the stress matrix (Eq. 7), Zero Order Explicit Approximations

each stress constraint (Eq. 3) can be explicitly
approximated by The first order explicit approximation (Eq. 13)

requires the application of an additional (virtual)
loading case for each constraint. In many problems,

t T n d the number of stress constraints is relatively
o t k qt - qk

T 
K q 1 a ) important so that the number of additional loadingk k ~l ~ai - k

cases leads to a significant increase in the analysis
cost. This explains why lower order approximations

with are considered. For dealing with stress constraints,
the most popular approach is based on the Fully Stressed

2 Design (FSD) concept, which leads to transforming the
dik = k i qI) ai2 (12) constraints (Eq. 3) into simple side constraints

Note that this technique is valid only for stress ak  vl k a ivn (b5)

components. In a membrane element the constraint is
usually placed on an equivalent stress whose square is
a quadratic form of the displacements. An explicit The minimum values ak are given by che well known stress

expression of the form Eq. 11 can still be obtained by ratio formula

using special virtual load cases. For more complicated
stress constraints, the general orocedure given in ,
the Reciprocal Design Variables section can be applied, ak = a; max kil (16)

I-, c I a
So the explicit expressions of the stress and k

displacement constraints exhibit the same form
(Eqs. 9 and 11). We shall write them under the common where * denotes the current design variables and
notation: skk!

the corresponding stresses. The FSD procedure can be
n cij interpreted as using zero order approximation of the
i a U j 

= 
1, m (13) constraints on the scaling line, because it relies on

i-1I j explicit expressions that preserve only the value of
the stresses along that line, and not their derivatives.

where donates an upper bound to a static response Geometrically, the real restraint surfaces are replaced-j by planes normal to the axes of the design space. Each

quantity uj (stress, nodal displacement, relative plane passes by the point of intersection of the
e ci are corresponding real restraint surface with the scaling

displacement, etc.). The coefficientsij line (Fig. 1).

constant in a statically determinate structure, so that

Eq. 12 represents then the exact explicit form of The FSD criterion is clearly rigorous in the case
the constraint. For a statically indeterminate of a statically determinate structure, for which the
structure, the ci #s depend implicitly on the design internal forces are constant. In the statically
variables, because structural redundancy produces indeterminate case, however, the FSD criterion becomes

redistribution of the internal forces when the member approximate. It does not always converge to the true
sizes are modified. However it is essential to notice optimum and sometimes leads to instability or

cizs or nt asetl by ndivergence of the optimization process. That is why
that the coefficients Clj are not affected by a SAMCEF offers the choice, for each stress constraint,
scaling of the design, that is by a multiplication between the rigorous first order approximation (Eq. 11)
of all the design variables by the same factor. In or the computationally inexpensive zero order approxi-
the design space such a scaling moves the design mation (Eq. 15). The selection of constraints requiring
point along a line Joining the origin to the current first order approximation can be made in advance on
analysis point. Therefore the explicit expression the basis of the physical judgment of the designer.
(Eq. 13) yields the exact value of the constraint It might also be performed automatically according to
all along the scaling line. This means that the ap- adequate selection criteria (2).
proximate restraint surface passes through the point of
intersection of the corresponding exact restraint Reciprocal Design Variables
surface with the scaling line (Fig. 1). In addition,
it can be proved that the explicit constraint (Eq. 13) The virtual load procedure, yielding the explicit
furnishes also the exact derivatives of the response constraints (Eq. 13), is mainly used in optimality
quantity uj: criteria approaches, which can be viewed as trans-

forming the initial implicit problem into a sequence
of explicit approximate problem. Each subproblem
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results from replacing the behavior constraints n
U UjU by their approximate forms (Eq. 13). On the E cij x <U 4  (23)

other hand, the mathematical programing approach to

structural optimization, after a period of ineffi-
ciency, has finally evolved into a powerful and now K < x (24)
well established design procedure which is also based
upon explicit approximation of the behavior constraints
(3,4,5). The key idea is to linearize the response where xi= 1/I and x = 1/i are the new side
quantities with respect to the reciprocal design constraints. The explicit constraints (Eq. 23) are
variables represented in the space of the reciprocal variables

by tangent planes to the real restraint surfaces
x a (17) (see Fig. 2).

This interpretation provides a clear understanding
of the origin of the excellent performances of the

which leads to the following explicit constraints: of ti t cri tria xapproac es, ras rmell s their
optimality criteria approaches, as well as their

in u divergence in certain cases. Their convergence

f;-+ - (x - - (18) properties depend upon the nonlinearity of the
ax -- restraint surfaces in the space of the reciprocal

variables, that is, on the structural redundancy.
For a moderately statically indeterminate structure,
these surfaces are close to planes and the convergence

where the upperscript * denotes quantities evaluated is fast and stable, independently of the number of
at the current design point x*. The first partial design variables. However, in case of strong
derivatives of the response quantities are most structural redundancy, the restraint surfaces are
often computed by using the pseudo-loads technique, highly nonlinear and convergence instability can
which requires a number of additional loading cases occur. Indeed the solution of the linearized
equal to the number of design variables times the problem lies far from the real restraint surfaces,
number of applied loading cases [see e.g. (5)]. In so that after reanalysis and scaling of the design to
view of Eq. 14 , the virtual load procedure obtain a feasible point, the weight might suddenly
constitutes another (often less expensive) way of rise. As shown in Fig. 2, it may be desirable, in
calculating the constraint derivatives. Indeed the such a case, to limit the move of the design point
coefficients cij. which are related to virtual along the linearized restraint surfaces, for example

strain energies in optimality criteria approaches, are by adding move limits (i.e. artificially tightened
also the gradients of the response quantities with side constraints). This is also the idea of the
respect to the reciprocal variables: mixed method proposed in Ref. (6), where the

au linearized problem is solved only partially using a

c - (19) primal solution scheme. By modifying a convergence
ij ax control parametdt, the mixed method permits ai gradual transition between a primal mathematical

programming approach and an optimality criteria
Furthermore the definition (Eq. 10) of the c ias approach.
clearly indicates that

It is important to mention that this basic
c approach of transforming the initial problem into aUj ij . Xt 0 (20) sequence of explicit problems is now widely recognized

and it is routinely employed for large scale industrial

applications (7,8). Various solution schemes are
Therefore Eq. 18 can be rewritten available in SAMEEF to treat the explicit problem

(Eq. 22-24). Depending upon their primal or dual
n character, the convergence properties of the whole
Z c ci (21) Algorithmsizatinsectin)Prcess are different (see Optimization

i-l

which is equivalent to Eq. 13 when recast in term Frequency Constraints

of the direct variables ai .  Constraints on natural frequencies usually

From the foregoing developments, it is consist in Imposing lower limits

apparent that the explicit approximations of the 2 2
behavior constraints used in both the optimality - a (25)
criteria and mathematical programming approaches
(Eqs. 13 and 18, respectively) are identical. A
unified approach to structural weight minimization of They are directly written in terms of the squares of
finite element systems has thus emerged, which consists the frequencies, because these quantities naturally
in replacing the initial problem with a sequence of appear in the eigenproblem characterizing the
explicit approximate -- or linearized - problem structural modal analysis
of the following form: 2

of K q1 - rsj M q1 -0 (26)

minimise V - E (22)
i-1 I In this equation, K and M represent the stiffness and

subject to mass matrices, and (qj, j - 1, a) are the modal

S11 displacements, i.e., the eigenvectors solution of
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Eq. 26 , associated with eigenvalues w 2 The In opposition with the case of stress and

structural mass matrix has a linear form in terms of displacement constraints, the coefficient cij can

the design variables: now be affected by a scaling of the design. This
means that the tangent plane (Eq. 34) does not

n n necessarily pass through the point of intersection
of the corresponding exact restraint surface with

M i- + Mc  Z a i +c (27) the scaling line. The effect of scaling depends upon
t-1 1-1 the importance of the non structural masses. If

there is no fixed mass, scaling does not modify the
where Mi and Hc are independent of the design variables. eigenvalues nor the associated aigenmodes. On the

M, denotes the mass matrix of the ith element when other hand, if the structural mass can be neglected,
the eigenvalues increase in proportion to the

ai - I. H represents the contribution of the non- scaling factor. In the intermediate case where

structural masses. It is well know that the first structural and non structural masses contribute to

derivations of the frequencies with respect to the the mass matrix with the same order of magnitude,

design variables are given by the scaling process requires a new complete finite

2 eleament analysis for determining the modified
Ta

1  
1frequencies and sigen modes. It should be noted

j a' 1 q - q . that numerical results tend to demonstrate that
a I 1 q 'i iaij alma important non structural masses have a beneficial

effect on the convergence stability in the overall

optimization process. This is probably because the

(Ki - 2 i) q1  (28) problem then behaves just as in the static case.

Buckling Constraints
where aj is the generalized mss of the Jth node:

Just as the natural frequencies, the critical

load factors A are defined through an eigenproblem

,j , qj I qj (29)

K qj - Xj S qj = 0 (35)

As explained in the Reciprocal Design Variables
section, the optimization strategy employed in SAMCEF
consists in linearizing the behavior constraints with where S represents the goemetric stiffness matrix and
respect to the recip-ocal design variables, which

gives (Eq. 35), associated with esigenvalues A. . The

physical meaning of qj is that of displacements in

;2 + n 2 (30) the jth buckling mode, for a critical load factor X
iI.

i; (The buckling constraints consist in Imposing lower
limits on the buckling loads, however, they will be

In this expression, the c j'a denote the gradients of written in the form

the eigenvalues with respect to the xi's. From

Eq. 17 and Eq. 28 , it comes 1 136)

a2 q T 1i q2
i m (31) because It has been found that better explicit
ij ax i  mj x Iapproximations are generated when expanding the

reciprocals of the buckling loads rather than the

Ai's themselves. The stiffness matrix K has the
It can be observed that, in a general way:

form in Eq. 8. The geometric stiffness matrix is
2 related to the initial stress state in the elements

Z ci - 2 -2 :2 (32) and therefore it depends implicitly on all the design

i-l "j + " m J J j -j variables:

nwhere S = S i (a) (37)

jj i qjT "c qJ , J i4  l qjT i q (33)
It is worth recalling that the matric-. Si are

represents the contribution of the fixed mases to the independent of the design variables for a statically

determinate structure. The first derivatives of th*
generalized mess. Therefore the explicit constraints buckling loads are given by [see e.g. (9)]:
(Iq. 30) reduce to the form:

. T 2 ( + j Aj a q (38)
X Il-c 1;(4 a T S q 1  as I Sa~ qi-I m J i "'1
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In opposition with the static and dynamic cases where c is a constant that depends only on the shape
previously discussed, the derivatives appearing in of the beam cross-section and p, a positive number.
Eq. 38 are not directly available, because the Most of the time p is taken as an integer number,
elements of the geometrical stiffness matrix are equal to 1, 2, or 3. For example the case p-2 is
functions of the stresses acting in the prebuckling that of beams whose cross-sectional shape is kept
state. However, by assuming that the terms as invariant during redesign (dilatation or contraction).

as The flexural regidity is proportional to the moment
of inertia and therefore the structural stiffness

are negligible, the gradients (Eq. 38) become easily matrix exhibits the following explicit form in terms
computable. This assumption, which is typical of of the cross sectional areas:
optimality criteria approaches for static constraints,
amounts to not taking into account the effects of
structural redundancy: n n

K - E Ki . i aP KI P p 0 (46)
as i i-a. 0 1-1i, ... n (39)
aa I

where each matrix K is independent of the design
variables a . Turning to solid plate elementsUsing the same basic approach as before, wei

linearize the behavior constraints (Eq. 36) with subject to pure bending, since the stiffness is
respect to the reciprocal design variables: proportional to the cube of the thickness, it is

apparent that Eq. 46 must be adopted with p-3. The
optimization strategy can be derived just as in the

1 n 1 case of thin-walled structures, by making a change
+ cij (xi xi.) <j (40) of variables that tends to reduce the nonlinear

jo i-1j character of the constraints,

where, from Eqs. 8, 17, 38, and 39: x p (47)

q T K q-
c - xi I 1 (41) and linearizing them with resppct to the new variables
ijj j2 xi xi (Eqs. 18, 30, and 40). In the case of displacement

constraints, it is easily shown that the first order
with Taylor series expansions (Eq. 18) reduce to the

following form, when written in terms of the direct

jT S (42) design variables a i (9):

Z ap < - (48)
It is easily verified that i- a I (48

n 1 The c coefficients are the C- .Aients of the
Z Cij x = (43) ii
i-1 j response quantities uj with respect to the inter-

mediate variables xi defined in Eq. 47, but they can
so that the explicit constraints (Eq. 40) reduce to also be interpreted as virtual strain energy densities
the simple form in the structural members. In this connection, it

should be noted that the virtual load procedure
n (First Order Explicit Approximations section) could
i 

c  
x ' (44) directly be used to derive the explicit approximations

i-1 ;-j (Eq. 48), instead of resorting to a linearization scheme.

When flexion and extension forces act
The reason for writing the buckling constraints in simultaneously with comparable intensity at the
the reciprocal form (Eq. 36) is now apparent: the element level, the definition (Eq. 46) of the stiff-
coefficients cij remain constant along the scaling ness matrix can no longer characterize the structural

line, just as in the case of stress and displacement model with sufficient accuracy. For a rather general
constraints. Geometrically it means that each real class of structural models, each element stiffness
restraint surface is replaced by its tangent plane matrix can be assumed to have the following explicit
at Its point of intersection with the scaling line. form

3
Bendina Elements Ki - E aiP Ki'(' (49)

The optimization strategy reviewed in 
the

previous sections can be easily extended to the case (p)
of pure beam and plate elements subjected to flexural where the matrices Ki are independent of the
loads only. The way to deal with a beam element in design variables. For example, a flat shell element,
uniaxial bending depends upon the relationship between made up of a membrane and a plate stacked together,
the principal moment of inertia I and the cross- is characterized by
sectional area a. A wide variety of situations is

taken into consideration by adopting the relation - aK(1) K (3) (50)

I - ca
p  

(45)
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where the first term represents the stiffness in used for seeking a partial solution to each explicit
extension, and the second one, the stiffness in problem in such a way that the constraints of the
flexion. In Refs.(10) and (11), rather sophisticated primary problem remain almost satisfied. This is
first order explicit approximations were developed achieved by prescribing an upper limit on the number
to take into account separately the effects of of one-dimensional minimizations performed before
extension and flexion. It is however not at all updating the approximate problem statement. PRIMAL 1
certain that these complicated explicit constraints is thus the recommended option when the constraints
offer a definite advantage over simple first order of the primary problem are highly nonlinear in the
Taylor series expansions with respect to the reciprocal variables (strong structural redundancy).
reciprocal design variables. More numerical The algorithm is described in detail in the I-Beam
investigation needs to be done before a final section of Ref. (12).
conclusion can be brought. In the meantime, the
first order explicit approximations adopted in
SAMCEF are obtained from a simple linearization PRIMAL 2 Optimizer
process in terms of 1/a They exhibit the forms of PRIMAL 2 is a second order projection algorithm
Eq. 18 for stress/displacement constraints, Eq. 30 especially well suited to the solution of problems
for frequency constraints, and Eq. 40 for buckling with separable objective function and linear
constraints. The gradients required in these constraints. It uses a weighed projection operator
expressions are respectively given by Eqs. 14, 28, to generate a sequence of "ewton's search directions
and 38, in which, from Eq. 50 we must introduce in the subspace formed by the intersections of the

active constraint hyperplanes. Because the objective
3K = 3 function (Eq. 22) is separable, its Hessian matrix

- Z p a P-1 KP ( is diagonal, which makes the second order algorithm

p1f (51) no more complicated than the first order one.
Consequently PRIMAL 2 exhibits the same features
as PRIMAL 1, but it is far more efficient and it can

Note that the derivatives of the mass and geometric be used to solve exactly each linearized problem (in
stiffness matrices have the same form as for bar and which case it produces the same iteration history as
membrane elements. the dual methods). PRIMAL 2 is thus a recommended

option when the behavior constraints are very shallow
in the space of the reciprocal variables (weak
structural redundancy). Note however that the DUAL 2

The explicit problem to be solved in each option is usually more efficient. The PRIMAL 2
redesign stage exhibits the form of Eqs. 22-24. It is algorithm is described in the Composite Box Beam

strictly convex and separable. Because of these section of Ref. (12).

properties, this problem can be solved efficiently
by employing primal or dual algorithms. It should DUAL 2 Optimizer
be emphasized that the primal algorithms can be used
to solve only partially the approximate problem For a convex problem, the Lagrangian multipliers
Eq. 22-24, while the dual algorithms cannot, because associated with the constraints have the meaning of
intermediate points in the dual apace usually dual variables in terms of which an auxiliary and
correspond to highly infeasible points in the primal equivalent problem can be stated. This dual problem
space. Consequently the capability of controlling can be reduced to the maximization of the Lagrangian
the convergence of the overall optimization process function subject to non-negativity constraints on the
is available only if a primal optimizer is selected, dual variables. Since, in addition, the explicit
On the other hand, it should be clearly recognized problem (Eq. 22-24) is of separable form, the dual
that using a dual algorithm yields results and formulation leads to a very efficient solution scheme.
convergence properties equivalent to those obtained Each primal variable can be expressed in closed forms
using optimlity criteria. The same is true for the in terms of the dual variables by relations similar
primal algorithms if the approximate problems are to those used in optimality criteria techniques (13).
solved completely. The dimensionality of the dual problem is equal to the

number of linearized behavior constraints (Eq. 23),
Five distinct optimization algorithms are which is most often small when compared to the number

available in the SAMCEF program. The user can of design variables. Therefore the dual problem
select any one of them depending upon the character- exhibits a simpler form and a lower dimensionality
istics of each specific problem: the number of than the primal problem.
independent design variables, the number of behavior
constraints, and the expected degree of non-linearity DUAL 2 is a specially devised dual method which
of the constraints. employs a second order Newton type of algorithm to

find the maximum of the dual function when all the
PRIMAL 10Optimzer design variables are continuous. It operates in a

sequence of dual subspaces with gradually increasing
PRIMAL I is a first order projection algorithm dimensions, so that the effective dimensionality of

based on the well known gradient projection method the dual problem does not exceed the number of active

for linear constraints. It uses an orthogonal behavior constraints by more than one. Because this

projection operator to generate a sequence of search number is relatively low for many structural optimiza-

directions that are constrained to reside in the tion problems of practical interest, the DUAL 2

subspace defined by the set of active constraint optimizer is very efficient. It is thus the recommended

hyprplanes. The successive search directions are option for pure continuous variable problems, unless

conjugated to each other as long as there is no change the behavior constraints are expected to be highly
nonlinear in the reciprocal variables. The algorithmin the set of active constraints. The PRKMAL 1isdcrbdnthDUL2Oimzretonf

optimizer operates in the space of the reciprocal i described in the DUAL 2 Optimizer section of
design variables and it produces a sequence of steadily Ref. (12), as wall as in the Optimization Strategy
improving feasible designs with respect to the scino e.()
linearized problem. Hence PRIMAL 1 can be adequately
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DUAL 1 Optimizer well correspond to 5000 elements -- and 20 linearized
behavior constraints can fit in a core of less than

When some or all of the design variables, 16,000 words (on IBM 370-158 the computer program
instead of varying continuously, can only take on requires then 256 K). Note that no core limitation
available discrete values, the dual method formula- is associated with the analysis modules of SANCEF,
tion becomes particularly attractive (14). The because they are organized in such a way that they
discrete primal variables can still be explicitly can solve very large problems using a modest size
expressed in terms of the continuous dual variables, central core. They employ a frontal equation solver
The dual function remains continuous but it has with substructuring and extensive peripheric storage.
discontinuous first derivatives. DUAL 1 is a dual
method which employs a specially devised first order It can be seen by examining Fig. 3 that the main
gradient projection type of algorithm to find the limitation arises from the number m of behavior
maxi- of the dual function in the mixed discrete constraints retained in the linearized problem state-
continuous case. The DUAL 1 algorithm incorporates ment. If the number of constraints is raised up to
special features for handling the dual function 100 in the previous example (with 500 design variables),
gradient discontinuities that arise from the primal then the central core requirement increases to 60,000
discrete variables. These discontinuities occur on words. In addition, it is obvious that linearizing
specific hyperplanes in the dual space. DUAL 1 the static behavior constraints demands a large
determines usuable search directions by projecting computational effort, because this implies treating
the dual function gradient on the intersection additional loading cases in the structural reanalyses
of the successively encountered first order (see Reciprocal Design Variables section). Finally
discontinuity planes. It should be noted that the the computer time expended in the optimizer itself
DUAL 1 optimizer remains applicable to pure can become prohibitively high when the number of
continous variable problems, in which case it reduces linearized constraints is large. This is apparent
to a special form of the conjugate gradient method. in the case of dual algorithms, since the dimension-
However it is generally less efficient than the ality of the dual problem is just equal to the number
DUAL 2 optiaizer. DUAL I was initially conceived of linearized constraints. It is also true in the
for the ACCESS 3 program and it is described in case of primal algorithms, because most of the
detail in the Optimization Algorithms section of computational effort quickly increases with the
Ref. (5). number of linear constraints (construction of the

projection matrices, evaluation of the maximum

Envelope Method allowable step length, selection of the set of active
constraints, etc.).

When only one behavior constraint is active, the Therefore it is important to reduce as much as
explicit problem can be solved analytically. Using posibe ote nb of baor cnstraints reta
the Lagrangian multiplier technique leads to a simple possible the number of behavior constraints retained

redesign formula. In the now classical envelope at each stage of the optimization process. This goal

method (15), this approach Is extended as follows: is achieved in SAMCEP in a rather crude way, by

the redesign formula is first employed by treating specifying a priori a reduced set of behavior con-

each constraint separately, and then the largest straints, on the basis of the designer insight and prior

value obtained for each design variable is selected experience. A probably better technique would be to

to form an approximate solution. This intuitive use automatic constraint deletion techniques, such as

procedure has the advantage of being very simple and those proposed in Ref. (3). In this approach only the

not subject to ill-conditioning troubles (linearly critical and potentially critical behavior constraints

dependent constraints, almost singular matrices, etc.) are included in the linearized problem statement at

which can possibly arise in other methods. It should each redesign stage. Note that the static structural
however be kept in mind that the envelope method is analysis must be decomposed in two parts: first the
strictly valid only when a single behavior constraint constraint values are computed for the real loading
I assigned. Othrwnse it can produce results that conditions, and then the gradients of the retained
differ subsitantilly from the optiul solution constraints are evaluated by adding virtual or pseudo-

load cases. Finally, It should be emphasized that

using zero order approximation for the stress
Core Requirements constraints also permits a drastic reduction in the

number of linearized constraints (see the Zero Order
Because of their special implementation, which Explicit Approximations section).

takes advantage from the simple form of the side
constraints, the two projection algorithms PRIMAL 1
and PRIMAL 2 require a modest core size [see Ref. (9)]. Computer Prosram Implementation

The number of words necessary to solve a given explicit
subproblem, with n independent design variables and In this section ee Indications are given about
a linearized behavior constraints, in approx/itely the way the previously developed concepts have been

eare b implemented in a computer program. The resulting
equal to optimization facilities are fully integrated in the

S+ 1) general purpose finite element system SANCEF (1),
a (a + 10) + 2 + 3 a (52) which is capable of solving large scale structural

analysis problems (several thousands of degrees of

freedom and finite elements). SANCIF offers a fairly

This formula also applies to the DUAL 2 optimizer, comprehensive finite element library and it is
however it should b modified for the DUAL 1 optimizer applicable to a wide variety of problema (linear,
vhe discrete design variables are involved. Fig. 3 nonlinear, static, dynamic and thermal analyses,
representa graphically the core requirement given by computer graphics, etc.). As indicated on the flow
Sq. 52. It should be clearly recognised that, becwause chart of Fig. 4, the optimization module of SAICIF
design variable linking is most often employed in is built to loop on the general static, dynamic and
practical epplicatioms, the SAMIF program Is capable stability analysis modules. This implies that all
of dealin with structural optimization probli the possibilities offered by these modules are still
involving thousands of finite elements. For example, available, as wll as those of the auxiliary modules,
a problem with 500 design variables - which ight like mash generators, plotting modules for input and
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output, etc. Given a finite element model, the user extracted from Ref (9) and (12) is presented to
may ask for one or more optimization steps, without illustrate the power and the generality of the approach
anything else to do than to define the constraints, used in the SAMCEF program.
In the current version of the SANCEF program, three
distinct optimization modules are provided to treatI'Separately static constraints on stresses and I-Bean

quencies and stability constraints on linear buckling The first example is concerned with an I-beamloads. It is envisioned that the next version ving structure subjected to frequency constraints (Fig. 5).
include the possibility of taking simultaneously The problem consists in minimizing the weight of theinto account any combination of these three types of beam while imposing lower bounds on the frequencies
behavior constraints by using a date base system o of the three first eigenmodes: flange flexion,

torsion and web flexion. Initially the problem was
The program can evidently make use of the restart treated by using a pure membrane finite elementcapabilitiea of the analysis nodules, and it is also model and including fictitious diaphragms in order

devised for an interactive use where the designer to represent properly the torsional mode (9). Onlyexamines the solution after each optimization stage. five analyses are sufficient to generate an "optimumAfter each structural analysis the program can be design" for this mmbrane model. However, when thisstopped, and then automatically restarted without final design was analyzed by using a more accurate
repeating the analysis. It is indeed often desirable model made up of flat shell elements, the torsional
to allow for a human intervention in the redesign frequency limit (mode 2) was seen to be violated by
process. For example, very large structural models, lO1. Therfore the problem was run again with thisbecause they are time consuming, cannot be treated in new model, by resorting to sophisticated explicita single run and it is better executing the optimiz- approximations of the behavior constraints andtiOn program stage by stage with intermediate verifics- employing a special purpose dual optimizer (10). Intion pogra stage esu ts. e witointr rmedte verifin this paper, the problem was solved by using simpletion of the results. The control parameters can tklen first order Taylor series (Eq. 30) and the standardbe reset periodically to adequate values (change of dual aorimD 2 opier) ng sur
the optimization algorithm, modification of move dual algorithm (DUAL 2 optimizer), yielding sur-
limits, selection of the linearized constraint, etc.). prisingly good results. The finite element model is

made up of 25 flat shell elements characterized by aBy storing in a data base the analysis results produced displacement field cubic in extension and quinticat each stage, it is moreover possible to restart ipfaceiont[hbrid quadranulartflatoshlld(1)1.t Ththe rogam t ay peviuslygenratd dsig pont. in flexion [hybrid quadrangular flat shell (1)]. Thethe program at any previously generated design point, idealization involves 360 degrees of freedom. Results
In this connection, it is expected that the concept obtain in ite em de ls onsre
of automatic redesign will be replaced in the obtained for the two finite element models considered
future by that of interactive redesign on a graphic (membrane and flat shell) are given in Fig. 5
terminal, allowing therefore the design to easily (iteration history data) and Table 1 (final designs).
monitor the optimization process. This will lead to It can be seen that the use of flat shell elements,
a perspective where structural optimization methods although yielding slower convergence than membrane
are integrated into a Computer Aided Design system, elements, gives rise to satisfactory results. Also

there is no penalty in employing linear explicit
At the present time the elements whose approximations rather than more complicated ones (10).

dimensions are taken into account in the operational
version of the program are limited to bar, membrane, Composite Box Beam
pure beam (uniaxial bending). and flat shell elements.
The next version will include more sophisticated beam The box beam illustrated in Fig. 6 has beenelements. Nevertheless the structure may be proposed in Ref. (17) as an example of compositeidealized using any other type of element, but material design. The upper and lower skins aretheir dimensions remain unchanged by the optimization assumed to be made up of 0, + 45%. and 90" boron-* process. The stiffness and mass properties of such epoxy laminates represented by stacking four constantL elements are not affected by redesign, however their strain orthotropic membrane elements in each• contributions to the approximate constraints state- rectangular region shown in Fig. 6. The transverse
ment is taken into consideration in the form of fixed webs (shear panels) and the reinforcing bars are interms to be substracted from imposed limits. In aluminum. In the design of composite structures, aparticular the possibility of using super-elements frequent requirement is to limit the deflections orexists and it is very useful for representing pre- to tailor the flexibilities according to given laws.optimized or fixed points in the structure. In absence Therefore no stress limitations have been introducedof specification the thickness or cross-section of in this problem, which is governed entirely by aeach finite element is taken as a design variable and flexibility constraint. The loading is asymetric
is allowed to be independently resized. However the and induces primarily bending deformations, but alsofinite elements can be grouped in such a way that one a limited amount of torsion. The limitations in
design variable is assigned to each group. This deflections are 14 in. at nodes 1 and 2, where thedesign variable linking consists of equality constraints loads are 1000 lbs., and 15 in. at nodes 3 and 4,on the member sizes and it can thus be easily handled in where the loads are 975 lbs. These limitations
the problem formulation, lesding to a reduction in the require evidently a non-syimetric design. Becausenumber of independent design variables. The possibility only the tip deflections are limited, the shear websexists in membrane elements to represent composite keep the same thickness along the span. Therefore,
materials like fiber reinforced resins as the super- using the double symetry of the problem, the number

* position of a number of layers with independent ortho- of design variables can be reduced to 30. Results
tropic properties. The thickness of each layer is then are presented in Tables 2 and 3, together with those
r separate deisn variable as that the superpostion of obtained in Ref. (17). The converence of the
results allows for the definition of the composite. Cur.- optimization process is monotonic and significantlyrent research Is diverted towards algorithm for select- faster than reported in Ref. (M7. After the second
Ing not only the number of MIS 111 each layer, but also analysis, the displacement at node 3 (15 in.) is

the type of material and the fiber orientation (16). already larger than the displacement at node 1

!arical Rzooles (13.8 in.), while in Ref. (17), 20 reanalyses are
necessary to reverse the torsion in the box barn.In this section a sample of numerical applications The slight differences in the final designs (Table 3)
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are due to the differences in the finite element Aircraft Spoiler
models.

The spoiler represented in Fig. 9 is classically
designed in light aluminum alloy sheet. The front

Euler Beam spar and the secondary spar are joined by twelve

Attention is now directed to the Euler sandwich ribs and covered by two skins reinforced by stringers.

colutn shown in Fig. 7. The beam has length I and is The spoiler is hinged at three points and actuated
hingea at both ends. The problem consists in at one, in the midspan. The loads consist in
minimizing its weight for a given critical buckling pressure distribution on both faces, corresponding to
load P. For a sandwich beam with rectangular cross- two flight configurations. In one of them a flexi-
load P. tForea sandwfich eaith rctafngularess(r ubility constraint is imposed, which stipulates that
sections the specific weight and stiffness (per unit the trailing edge has to remain straight within a
length) are linearly related so that the problem can tolerance a = 0.5 mm, in order to eliminate contact
be treated as in the case of thin-walled structures. t he flap. nth iniade sint require

The nalticl soutin, btaned n Rf. 18)with the flap. In the initial design, this require-
The analytical solution, obtained in Ref. (18) ment was achieved by precambering the spoiler (Fig. 9).
stipulates that at the optimum, the specific stiffness This costly procedure has to be avoided in the final
s (x) (and so the sheet thickness) and the lateral optimized design. So differential flexibility

displacement u(x) that characterizes the critical constraints are introduced, which assign an upper
buckling mode have a paraholic form: limit e - 0.5 mm to the absolute value of the

difference between any two deflections along the
s(x) - x (I - x) trailing edge (Fig. 11). In addition, maximum

(53) allowable stresses and minimum thicknesses are imposed,

4 ( which differ from place to place depending on the
u(x) - x (I - x) material used and manufacturing considerations.

2
Several finite element models of the structure

Using a finite element model involving 10 equal were investigated, made up of 27, 64, 125, and 627
Usengt asineg lement d e snvolin is eelements (12). The final model is illustrated in
length segments, the discretized solutlon is Fig. 10. It involves 627 second degree displacement
generated by SAMCEF in six iterations. Table 4 elements and 2300 degrees of freedom. Based upon
reproduces the iteration history data. Note that experience acumulated from the study of the simpler

by symmetry only five beam elements are necessary models, it was concluded that the mixed method

to describe the problem. The final design weighs (Reciprocal Design Variables section) had to be used

265.7 kg while the analytical solution (Eq. 53) (crol Desi robles so t o beIMA ed

leads to 260 kg. The continuous and discretized for solving the spoiler problem. So the PRIMAL 1

solutions are compared in Fig. 7 and Table 4. It optimizer (PRIMAL 1 Optimizer section) was employed
sa n s e sen th the numeric a nd ltae vey c e and it was necessary to limit the number of optimiza-can be seen that the numerical results are very close tinsesoavddvrgcefthpoes. Ts

to the analytical ones, although the finite element tion steps to avoid divergence of the process. This
means that any method based on optimality criteria

model involves only 10 degrees of freedom. (including dual algorithms) would probably not succeed

As mentioned in the Bending Elements section, in solving this problem. Results are presented in

the optimum design of beam structures depends upon Fig. 11. As expected from the experience gained with

the relation between the moment of inertia and the the simplified problems, a good convergence was
cross-sectional area of the beam members. In order obtained with the mixed method by setting the number

oss-lstioal tharios theibm timember ttd In oof minimization steps to - 500, that is slightly
to illustrate the various possibilities permitted by below the number of design variables. Note that the
Eq. 45, the Euler column problem is again considered, initial increase in weight is due to the fact that

by assuming now a rectangular cross-section with the original design of the spoiler did not satisfy

height h and width b. It is apparent that the case

where b is variable and h is constant reduces to the the differential flexibility constraints when

previously examined problem, because the bending precambering was suppressed. Hence after scaling up

stiffness for each member is linear with respect to the member sizes to obtain a feasible design, the

the cross-sectional area. If b is kept cons-ant and weight jumps from 10 to 40 "j. After 13 structural

h is variable, then the expression (Eq. 46) of the reanalyses, the original weight of 10 kg is recovered,

stiffness matrix holds with p-3. Finally if the but it corresponds of course to a very different

cross-section shape is kept invariant (i.e. fixed h/b design. After each iteration, the deflection is
ratio), p=2 must be adopted. In each of the three increased, however, the trailing edge keeps about the

cases considered the finite element model involves same shape and rmains straight within the specified
five beam members (symmetry). In the initial design
the width and the height of the rectangular cross-
section are taken as 10 and 1, respectively, which References
leads to a weight equal to 10 (arbitrary unit

system; see Fig. B). After scaling of the design (1) SAMCEF, Syst~me d'Analyse des Milieux Continua
variables, the weight of the strictly critical,
feasible design takes on different values in the par Elemnts Finis, LTAS, Unirersity of Lije,

three cases considered, because the scaling factor Belgium.

multiplies the moment of inertia of each beam (2) Fleury, C., "An Efficient Optimality Criteria
element, rather than its cross-sectional area. Table 5 lpproach to the Minimm Weight Design of Elastic
contains the iteration history data and the final
designs for each three situations p-1, p-.2, and p-3. Structures," Journal of Computers and Structures,

Only 4 to 6 structural analyses are required to achieve Vol. 11, 1980, pp. 163-173.

convergence. The least weight design is obtained
when the width of the cross-section is varied (p-1). (3) Scmit, L. AE and niura, H., "Approaytion
The heaviest design is obtained by choosing the Concepts for Efficient Structural Synthesis,"
height of the cross-section as the variable quantity NASA CR-2552, 1976.
(p-3). The variations of the moment of inertia and (4) Fleury, C., "A Unified Approach to Structural
of the cross-sectional area are displayed in Fig. 8 Weight Minimization,"
for the three cses cosidered. ns., Vol. 20, No. 1, 1979, pp. 17-38.
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(5) Fleury, C. and Schmit, L. A., "Dual Methods and Table I Final Designs for I-Beam Structure
Approximation Concepts in Structural Synthesis,"
NASA CR-3226, 1980. fmembrane model

(6) Sander, G. and Fleury, C., "A Mixed Method in thickness (mm) flat shell model

Structural Optimization," International Journal
Num. Meth. Engrg., Vol. 13, No. 2, 1978,
pp. 385-404.

(7) Petiau, C. and Lecina, G., "Elements Finis et upper flange
Optimization des Structures," AGARD CP-280, 1580 I1.30 1 1167 1 6.143 1815
1980, Paper 23. 15.97 14.96 10.00 5.049 1.349

(8) Morris, A. J., Bartholomew, P., and Dennis, J.,
"A Computer Based System for Structural Design,
Analysis, and Optimization," AGARD CP-280, 1980, web
Paper 20. 5.101 1 3.602.1 3.329 3.294 1.997 free

(9) Fleury, C. and Sander, G., "Generalized 2.711 4.168 3.938 3.910 2.294 end

Optimality Criteria for Frequency Constraints,
Buckling Constraints, and Bending Elements,"
AFOSR TR-80-0107, 1979. lower flange

(10) Fleury, C., "On the Derivation of First Order 15.40 17.01 1 11.55 I 6.074 1.792
Explicit Approximations to the Behavior 20.38 17.97 12.31 6.551 1.939
Constraints in Structural Optimization,"
submitted for publication to the AIAA Journal,
1981.

(11) Fleury, C., Ramanathan, R. K., Salama, M., and
Schmit, L. A., "ACCESS Computer Program for the
Synthesis of Large Structural Problems," Ist Symp. Table 2 Composite Box Beam. Iteration History Data
Optim. Struct. Des., Tucson, AZ, Oct. 19-22, 1981.

(12) Fleury, C. and Sander, G., "Structural Optimiza- SAMCEP (dual method) Ref. (17)

tion by Finite Elements," LTAS Report SA-58, Analysis deflectionsin deflectioni(in)
University of Liege, Belgium, Grant AFOSR-77-3118, No. weight nodes nodes weight nodes nodes
1978. (lbs) (Ib) 21n e

1,2 3,4 bs) 1,2 3,4

(13) Fleury, C., "Structural Weight Optimization by
Dual Methods of Convex Programming," International 1 42.74 14.00 13.03 59.57 14.00 13.38

Journal Num. Meth. Engrg., Vol. 14, No. 12, 1979, 2 18.31 13.85 15.00 22.05 14.00 13.38
pp. 1761-1783. 3 16.62 13.93 15.00

(14) Schmit, L. A. and Fleury, C., "Discrete- 4 15.90 13.97 15.00
Continuous Variable Structural Synthesis Using
Dual Methods," AIAA Journal, Vol. 18, No. 12, 5 15.34 13.97 15.00 14.70 14.00 13.54

1980, pp. 1515-1524. 6 14.88 13.98 15.00

(15) Gellatly, R. A. and Berke, L., "Optimal 7 14.51 13.99 15.00
Structural Design," AFFDL TR-70-165, 1971 8 14.24 13.99 15.00

(16) Fleury, C., Braibant, V., and Sander, G., "A Dual 9 14.05 13.99 15.00

Method Approach to Structural Synthesis Problems 10 13.94 14.00 15.00 14.76 14.00 13.83
with Optimal Selection of Materials," 1st Syrup. 20 14.66 14.00 14.30Optim. Struct. Des., Tucson, AZ, Oct. 19-22, 1981.

30 14.62 14.00 14.63
(17) Khot, N. S., Venkayya, V. B., and Berke, L., 14.60 14.00 14.82

"Optimum Design of Composite Structures with 40
Stress and Displacement Constraints," AIAA Paper 50 14.59 14.00 14.91
75-141, AIAA 13th Aerospace Sciences Meeting, 60 14.58 14.00 14.96
Pasadena, California, 1975. 0 14.58 14.00 1498

70 14.38 14.00 14.98
(18) Prager, W. and Taylor, J. E., "Problems of

Optimal Structural Design," Journal Appl. Mach., 80 14.58 14.00 14.99
ASME, Vol. 35, 1968, pp. 102-106. 90 14.58 14.00 14.99

100 14.58 14.00 14.99
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Table 3 Composite Box Beam. Final Designs

SAMCEF (dual methods) Reference (17)

amber thickness (in) thickness (in)
Nr. -____ ____-_________total 0. 900 +45o total 0* 90" +450

1,2 0.01994 0.0050 0.0050 0.0100 0.01950 0.0049 0.0049 0.0098

3,4 0.02933 0.0144 0.0050 0.0100 0.03177 0.0166 0.0050 0.0100

5,6 0.04268 0.0277 0.0050 0.0100 0.04508 0.0298 0.0051 0.0102

7,8 0.05604 0.0411 0.0050 0.0100 0.05836 0.0430 0.0051 0.0102

9,10 0.06932 0.0544 0.0050 0.0100 0.07165 0.0563 0.0051 0.01C3

11,12 0.08215 0.0672 0.0050 0.0100 0.08493 0.0695 0.0051 0.0103

13,14 0.09445 0.0795 0.0050 0.0100 0.09820 0.0828 0.0051 0.0103

15,16 0.1067 0.0918 0.0050 0.0112 0.1116 0.0961 0.0051 0.0103

17,18 0.1191 0.1041 0.0050 0.0125 0.1243 0.1088 0.0051 0.0103

19,21,... 0.02080 0.02056

.,35

20,2,... 0.00684 0.00694

...,36

37-54 0.00498 0.00500

weight 13.94 14.58
(The)

number of 10

analyses

Table 4 Iteration Oistory for Sandwich Bean

iteration weight critical face sheets thickness (cm) model displacementte a on (kg) loadaaaaa
a a2  53 54 a5  u2  u3 4  u5

1 390.0 1.2337 1.0000 1.0000 1.0000 1.0000 1.0000 0.3090 0.5878 0.8090 0.9511

2 261.9 0.9826 0.1874 0.4792 0.7378 0.9268 1.0264 0.3722 0.6520 0.8469 0.9620

3 265.6 0.9993 0.2212 0.5257 0.7586 0.9118 0.9877 0.3591 0.6390 0.8393 0.9598

4 265.7 0.9999 0.2151 0.5181 0.7571 0.9179 0.9987 0.3615 0.6414 0.8408 0.9602

5 265.7 1.0000 0.2162 0.5196 0.7575 0.9169 0.9967 0.3610 0.6410 0.8405 0.9601

6 265.7 1.0000 0.2160 0.5193 0.7574 0.9171 0.9971 0.3611 0.6410 0.8406 0.9601

analytical 260.0 1.0000 0.1900 0.5100 0.7500 0.9100 0.9900 0.3600 0.6400 0.8400 0.9600
solution
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Table 5 Euler Colum with Rectangular Cross-Section

a. Iteration History

h constant h/b constant b constant

iteration scaling scaling scaling
vight factor factor factor

1 9.7267 0.9727 9.8624 0.9727 9.9080 0.9727

2 8.2008 1.0177 8.7805 1.0439 9.0838 1.0662

3 8.1775 1.0007 8.7376 1.0046 9.0343 1.0104

4 8.1766 1.0000 8.7335 1.0004 9.0274 1.0012

5 8.7332 1.0000 9.0266 1.0002

6 8.7331 1.0000 9.0264 1.0000

b. Final Designs

I + a (h constant) I + a
2 

(h/b constant) I + a
3 

(b onstt)element____ ____

I a b h I a b h I a b h

1 0.2160 2.592 2.592 1.0 0.1550 4.313 0.6567 6.567 0.1343 5.442 10.0 0.5442

2 0.5194 6.233 6.233 1.0 0.4785 7.578 0.8705 8.705 0.4651 8.233 10.0 0.8233

3 0.7574 9.089 9.089 1.0 0.7673 9.596 0.9796 9.796 0.7770 9.769 10.0 0.9769

4 9.9171 11.005 11.005 1.0 0.9727 10.804 1.0394 10.394 1.0044 10.642 10.0 1.0642

5 0.9970 11.964 11.964 1.0 1.0784 11.376 1.0666 10.666 1.1229 11.045 10.0 1.1045

I : soment of inertia b : width

a : cross-saectional area h : height
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AN INTERACTIVE SOFTWARE SYSTEM FOR OPTIMAL DESIGN OF

' STATICALLY AND DYNAMICALLY LOADED STRUCTURES WITH NONLINEAR RESPONSE

M. A. Bhatti , V. Ciampi, K. S. Pister and E. Polak
Earthquake Lngineering Research Center
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Summary closely through graphical information displays. This
will give them a "feel" for these parameters and the

The definition of a design problem in terms of algorithm itself, removing some of the "black box"
an optimization problem involves identifying an objec- character of the process.
tive function and suitable constraint functions.
Historically, since optimization techniques were first This paper describes an interactive software
used in the aerospace industry, weight of the structure system, OPTNSR, for optimal design of structures, in
has been considered as the objective function. For which the above attributes are incorporated.
design of structures subjected to dynamic loads, such
as earthquake excitation, other objective functions Introduction
such as life-time cost better reflect appropriate per-
formance objectives.__FA -some special types of struc- The common practice in design of structures is to
tures, such as brac rames, maximizing energy absorp- use a trial and error design procedure. First, an
tion in the bracing sysem could be an objective. Thus, initial design is chosen, which may then be analyzed
depending upon the appli ation, many different functions using a computer program which simulates the behavior
of design parameters and/or structural response are of the physical system. By looking at the results of
possible candidates for consideration. The computer computer simulation, the designer adjusts the initial
programs developed for optimal structural design, so design in an attempt to satisfy a set of given
far, have been specialized either for a particular specifications which are usually not met by the initial
objective function, such as minimum weight, or for design or to obtain a better design in terms of per-
particular structures, e.g., trusses or shear frames. formances criteria. After the adjustment, a new
In order to look at different problem formulations, a simulation is performed and the process is repeated
more flexible programing structure is needed, in which until a satisfactory design is obtained. The success
users can define their own objective and constraint of this procedure depends critically on the experience
functions in order to widen the range of applicability of the designer and may involve a considerable amount
to practical problems. of professional-level effort.

The optimization algorithms used up to now to Since the early 1950's, research in computer
solve design problem have often been too primitive for simulation of structural systems has made considerable
the task at hand. For example, they have not been progress, resulting in a number of excellent general
capable of solving non-convex problems and problems with purpose structural analysis programs (1-2). At the
dynamic constraints. Even in simple cases, the cost- same time, several attempts have been made to automate
benefit ratio has frequently been unfavorable because the above design process using optimization techniques.
the algorithms failed to converge to a solution in a A summary of this work is contait d in the survey
reasonable amount of computer time. papers (3-6). Despite this cons derable research

activity, optimization techniques are not as widely
Recently, new algorithms have been developed, for used as might be expected. In the authors' opinion,

general non-convex problems involving dynamic con- the main reasons for this lack of interest are:
straints, which have better convergence properties. At
the same time, methods for early detection of ill- (i) Lack of a proper definition of design problems
conditioning in mathematical programing problems are in terms of an optimization problem.
emerging. Since, in general, the transcription of a (ii) Lack of robust optimization algorithms
design problem into a mathematical programing problem applicable to general design problems involving
is not unique, heukistics are currently being developed dynamic constraints.
which suggest ways , changing the transcription to
eliminate the ill-conditioning. However, these (iii) Lack of familiarity with optimization
algorithms are still sensitive to the choice of internal techniques.
parameters as well as initial values of design The definition of a design problem in terms of
parameters.patsan optimization problem involves identifying an

In order to deal with these difficulties, an objective function and suitable constraint functions.
iiteractive software system for optimal design is Historically, since optimization techniques were
-rdi ensable. Interactive computing permits one to first used in the aerospace industry, weight of the

structure hes been considered as the objective function.
.>,restart or modify any of the parameters as the Frdsg fsrcue ujce odnmclas

somputation progresses. This results in substantial For design of structures subjected to dynamic loads,
sxvings, not only In computing time, but also in overall such as earthquake excitation, other objective
*ite needed to carry out a design. functions such as life-time cost better reflect appro-

priate performance objectives, (7). For some special

An additional advantage of an interactive system types of structures, such as braced frames, maximizing
using computer graphics is that it can be used as a tool energy absorption by the bracing system could be an
to familiarize designers with optimization techniques. objective. Thus, depending upon a particular applica-
They can change parameters of the algorithm and execute tion, any function of design parameters and/or
a few iterations while monitoring the computation structural response functions is a candidate for

consideration as an objective. Obviously, along with
different objective functions, one must define

tCurrently at the University of Iowa, Iowa City, Iowa. appropriate constraint functions in order that the
problem is well-posed. The computer programs
developed for optimal structural design, so far, have

12-1



been specialized either for a particular objective Flexibility
function, such as minimum weight, (8,9), or for As pointed out in the Introduction, since defini-
particular structures, e.g., trusses or shear frames. tion of a design problem in terms of an optimization
Hence, their application has been very limited. Thus, problem i tesof s. omisho n
in order to look at different problem formulations, a problem is not unique, the software s cem should be
more flexible programming structure is needed, In which flexible enough to permit incorporation of new objec-
users can define their own objective and constraint tive functions and constraint functions.

functions in order to widen the range of applicability
to practical problems. Modularity

The optimization algorithms used up to now to A system for optimal design brings together several

solve the design problem have been too primitive for areas of research, e.g., optimization algorithm

the task at hand. For example, they have not been development, finite element analysis, numerical

capable of solving non-convex problems and problems analysis, computer hardware, etc. This necessitates
with dynamic constraints. Even in simple cases, the that the system be modular so that new developments in

cost-benefit ratio has frequently been unfavorable any of the related fields can be easily incorporated.

because the algorithm failed to converge to a solution Computational Efficiency
in a reasonable amount of computer time. This situa- Since optimal design typically involves substantial
tion may arise because of several factors, such as:
ill-conditioning of the mathematical programming problem number crunching, algorithms should be computatonally
into which the design problem is translated; weak efficient. Moreover, the programing should avoid
convergence properties of the algorithms used (e.g., unnecessary calculations and duplications of computa-
penalty function method with conjugate gradient method tions. However, computational efficiency should not be

for line search); poor choice of internal parameters of achieved at the cost of losing modularity.

algorithm; or poor initial design. Since optimization Computer Graphics
algorithms may require several structural analyses It is generally easier to process large amounts
per iteration, it is clear that very slow convergence of information when it is presented graphically.
or worse, no convergence at all, may be considered as Therefore, the t souldenorporaeixtesiv
a very expensive accident! Therefore, the system should incorporate extensive

graphics facilities to make interaction with the

Recently, new algorithms have been developed, for computer easier for creative problem solving.

general non-convex problems involving dynamic constraints Ease of Use
(10-11),which have better convergence properties. At The system should be understandable and accessible
the same time, methods for early detection of ill- t he ys of uers tndabte hond emit
conditioning in mathematical programming problems are to different types of users. That is, it should permit
emerging. Since, in general, the transcription of a a new user to star.,knowing only a few commands and
design problem into a mathematical programming problem learning more advanced concepts "on-line". The command
is not unique, heuristics are currently being developed structure should therefore have different levels so

which suggest ways of changing the transcription to that routine design problems require the use of only

eliminate the ill-conditioning. However, these a few higher level commands, whereas for nonconventional
algorithms are still sensitive to the choice of internal design problems an experienced designer can retain
parameters as well as initial values of design closer control of the design process by using basic
parameters. lower level commands.

In order to deal with these difficulties, an OPTNSR System Components
interactive software system for optimal design is
indispensable. Interactive computing permits one to OPTNSR is an interactive software package for
stop, restart or modify any of the parameters as the OPTimal design of statically and dynamically loaded
computation progresses. This results in substantial structures with Nonlinear Structural Response. The

savings, not only in computing time, but also in overall system is curretly operatTng on a DE VAX 11/780

time needed to carry out a design. computer obtained through a grant from the National
Science Foundation. The operating system is a virtual

An additional advantage of an interactive system memory version of UNIX (a Bell System trademark)
using computer graphics is that it can be used as a tool developed, at the University of California, Berkeley.
to familiarize designers with optimization techniques. The system was developed with design criteria described
They can change parameters of the algorithm and execute earlier in mind. System modularity and flexibility are
a few iterations while monitoring the computation emphasized by the fact that the whole system was based
closely through graphical information displays. This on existing software modules, each performing a
will give them a "feel" for these parameters and the specific task. Only the interfacing software was
algorithms itself, removing some of the "black box" written and implemented. Thus, it is relatively easy
character of the process. to bring in new modules. The modules used in creating

the OPTNSR system are:
In the following sections there is described an OPTDYN (13)

interactive software system, OPTSNR, for optimal design
of structures, In which the above attributes are This is a general purpose program which is capable
incorporated. The design criteria for the system are of solving design problems which can be expressed in
described first, followed by some of its important the format:
features. In a companion paper typical applications of min f(z)
the system to design of nonlinear structures subjected z
to dynamic loadings are presented (12). Subject to

System Design Criteria max *J(z,w) < 0 j - 1....m

In the authors' opinion, a general purpose software W wE [wowc] (1)
system for interactive optimal design of structures 

gE(z) < 0

should be based on the following criteria: g0 1 1 ..... t
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where applied in a series of load increments, each load

z E P - vector of design variables increment being specified as a linear combination of
static force patterns. This feature permits nonpro-f - objective or cost function portional loads to be applied. Each load increment can be

cJ a functional or dynamic constraints specified to be applied in a number of equal steps.

gJ a conventional inequality constraints The dynamic loading may consist of earthquake
which depend on design variables only. ground accelerations, time dependent nodal loads, and

prescribed initial values of the nodal velocities and
The program is based on a method of feasible directions, accelerations. These dynamic loadings can be specified
organized as a base program and a user-supplied section. to act singly or in combination.
The user-supplied section defines objective and con-
straint functions for a particular design problem and Solution Techniques.
includes the following routines: The program incorporates a solution strategy

(a) PARSYM: Called once at the beginning of the pro- defined in terms of a number of control parameters. By
gram to specify fixed system parameters. assigning appropriate values to these parameters, a

wide variety of solution schemes including step-by-step,
(b) FUNCF: To evaluate cost function, iterative and mixed schemes, may be implemented.

(c) GRADF: To evaluate cost gradient. For static analysis, a different solution scheme

(d) FUNCG: To evaluate simple inequality constraints. may be employed for each load increment. The use of
this feature can reduce the solution time for structures(e) GRAIJG: To evaluate gradients of simple inequality in which the response must be computed more precisely

constraints, for certain ranges of loading than for others. In such

(f) FUNCPH: To evaluate functional inequality cases, a sophisticated solution scheme with equilibrium
constraints, iteration might be used for the critical ranges of

loading, whereas a simplier step-by-step scheme without(g) GRADPH: To evaluate gradients of functional iteration might suffice for other loading ranges.inequality constraints.
The dynamic response is computed by step-by-step

This structure allows the flexibility needed in defining integration of incremental equations of motion using
a design problem. More details about the functions of Newmark's method. A variety of integration operators
these routines can be found in (13,14). may be obtained by assigning appropriate values to the

INTRAC (15) parameters 0 and y.

INTRAC is a general purpose, communication module Programming Considerations.
for interactive systems. It is a command-oriented The program is organized into a base program and
system ard syntax of its commands is similar to the an element library. New elements can easily be added
BASIC language. A summary of commands is included in without knowing anything about the base program,
Appendix A. A very important feature of INTRAC is that merely following clearly defined instructions (see
it allows use of "macros". A macro is a text file (14) for details.)
containing a sequence of commands stored on mass
storage. A macro can be used as a new command causing Nonlinearities are introduced at the element level
the sequence of commands to be executed. Macros are only, and may be due to large displacements, large
instrumental in creating different levels of interac- strains and/or nonlinear materials. The programmer
tion. For example, for new users, simpler "commands" adding a new element may include any type or degree
can be created which are actually macros which execute of nonlinearity in the behavior of the element.
a sequence of lower level commands. The stiffness matrix is modified, rather than

MINI-ANSR completely reformed, as the tangent stiffness changes.
During solution, the decomposition is carried out

This is a modified version of ANSR-1 (2). It is only on that part of the updated stiffness matrix
modified for minicomputers with virtual memory operat- which follows the first modified coefficient.
ing systems. It is capable of analyzing linear and Significant savings in solution time can sometimes be
nonlinear structural systems subjected to static and obtained by numbering the nodes connecting nonlinear
dynamic loads. Some of the important features of the elements to be last, so that the decomposition opera-
program are described below. For more details readers tions are limited to the end of the matrix.
are referred to (2,14). Finite Element Library.

Structural Idealization.FiteEmntibay
At present, the following finite elements are

The structure is idealized as an assemblage of included in the program. New finite elements may be
discrete finite elements connected at nodes. Each node added to the library with relative ease by following
may possess up to six displacement degrees of freedom. the instructions given in (14).
Provision is made for degrees of freedom to be deleted
or combined. This feature provides the user with ample (i) Three dimensional elastic truss element which can
flexibility in the idealization of the structure, and be located arbitrarily in an X, Y, Z cartesian
may permit the size of the problem to be substantially coordinate system. It can transmit axial forces only.
reduced. (i) Three dimensinoal nonlinear truss element which

The mass of the structure is assumed to be lumped may yield in tension and yield or buckle elastically
at the nodes, so that the mass matrix is diagonal. in compression. Large displacement effects may be

included. See (2) for theoretical details of thisLoadsng. element.

Loads are assumed to be applied only at the nodes. (iii) Two-dimensional elastic beam elements, located
Static and/or dynamic loads may be specified; however, arbitrarily in an X, Y cartesian coordinate system.
static loads, if any, must be applied prior to the Shear deformations are ignored.
dynamic loads. (iv) Two dimensinoal nonlinear beam element, arbitrarily

For static analysis, a number of static force oriented in the global X, Y, Z reference frame. Each
pattern. must be specified. Static loads are then element must be assigned an axial stiffness plus a
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major axis flexural stiffness. Torsional and minor (marked by a prompt '>1), the user has access to all
axis flexural stiffnesses may also be specified if these quantities and can modify them using the SET
necessary. Flexural shear deformations and the effects command. A number of quantities from OPTDYN which are
of eccentric end connections can be taken into account. needed during interaction have already been declared
Yielding may take place only at concentrated plastic into the symbol table. A complete list is given in
hinges at the element ends. Hinge formation is (14). The quantities which are related to a particular
affected by the axial force and major axis bending problem or simulation package can also be declared
moment only. Strain hardening and large displacement into the symbol table from subroutine PARSYM by simply
effects can be approximated. See (17) for theoretical calling a subroutine DECLAR with proper arguments.
details of this element Again, see (14) for the programming details.

(v) Three dimensional nonlinear beam element, arbitra- In OPTNSR interaction is handled through a set of
rily oriented in a global X, Y, Z reference frame. Each commands. These commands are divided into the follow-
element must be assigned flexural stiffness and axial ing categories:
stiffness. Plastic hinges can form at the element
ends. Interaction among the bending moments, torsional (i) commands for flow control
momentand axial force is taken into consideration. (ii) commands to handle the symbol table
Displacements are assumed to be small, although the
P-delti effect may be considered. Theoretical details (iii) commands for graphics
are given in (17). (iv) commands for scratch pad

(vi) Energy absorbing element, arbitrarily oriented in (v) miscellaneous commands
a global X, Y, Z reference frame. This element
transmits axial forces only and its hysteretic behavior For the sake of brevity, only a summary of these
is governed by a rate-type constitutive equation (16). commands is included as Appendix B; for details see

(14).
Interactive Use of OPTNSR System

These commands in combination with INTRAC commands
Computational experience with batch use of the (Appendix A), are used as basic building blocks to

program OPTDYN revealed the following difficulties: write macros that perform specified tasks. These
macros provide the following features:

(i) The choice of parameters best suited for the
problem at hand was not obvious and required several (a) Simple problems, or problems with which
adjustments before reaching a set of parameters which considerable experience has been acquired, require very
gave good computational behavior. little interaction since most of the parameters can

(ii) Sometimes the problem was badly scaled with be pre-set. In this case, a macro, called RUN, can
respect to the algorithm, requiring several adjustments be used to perform a specified number of iterations
before a solvable problem was obtained, just as in batch mode.

In order to cope with these difficulties the (b) Complicated problems sometimes require that
program was made interactive through the general the computational behavior be monitored in more detail.
purpose interactive language interpreter INTRAC. The A series of macros is available so that a user can
interaction allows the designer: essentially single step through the algorithm and

change any of the parameters as desired.
(i) to interrupt the computing process, change (c) Special macros make the use of graphics and

parameter values and restart the process; scratch pad easier.

(ii) to control the flow of the algorithm by
single-stepping through its loops (This feature is most In addition to these ready-made macros, users can
useful in diagnosing reasons for poor computational write their own macros to perform specified tasks.
behavior.); Some of the more commonly used macros will be described

(iii) to display quantities computed by the here.

optimization and simulation algorithms; (I) RUN - Performs a specified number of itera-
(iv) to use the computer as a "scratch pad" for tions of tlFeoverall algorithm.

side computations on variables, vectors and matrices Syntax: RUN (nltn) (option)
used in the algorithm. This feature is useful to
perform tests not originally foreseen in the program nitn = number of iterations of the algorithm to
and to check, for example, condition of key matrices, be performed. The program will stop for
their elgenvalues, etc. further action, if the number of iterations

exceeds 'nltn' and the optimum has not yet
The first step in implementing interaction is to been achieved. The program can be restart-

decide where the interaction should take place and what ed by using RUN macro again, if desired.
quantitites need to be changed and/or otherwise mani- option {STOREIPRTALL}
pulated. According to the above considerations,
interaction should be implemented at each step of the If PRTALL option is specified, then the program
main loop of the algorithm as well as at each step of prints iteration number, cost function (f), constraint
every internal loop. Thus breakpoints have been violation function (*), optimality function (0) and
inserted after the corresponding statement of OPTDYN. tolerance parameter (c) on the terminal as the
At each breakpoint a subroutine INTCAL is called, which

computation is progressing. With the 'STORE' option,checks the condition associated with the breakpoint, functions f, * and design variables are stored InThe condition may be NEVER, ALWAYS or an IF clause.arrays 'FG', 'P ' and 'ZG. These
ftis NEVER, no action is taken and the control is arrays can be later used to plot, for example, the

returned to OPTDYN. If it is ALWAYS, INTCAL is called decrease in the cost versus iteration number, history
an interaction phase takes place. T qa of a particular variable over several iteration, etc.

wich need to be changed or displayed are declared in a If no option is specified, only the iteration number
symbol table (data base). During the interaction phase Is printed.
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(ii) STEP2 - Computes objective and constraint Plots cost function versus iteration number from
functions. Syntax; STEP2. the values of f stored in array FG. If yesno is 'Y',

the curve will be marked to signify a new iteration.
This macro performs Step 2 of the algorithm, i.e.,

it computes the objective function f, simple inequality A plot created by GRAPHF is shown in Figure 2(a).
constraints g and functional constraints 0. (vii) GRAPHPSI - Plots i function versus iteration

(iii) STEP3 - Computes a usable feasible direction number
Syntax: STrP3 Syntax: GRAPHPSI (yesno)

This macro performs calculations in the step 3 of yesno : {YIN}
the algorithm to find a usable feasible direction. Plots 0 function versus iteration number from the
Angles between the direction vector and function
gradients can be displayed by using macro PRTANG. If values stored in PSoG. yesno has the same meaning
these angles are not satisfactory, some parameters can as in GRAPHF. A plot created by this macro is shown
be changed and a new direction computed. in Figure 2(b).

(iv) ARMIJO - Performs step length calculations (viii) GRAPHZ - Plots history of design variables

using Armijo'srule. Syntax: ARMIJO (nitn) (display) Syntax: GRAPHZ (number) (yesno)

Plots a particular design variable, specified by
nitn : = maximum number of iterations to be number versus the iteration number from the array

performed ZG. 'yesno' has the usual meaning.

display : = display option. Concluding Remarks

This macro performs iterations until either, the A software system for interactive optimal design
Armijo rule is satisfied or the number of iterations
exceeds the maximum specified. For the display option, of statically and dynamically loaded structures is

macros 'GRAPHO' or 'GRAPHOS' can be used. Both of presented. Typical applications of this software

these macros plot Armijo step and simple constraints system are presented in a companion paper (12). Here,

as bar charts and functional constraints at each the software system is critically examined with

iteration within the loop. The only difference between reference to stated design criteria for a general

the two is that GRAPHOS stores values of f, 4) and z in purpose, interactive software system for optimal design.

arrays FG, PSIG and ZG created by using RUN macro with Flexibility. A new design problem in the OPTNSR system
STORE option. A typical plot generated by GRAPHO is isformulated by supplying routines for objective and
shown in Figure 1. The graphics screen is divided constraint functions and their gradients. Thus the
into three windows. In the top window, a line system is very flexible in this regard. However, for
corresponding to the current step length tried, is new design problems, it has been our experience that
drawn. The line is below the diagonal line if the cost few revisions of the problem formulation are needed
reduction is satisfactory, but is above the diagonal before arriving at a suitable formulation. Each change
otherwise. In the middle window bars are drawn in objective or constraint function necessitates going
corresponding to g constraints and the maximum value to the FORTRAN level, making changes, compiling, linking
of 4 constraints. Bars at successive iterations are and loading the whole system. This process is quite
drawn a little to the right of the previous bars. The time consuming. Thus, it is highly desirable to have
6 line is also shown. The bottom window is divided a higher level language for defining constraint and
equally into several portions to accomodate all the objective functions so that a minor change in objective
functional constraints. The functional constraints or constraint functions does not necessitate linking
are plotted at each iteration in their respective and loading of the whole system.
portions of the window. Muity. The OPTNSR system was constructed from

ese graphs gives a clear picture of what is going v independently written software modules, thus,

on within the Armijo loop. It is easy to identify a it is hig',ly modular. New structural analysis packages
yparticular constraint that is causing difficulties in or new interaction handling systems can easily be

satisfying the Arijo rule. To correct this situation, incorporated. The system does suffer from one drawback
a now direction can be computed with that particular which stems from the fact that it is based on OPTDYN,

an newirect cacte se t th t pr ma b which is a batch mode, one algorithm (feasibleconstraint ith atiestothprbm ybe directions) program. It is a well known fact that

rescaled. different optimization algorithms perform differently
(v) RARMIJO - Performs iterations of the overall on different classes of problems, some being mre

algorithm withArjo display efficient than others for a particular problem. In a

Syntax: RARMIJO (nitn) general purpose software system, it is desirable to
have more than one algorithm (perhaps a library of

This macro combines RUN macro with the Armijo algorithms) so that the user can choose the particular
display GRAPHO. One iteration of the overall algorithm algorithm most suited to the problem at hand.
will be performed with the GRAPHO display in the step Computational Efficienu. The OPTNSR systems'basic
length loop. RESUME command is given to start the next c he optr syutes basiiteration, as long as the number of iterations is less computational mo~dules use computer resources very
than nitn a efficiently. However, the macros are implemented in an

a .inefficient manner. Each time a macro is executed, it
Note: A parallel macro, 'RARMIJOS', combines RUN with is read from disc, its commands interpreted and then
GRAPHOS for storing values in global arrays, as executed. This means that macros which are part of
explained in 'ARMIJO'. a loop will take unnecessarily long to execute. An

(vi) GRAPHF - Plots cost function versus iteration effort was made to reduce disc I/O by keeping some of
i -the commonly used macros in core, in an internal

number buffer, but this proved not to be enough. The system

Syntax: GRAPHF (yesno) should be modified so that macros are read and inter-
yesno :- {YNIN preted only once when they are called for the first

time.
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Computer Graphics. Most of the applications' graphics (10) Polak, E., "Algorithm for Optimal Design,"
is implemented by writing macros which use lower level NATO-NSF Advanced Study Institute on Optimization
graphics primitives. Thus, some of the graphics is of Distributed Parameter Structures, The University
slower because of the way macros are implemented. of Iowa, Iowa City, Iowa, May 21 - June 4, 1980.
Better implementation of macros would take care of (11) Gonzaga, C., Polak, E. and Trahan, R., "An
this problem also. Improved Algorithm for a Class of Optimization

Problems with Functional Inequality Constraints,"
Ease of Use. The system is relatively easy to become Electronics Research Laboratory, Memo No.
familiar Wtth and use. However, some of the commands UCB/ERL - M78/56, University of California,
and breakpoint structure require detailed knowledge of Berkeley, 1978.
the algorithm and its implementation. Moreover, the
system in its present form is more suitable for (12) Balling, R., Bhatti, M. A., Ciampi, V. and
research applications as opposed to industrial applica- Pister, K. S., "Interactive Optimal Design of
tion. Dynamically Loaded Structures Using the OPTNSR

Software System," The.;e proceedings.
From the above discussion it is seen that the (13) Bhatti, M. A., Polak, E. and Pister, K. S.,

OPTNSR system provides researchers with a very "OPTDYN - A General Purpose Optimization Program
powerful and versatile tool for studies in the area of for Problems with or without Dynamic Constraints,"
optimal design of nonlinear structural systems. Report No. UCB/EERC-79/16, Earthquake Engineering
However, it requires improvement to make it useful for Research Center, University of California,
broader research applications and ultimately industrial Berkeley, July 1979.
applications. Work is currently underway to overcome
some of the limitations mentioned above. (14) Bhatti, M. A., Ciampi, V., Pister, K. S. and

Polak, E., "OPTNSR - An Interactive Software
Acknowledgement System for Optimal Design of Statically and

Dynamically Loaded Structures with Nonlinear
Research sponsored by the National Science Response," Report No. UCB/EERC - 81/02, Earthquake

Foundation Grants ECS-79-13148, PFR-7908261 and Engineering Research Center, University of
ENG-7810442. California, Berkeley, January 1981.
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15. FREE - Re-initializes global variables. (E) Miscellaneous Commands

16. SWITCH - Modifies switches in INTRAC 1. ALGO - Displays the solution algorithm

17. STOP - Stops the execution of the program. 2. ED - Calls a text editor to write and modify
macros

Appendix B - Summary of Basic Commands 3. LIST - Lists a macro file

(A) Commands for Control Flow 4. COPY - Copies a macro file

1. BREAKS - Displays a list of breakpoints in the 5. DELETE - Deletes a macro file
algorithm 6. CSH - Calls shell to execute a UNIX command

2. WHERE - Displays the name of the current breakpoint 7. HELP - Explains usage of the comands

3. HALT - Sets up halt condition at specified
breakpoints 8. HLPGR - Gives a list and syntax of macros for

4. GO - Starts execution from one breakpoint to graphics

another 9. HLPPAD - Gives a list and syntax of macros which
facilitate use of scratchpad

(B) Commands to Handle Symbol Table

1. SYMBOL - Displays the symbol table

2. PRINT - Displays a variable from the symbol table

3. SET - Changes value of a variable in the symbol
table

4. CHECK - Checks if a variable has been changed
by SET command.

5. CLEAR - Clears flags used for CHECK

6. SETDIM - Changes dimensions of an array in the
symbol table

7. TRANS - Transfers value of symbol table variable
to INTRAC.

(C) Commands for Graphics

I. GRINIT - Initializes graphics mode

2. DEFINE - Defines rectangular windows on the
screen by a user-specified name.

3. WINDOW - Enters a specified window

4. ERASE - Erases a specified window

5. COLOR - Sets color for subsequent graphics
output

6. VECTOR - Draws a vector between specified starting
and ending coordinates

7. MOVE - Moves cursor to specified coordinate

8. DRAW - Draws a vector

9. CURSOR - Moves cursor in preparation for text
output

10. CURSOREL - Positions cursor a specified number of
character size units away from (x,y)
coordinate

11. TEXT - Outputs text at the posit' of the
graphics cursor.

(D) Commands for Scratchpad

1. GETDIM - Returns actual array dimension from the
symbol table

2. PDIM - Creates a variable in scratchpad

3. PREM - Removes a variable from the scratchpad

4. PTAB - Displays scratchpad symbol table
5. PSCAL - Scalar operations in the scratchpad

6. PMAT - Matrix operations in the scratchpad
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,.5.4- C o58) INTERACTIVE OPTIMAL DESIGN OF DYNAMICALLY LOADED STRUCTURES

USING THE OPTNSR SOFTWARE SYSTEM
*

R. Balling, M. A. Bhattl, V. Ciampi and K. S. Pister
Department of Civil Engineering

University of California
Berkeley, CA 94720

Summnary
Some typical applications of optimization 0 u

techniques to the design of nonlinear structures sub-
jected to dynamic loadings are presented. The applica- -4 14 2 614
tions are based on the use of the interactive software
system OPTNSR, described in a companion paper. _.u,

Introduction 3 13 4.

The definition of a design problem in terms of an D t,sEc
optimization problem involves identifying an objective
function and suitable constraint functions. 30ACCLPTION PULSE
Historically, since optimization techniques were first AT THEBSE

used in the aerospace industry, weight of the structure
has been considered as the objective function. For
design of structures subjected to dynamic loads, such Fig. 1. Inelastic Braced Frane.
as earthquake excitation, other objective functions
such as life-time cost better reflect appropriate per-
formance objectives, (1). For some special types of Minimum Weight Design of an Inelastic Frame
structures, such as braced frames, maximizing energy Subjected to an Impulsive Base Motion
absorption by the bracing system could be an objective.
Thus,depending upon a particular application, any
function of design parameters and/or structural response subjected to an impulsive base motion, is designed for
functions is a candidate for consideration as an minimum weight under both conventional and functional
objective. Obviously, along with different objective constraints. Material nonlinearity is allowed in the
functions, one must define appropriate constraint diagonal bracing, which is modeled using a nonlinear
functions in order that the problem is well-posed. truss element.
Computer programs developed for optimal structural
design, so far, typically have been specialized either The ability of MINI-ANSR to accept specifications
for a particular objective function, such as minimum of both zero displacements and equal displacement com-
weight, (2,3), or for particular structures, e.g., ponents for different nodes, has been used to model the
trusses or shear frames. Hence, their application has shear-type structure. Four design parameters appear
been very limited. In order to look at different naturally, the two areas of the diagonal bracing and
problem formulations for a wider class of design situ- the two moments of inertia of the columns, at the first
atlons, an interactive software system OPTNSR (4) has and second floors, respectively. Area of cross section,
been developed. Important features of the system are A, and elastic section modulus, S, of columns are
described in a companion paper (5). Here formulation assumed to be related to moment of inertia I by the
is given and results are presented for two problems empirical relationships:
belonging to different categories: A = 0.8 11/2 (in inch units)(

(I) Minimum weight Design: A two story shear- / 4
type braced frame, subjected to an impulsive base motion S = 0.78 1(2)
is designed for minimum weight. Material nonlinearities
are allowed in the braces. Time-dependent (or For convenience of formulation of the problem, variables
functional) constraints are imposed on maximum story I and I?, having the dimensions of moments of inertia,
drifts and maximum stresses in columns. Conventional a4e used as design variables instead of areas. For the
inequality constraints, limiting minimum member sizes bracing the same relationship, equation (1), is aqsumed
and the ratio between weight of the bracing and total to hold. The four design variables are then I , I for
weight of the structure are also imposed. the bracings, 13 and 14 for the columns. Constraihts

(ii) Design for Minimum Structural Response: considered refer to story drifts, stresses in columns,
Design of an earthquake isolation systems for a steam minimum member sizes and ratio between weight of the
generator in a nuclear power plant is considered, such bracing and total weight of the structure. The objec-
that rotations of the generator are minimized during an tive and constraint functions and their gradients are
earthquake. In particular referenc- is made to a model expressed as follows:
structure which has been tested on the earthquake
simulator at the Earthquake Engineering Research Center, Objective Function
University of California, Berkeley. The steam generator
is supported at the base on rubber bearings with very f(z) = wt wb + wc total weight of the structure
low lateral stiffness, and is connected to an adjacent

five-story steel frame through mild steel energy PL b(Al+A 2 ) + 
2phc(A 3+A4 )

absorbing devices, at two different levels. Selection 1/2 2 1/2 1/2
of mechanical properties of the two energy absorbing 0.8 pXb(I / +12 + 1.6 phc(1 3 +I4
devices and their points of attachment to the steam
generator constitutes the design problem. Gradient of f

4 Currently at the University of Iowa, Iowa City, Iowa. Vf = 0.4p[Jtbl tb 2 , 2hcI3
11 2 

, 2hcI14 
12
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Conventional Constraints Numerical Data

1) gl= .1 + b 0 Material density, p 0.1 lb/in 3

2) g2 = .2 + b < 0 Positiveness of the design Young's Modulus, E = 30000. ksi
2 min variables Maximum story drift, a = + 0.45 in

3) = _I3 + Ic <0b
:3g I3 Imin 0 Maximum stress in columns, a = + 24 ksi

4) g4= JI iC 0 Minimum value of the design variables,

5) The weight of the bracing is desired to be less Imin = 10. in4 for the columns,
than a fixed fraction a of the total weight of the I n = 0.1 in4 for the bracing
frame: min no h rcn
5 b <0 Yield stress in the bracing, ay = + 18 ksi

KbC) - Masses at each floor, ml = m2 = 208 lb x sec /inch

Gradients of Conventional Constraints Base acc leration, a rectangular pulse of 140

T 2 =T in/secl , acting for 0.5 sec.
Vg1 = [-1,0,00)T , Vg2 = (O,-,,00 Duration of analysis, I sec in 100 steps.

Vg3 = [0,0,_I,0oT , vg4 = [0,0,,-1T,

Numerical Results

w 0.4 1 bI-1 2  Numerical results for this example are presented
SI/ 2  in the form of an interactive dialogue with the

5 1 wc Zb I2 computer (Appendix A). The name of the data file is
Vg5 w - b 2  "brace.data" which contains initial values of the

(wb+WC) wb 0.8 hc 131/optimization algorithm parameters, starting design

C-wb 0.8 hc 14/2 vector and other data for the MINI-ANSR program.

Ten iterations of the optimization procedure are

first performed using the macro "run" and the option
cunctional Constraints "store". In this case the initial design is infeasible

and seven iterations are needed to reach the feasible
Maximum allowable story drift, a region.

1) ull< <a or €1 = () _ 1 < 0 N At the end of ten iterations the results of the
- aanalysis corresponding to the new values of the design

2 (-u 2 variables, now feasible, are displayed, using two new
2) u2-ulj <a or = a - 1 < 0 macros, specifically prepared for the problem, "gdisp"

- and "gmom". These macros display horizontal displace-
ments of the two floors and end moments in the columns

Maximum allowable stress in columns, oa at the first and second level, as functions of the
2 number of time steps.3) M~ a  or ¢3 M 1C - < 0

3 ic- a o823/2 2 - Four more iterations are then requested, after
Si 723 'a which the decision is made to start monitoring very

carefully what happens in the various stages of the
2 procedure in order to make ossible a rational adjust-

M c 4 2 c 1<0 ment of the parameters of the algorithm. Starting

4) ~2c - a o.23/202 - from iteration 15 macro "step3" is used, which stops
or .7 14 a the execution at the end of step 3, that is after the

calculation of a direction has been completed. Command
Gradients of Functional Constraints "prtang" gives at this point the angle between the

direction vector and the cost function gradient and the
2u U au au aulT angles between the direction vector and the E-active

I= aT i I , 3- ,  3 , 1 I j  constraint gradients. The first information that we
a 1 312 '13 -2F 4 have from "prtang" is that there is no active con-

2(u2-U) r uu) (u u 2-uT straint at the start of this iteration. We can now

2 a12 ' 14 use the macro "Armijo" in connection with the macro
a L3 "graphos" to monitor what happens during the step

3 2M c aMlc amlc aMlc 3 Mlc am/lc T len gth calculations up to the completion of iteration

0.7 aa 3 2311 f312'14 4 13 31
2M2c aM2c M2  M2c M T The information, which comes through the graphic

4 2c 2 2c 2c 2c representation, obtained using "graphos", is very rich
0 2 213/2 -1'312 '13 '14 4 14- J and can be fully appreciated only if the forming of

. 34 the lines on the screen rather than only the final
picture is observed. For iteration 15 the information
can be expressed in this way: the step length is

, divided by its upper reduced in Armijo and the constraint which causes this
mote that the constraint Is tion ith uppes reduction is the constraint 0(2), which was not evenlimit resulting In a constraint function with values atv ttesato h trto. A osqec

varying between 0 and -1, when feasible. This type of active at the start of the iteration. As a consequence
, the iteration is a bad one, as can be verified looking

scaling improves computational behavior tremendously at the very small reduction in the cost function f from
and should be used whenever possible. the previous step ("prtall" command has been used at
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the end of the iteration to print iteration number,
cost function etc.). -

In the subsequent iteration, as can be seen using
'prtang" after "step3"• constraint 0(2) is active and
influences the choice of a direction. In "Armijo" the
step length is increased until constraint g(5) is
violated; at the same time constraint *(2) ceases to be / \_ /
active.

Iteration 16 has been a good one, but the next is
not. In fact in the direction finding stage constraint ---- ," . --- .... - ----
¢(2) is not active, while, during the Armijo phase, it
is still 0(2) which gives trouble and forces reduction - -

of the step length. -

Finally, in iteration 18 both g(5) and 0(2) are
active and influence the choice of a direction, as a -
consequence the iteration proves to be a good one.

Monitoring closely the algorithm's behavior during -
iterations 15 through 18 has given sufficient indica-r W

tion for an adjustment of the parameters. The slowingr _11
down of the solution process, connected with the J
alternation of a good step and a bad one, can be
corrected by increasing the value of c and forcing, "_A
consequently, both the constraints which are important 4- -*
at this stage, namely g(5) and 0(2), to be active at.
each iteration. However, increasing c may not be suf-
ficient, because E may be automatically reset to the
previously used smaller value in the c-reduction stage
of the algorithm and execution sent back to the direc- # , ,KM-
tion finding stage. It is also important to reduce
parameter 6 at the same time. This is actually done in Fig. 2 Experimental Model for the Steel Frame with
this example and in particular c is set = 0.4and 6 = 10-7 . the Steam Generator

The solution process is then advanced for 5 more Observations from Test Results
iterations, during which the effectiveness of the
adjustment of parameters is observed. To analyze test results it is convenient to refer

Ten more iterations are performed, after , :n the specially to the following two extreme cases:

cost function is plotted. Again the beneficial effect a) Steam generator rigidly connected to the
of the adjustment of parameters is clearly visible in table and elastically connected to the frame

the graph. (conventional design)

b) Steam generator on rubber bearings, but notAfter 18 more iterations the termination connected to the frame
criterion is satisfied and a message of congratulations
appears on the screen. Frame Response

Results of the analysis corresponding to the The frame response was not very different in cases
optimal values of the design variables are finally (a) and (b) and, in general, not significantly affected
plotted before stopping. by the interaction with the steam generator.

Optimal Design of an Earthquake Isolation Sjystem for a Generator Response

Steam Generator in a Nuclear Power Plant In all the tests the steam generator responded
essentially as a rigid body. All the other character-

Analysis of the seismic response of large compon- istics of the response were very significantly affected
ents in nuclear power plants is complicated by inter- by the interaction with the frame.
action between the component and the structure. For In particular in case (a) accelerations were high
large components such as a steam generator, this and a rocking motion was predominant, due to some
interaction cannot be neglected in predicting the res- rotational flexibility of the "rigid" base connection.
ponse. An experimental program was initiated at the
Earthquake Engineering Research Center, University of In case (b) the accelerations were strongly cut
California, Berkeley to investigate the feasibility down, due to base isolation, but the maximum displace-
of using rubber bearings at the base and energy- ments relative to the frame were almost doubled.
absorbing restrainers in connecting the component to Although the displacements were more uniformly distri-
the primary structure, to improve the structural inte- buted al)ng the height than in case (a) there was still
grity of the component with respect to seismic an important rocking motion of the generator.
loadings (6). The experimental model used in the
shaking-table tests is shown in Fig. 2. Details of Design Considerations for the isolation System
the design and construction of the model and results of
an extensive series of tests, where the mechanical
properties of the energy-absorbing restrainers were From the observation of test results of these two

varied, while keeping fixed their position, are given extreme cases, it is clear that there are definite
in (6). trade-offs between case (a) and case (b). The most
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practical ("optimal") solution is probably somewhere generator. Conventional constraints are imposed to
in-between these two extreme cases. Major factors produce practical locations of energy-absorbers and
influencing response of the generator in these inter- positivity of design variables. Initially only the
mediate cases are location and mechanical properties location of the energy-absorbers along the height of
of energy-absorbers. Since rocking motion is particu- the steam generator is considered to vary, resulting
larly undesirable for tall structures like the one in in two design variables. Next, assuming that both
consideration, the most efficient isolation system is devices have the same stiffness characteristics, four
the one which minimizes rocking motion of the steam design variables, two locations and F0 and U0 are
generator. At the same time lateral displacements and considered. Finally, the location and mechanical pro-
accelerations should be kept within reasonable limits. perty parameters of both devices are allowed to vary,
In subsequent sections an optimal design problem is resulting in a design problem with six variables. In
formulated which is based upon the above considerations, the first case, the starting values used were taken

from the experimental program. In subsequent cases,

Mathematical Model of the Test Structure starting values were the final values (improved, but
not necessarily optimal) of the previous design case.

From the test results, it is seen that there is The objective and constraint functions and their

very little influence of the generator on the frame gradients are expressed as follows:

response. Moreover, it was observed that the pre-
dominant response of the frame was in its first mode Objective function:
in the linear range. Thus, an equivalent elastic

single degree of freedom system is used to represent min max [B(z,t)] 2  (5)
the frame (Fig. 3). The displacements at the energ)- 2 t
absorbing device levels are computed based on first
mode amplitudes. Based on the test results the gener- z = Design variable vector

ator is modelled as a rigid body with two degrees of e(z,t) = Rotation of the generator. Following (8),
freedom, lateral translation and rotation. The energy- equation (5) can be expressed in nonlinear programming
absorbing devices are modelled using an axial stiffness format by introducing an additional dummy cost variable
element with the following constitutive equation (7) as follows:

F0 ; min zdP(t) _16 t) l ( t ) 1( f 0 S(t)) n ]  (3)

Fsuch that Zd > max 18(zt)]2

SU) = , ut F _(t)] (4) su h t a d - t

0  F0  The design vector will now be written as:

where F(t) is force in the device, U(t) is its dis- T
placement and a(t) the displacement rata. FO , U, = (Zd,Zl,Z 2 ... Z N)
and n are material property parameters. Physically,
F0 and U0 are roughly yield force and yield displace- Thus, the objective function is, f(z) = zd and its

ment, a controls slope after yielding and n controls gradient Vf(z) = [1,0..... 0
sharpness of transition from elastic to inelastic
range. Note that, since this problem could not be Functional Constraints

modelled using the standard MINI-ANSR element library, (i) From objective function trinsformation:
special elements applicable only to this problem were
developed for the analysis. max [O(z,t)] 2 c zd

t

DI max *1 (z,t) = I [e(z,t)12  1.0 < 0
t - Zd -

KT  (ii) Constraint on reiative displacement at top
m Ienergy-absorbing device level

E RO max[UR (1,t)]2

ETRO t I-

U (z, t) = Relative displacement at top energy-absorber

__2 6 = Allowable relative displacement
hT E Thus, max 2(zt) = 1 ZU(zt)]2 _ 1.0 < 0

het - -6

(iii) Constraint on relative displacement at bottom
energy-absorbing device level

Ke max[U2 (zt)]2 62

t

Fig. 3 Mathematical Model of the Test Structure Thus, max *
3 (z't) = 1[U(1t)]2 _ 1.0 < 0

Design Problem Formulation (iv) Constraint on absolute acceleration of the

The isolation system design problem is 
formulated generator

as a sequence of min-max problems. The objective max[G(Zit)+6(0 2
is to minimize rotations of the steam generator sub- t - -
jected to constraints on relative displacements at the
energy-absorber levels and accelerations of the steam
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+ I I I

U G(Zt) = Acceleration of the generator relative to the vg5(1) =
table.Z

UT(t) = Acceleration of the table VgN+2 (z) = [0,...0,-I] T

6a = Allowable value of the absolute acceleration.

Thus,t 2 Numerical Results of the Optimization Problem-2 [UG( 't)+UT(t)] - . 0 Numerical results for the optimization problemt 6a previously formulated are presented in table I and in
Fig. 5-12. The input acceleration used in the analyses

Gradients of Functional Constraints was one of the records produced by the shaking-table
) 26(z,t) I l9(I't), 38 (20 Do 0 T during the tests (Fig. 4). It roughly corresponds to
= ( (10) 2 z az) --- I t) the El Centro NS 1940 record, with amplitudes multipliedzd  d I zN by 0.75 and time scale divided by VJ

R, R T
2 ,, ..... . .u2 z, , ...u.1(.t) 1

.- 2 0 ..aZ1  .ZN i

2UR(j t) F U au(1,t) 3uR 0 T)

_ ,z .- Q.--o i 2. -

4 2[%G(Z-t) +UT(t)l ..G (,0 a ZITh
_______ _______2 IJ z,t " UG'.1 )!__

V $a ( z0t - 6 [ . 1 a z N

Conventional Constraints ..
(i) Constraints on maximum height of the devices

hT = z i < H Fig. 4 Table Acceleration (in/sec2) (Modified El Centro
T 1 1940 NS Component)

hB = z2 < H

hT = height of top device Table 1 shows:

hB = height of bottom device a) Values of the optimization parameters correspondingto the initial design. They were chosen from the
H = Total height of the generator experimental tests as the ones giving the best

results according to the enunciated design criteria.
Thus, gl(z) = - 1.0 < 0 b) Values of the parameters corresponding to an-- "improved" design after performing 15 iterations

2 z2  of the optimization procedures,where only two
g2(z) = - 1.0 < 0 parameters, namely the locations hT, hB of the twoenergy-absorbers, were allowed to vary.

(ii) Constraints on minimum height of the devices. c) Values of the parameters corresponding to a new
h = z, > H ."improved" design after 30 iterations, where 4T - min parameters were allowed to vary.
h8 = z2 > Hmin d) as in (c) but with all 6 parameters varying.

Hmi = minimum practical height As noted before values of the last iteration for onecase were used as starting values for the subsequent

Thus, g3 (z)=-z 1+Hm <0 case.h
= n - In Fig. 5, 6 and 7 the time history of rotation

4 +of the steam generator is presented for the threeg (K) = "z2 + Hmin . 0 "improved" designs corresponding to the cases of 2, 4
and 6 design variables, respectively. The thin line

(iii) Positivity constraints shows, for comparison, the response corresponding to
the initial design. The reduction of the maximum rota-

g (1) = _z 0 tion and therefore the degree of Improvement is apparent
throughout. In particular for the final design, thatN+2 = -z<0 is for the case with 6 variables, the maximum rotation ing W-) -N radiants is 0.0034, to be compared with a value of 0.006

Gradients of Conventional Constraints for the initial design.

V g l (1 ) _ [ 0 ,. ,0 ... .O ]
T

Vg2  = [0,01 ,0 j....OT
3H

Vg3(z) = [0,-1,..... 
T

vg4(z) = [0,0,-1,0 ....O]
T
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Fig. 5 Steam Generator Rotations (rad) Fig. 9 Steam Generator Displacements (In)-
(Case of 2 Design Variables) Final Design

TI.,

Fig. 6 Steam Generator Rotations (rad) Fig. TO Steam Generator Accelerations (in/sec2)-

(Case of 4 Design Variables) Final Design

-0 ° '- rnn o 7 29 - r -- r -- -r---- t 1

zso

Fig. 7 Steam Generator Rotations (rad) Fig. 11 Hysteresis Loops for Top Energy-Absorber
(Case of 6 Design Variables)-Final Design (Force In Kips, Displacements in Inches)-

Final Design

_ I

Ftg.~~ ~ ~ ~- 8 rte Fr, aipaeet 
at To lor(I

Fig. 8 Steel Frame Displacements at Top Floor (in)- Fig. 12 Hysteresis Loops for Top Energy-Absorber
Final Design (force in Kips, Displacements in inches)-

Initial Design

12-14

________IIIli__ -I i--------- - i :. J-. i-- i ..... .-



Table 1
FOT UOT FOB U08  hT  h

(kips) (inches) (kips) (inches) (inches) (inches)

Initial 0.65 0.45 0.65 0.45 160. 80.
Design

2 variables
(15 iter.) 0.65 0.45 0.65 0.45 179. 60.

4 variables 1.12 0.42 1.12 0.42 176. 63.(30 i ter. )

6 variables 1.46 0.25 1.25 0.31 173. 63.
(30 iter. )

Figures 8, 9 and 10 give, only for the final References
design, time histories of top floor displacement of the
steel frame, lateral displacement and lateral total (1) Pister, K. S., "Optimal Design of Structures
acceleration of the generator. Again the thin line Under Dynamic Loading," Advanced Studgives corresponding time-histories for the initial Institute on Optimization of Dstritdgiesg. cParameter Structures, University of Iowa, Iowa
design. City, Iowa, May 21 - June 4, 1980.

Note the slight reduction of the frame response
and the growth of the generator acceleration in the (2) Miura, H. and Schmit, L. A., Jr., "ACCESS-l,

final design. Finally Figs. 11 and 12 show the Approximation Concepts for Efficient Structural

hysteretic response in the top energy-absorber, for the Synthesis - Program Documentation and User's

final and initial design respectively, and give an Guide," NASA CR-144905, National Aeronautics and

idea of the different energy dissipation involved in Space Administration, May 1976.

the two cases. (3) Arora, J. S., Nguyen, D. T., Belegundu, A. D.
and Rajan, S. D., "Design Optimization Codes for

Concluding Remarks Structures-DOCS," Technical Report No. 71,

Optimal design of two problems belonging to Division of Materials Engineering, The University

different categories is presented. These problems, even of Iowa, Iowa City, Iowa, August 1980.

thoughsomewhat academic in nature, serve the following (4) Bhatti, M. A., Ciampi, V., Pister, K. S. and
important purposes: Polak, E., "OPTNSR-An Interactive Software System

(i) They clearly point out the need to have a flexible for Optimal Design of Statically and Dynamically

software system where new problem formulations can be Loaded Structures with Nonlinear Response,"

easily incorporated. Report No. UCB/EERC-81/02, Earthquake Engineering
Research Center, University of California,

(ii) The importance of user interaction and graphics Berkeley, January 1981.
is emphasized. In the braced frame example, graphics
and interaction played a very important role in detect- (5) Bhatti, M. A., Ciampi, V., Pister, K. S. and

ing and correcting poor computational behavior. Polak, E., "An Interactive Software System for
Optimal Design of Statically and Dynamically

(iii) The isolation system design problem brings out Loaded Structures with Nonlinear Response,"
an important feature which is related to These proceedings.
scaling. The objective was to minimize rotation of the
generator and the starting design gave a maximum rota- (6) Kelly, J. M. "Shake Table Testing of Steam

tion of roughly 6x10-
3 . When this quantity is squared, Generator Seismic Response," EPRI Report, in

it becomes even smaller, thereby increasing numerical preparation.

difficulties because of round-off. A simple solution (7) Bhatti, M. A. and K. S. Pister," Transient
is to scale the rotations by a suitable factor (a factor Response Analysis of Structural Systems with
of 1000 was used here). Since the magnitude of rotations Nonlinear Behavior," Computers and Structures,
may change drastically during the solution process, one Vol. 13, No. 1-3, pp. 181-188, June 1 9T.
scale may not be appropriate throughout and the system (8) Bhatti, M. A., "Optimal Design of Localized
should allow the possibility of changing it Nonlinear Systems with Dual Performance Criteria
interactively. Under Earthquake Excitations," Report No.
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III

APPNDI A>run 4 storeo
APPENDIX A 1 F 0 914S64 PSI , 0THETA -3 20792E-4E-aIDialogue for the Braced Frame Problem I Q F 0 9 012 e - 0

THETA - -3 08S74E-4 F - u 1

Optimization Based Computer-Aided Design Group I = 13 F = 0 90065 PSI - 0
IJniversity of California THETA = -2 9S997E-4 E - U 01S

Berkeley, California I - t4 F - 0 S928S PSI . 0

U. S A. THETA - -8.28777E-S E - 0 O!'S
)print z

83.801S

INTRAC-OPTDYN 14,3257
60 2606

An Interactive Optimization Program for 67 8666

Design Problems Which can be Expressed as )S7p 6

Execution suspended at the end of STEP3
Minimize f (z) You may want to odify

1. THETA parameters PUSHF, PUSHG, PUSHPH, SCALE
subject to 2 snear paraeter E

max phi(z~t) ( 0 3 test parameters DELTA, MUl, MU2

T PrecoMputation o0f the tests in STEP4 and STEP9
g(z) (= 0 indicates that the program will branch to STEP6

Name of input data file: )prtang
Default is "/usr/optcad/ciampi/optnsr.d/data" angles between search direction and cost)bra c data and *-active constraints gradients

)print z
20 0000 function angle push-factors
20 0000
20.0000 F 10 PUSHF =t
20 0000 )armljo 20 graphos

Iron 1O store rmijo test satisfied after 6 iterations
The results of the entire computation will be stored
in the arrays FG PSIG and ZG(NK) araijo f

Please state the total number of iterations you intend to - .
carry out: type in K - " - -?

to F O.S4SSDS PSI - 29 7801
THETA - 0. E - 0.2 " - .

I - 2 F - 0.792752 PSI - 0.282SS6
THETA - -0 504697 E * 0.2 "

I - 3 F - 0.91S954 PSI - 0.19247
THETA - -1.04SB8 E = 0.2

I - 4 F - 0.816696 PSI - 0.171042 bar-a-.h.

THETA - -1.30981 E - 0.2 - - --
I F -091S2 PSI o.iS2i71 S * S

THETA - -1.t6204 E - 0.2
I - 6 F - 0.91S23S PSI - 0 147019

THETA - -0.99549S E - 0.2
1 = 7 F - 0.994551 PSI - 0 0600003 0=

THETA - -0 12is2S E - 0. 2
I 8 F - 0.979406 PSI 0

THETA -0 7S2006 E - 0.2 phi
I = 9 F - 0.939237 PS- - - - -.

THETA - -3,6928SE-4 F - 0.1 I
I = tO F = 0927019 PSI 0

THETA - -3,32649E-4 E - V.i
)print z9,3?24 i'

17r8784 ,

70 7374_"
68.0096 )prtall U

)grinit I - 15 F = 0 959089 PSI - 0
)geinitTHETA - -3.118365-4 E - O0 0.S

enter terminal type (2-4027 3-RAMTEK 4-HP S-402S). )step3

4 Execution suspended at the end of STEP3
)gdop You may want to modify

g. THETA parameters PUSHF, PUSHG, PUSHPH, SCAL.F,

.Se-. .. .. 2. smear parameter; E
3. test parameters: DELTA, MUI, h6u

S - -- -- -- -- - - \ - Precomputation of the tests in STEP4 and STEPS
indicates that the program will branch to STEP6

>pr tang
d.'.. angles between search direction and cost

diapi and @-active constraints gradients

diSp2 function angle push-factors

- _._____"_."__"_.__/_ F 123.722 PUSHF -1.
$I PHI(2,17) 91.397 PUSHPH() - i.

tice PHI(2,42) 90.7919 PUSHPH(2) - 1.
3.3+4 >o)rmi.jo 20 graphos

3.3ev' Armijo test satisfied after 7. Iterations

. - "" \ / - - - )prtall 0
. ... ... .. - P - - - - I m 16 F - 0 810488 PSI - 0

/.TETA - -9 stE-S E - 00epS

Noel Execution suspended at the end of STEP3
/ ./ You muay Want to modify: :  
-...... . i THFTA parameters: PUSHF, PUSHG, PUSHPH, SCALE,

0o2 2. smear parameter! E

3. test parameters DELTA, MUI, MU2
-1.3e*! ____,,,_ _"__..Precomputation of the tests in STEP4 and STEPS

indicates that the program will branch to STEP6

te*time
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II

)prtang )run 30 prtall
angles between search direction and cost 1 33 F = 0623093 PSi = 0

and s-active constraints gradients THETA = -7.9726SF-8 E = 0 0,

I = 34 F = 0622455 PST = 0
function angle push-factors HETA = 4.80294F-4 = OTh

I 3b F = 0.21077 PSI 0
F 190. PUSHF -1 THETA = -3 i0373f-4 E 0 0.,1
G(S) tiS,447 PUSHG(5) = THEA 36 F = 0-6208 PSI = 0
)armijo 20 graphos THETA = -1 0S3SE-7 F = 0 0;?S

rmijo test satisfied after 6. iterations I = 37 F = 0 620499 PSI = 0
)prtall 0 THETA = 1 13584E-7 = 0,025
I =17 F 0 809427 PSI 0 1 = 38 F =0.620174 PSI =0

THETA - -3.35419E-4 E - 0 OS TIIETA = -1 22273E-7 E = 0 0?S
)step3 I = 39 F = 0 620168 PSI = 0
Execution suspended at the end of STEP3 THETA = -1.25728-7 E = 0 02S
You may want to modify I = 40 F = 0.619781 PST = 0
1. THETA parameters: PUSHFj PUSHG PUSHPH, SCALE, THETA = -2.82831E-4 E = 00125
2. smear parameter; E I = 41 F = 0.619S69 PS! = J
3. test parameters: DELTA, HUt, I 2 THETA = I.SS934E-4 E = 0125

Precomputation of the tests in STP4 and STEPS I = 42 F = 0=619526 PSI 0
indicates that the program will branch to STEP6 THETA = -3 4879E-4 F = 0.006;S
)prtang I = 43 F = 0.619483 PSI : 0.
angles between search direction and cost THETA = -3.4872BE-4 E = 0 006;'S
and s-active constraints qradients I = 44 F = 0.61927 PSI - 0.

THETA = -I 5601E-4 F - 0.00625
I = 4S F 7 0.618031 PSI : 0.

function angle push-factors THETA = -2.43822E-S E = 0,0062IS
I = 46 F = 0.618029 PSI = 0.

F 120..734 PUSHF e1 THETA = -1.24928E-7 E = 0 0062S
G(S) 905866 PUPNc(s) = . = 47 F = 0.617913 PSI = 0.
PHI(2,42) 90 7S61 PUSHPH(2) : 1. THETA = -2.8418E-4 E = 0.003125
tarmxjo 20 graphos I = 48 F = 0.617699 PST - 0.
ArmijD test satisfied after 7 iterations THETA = -l.S6SOSE-4 E = 0,0031S
)prtall 0 I = 49 F = 0.616444 PST = 0.
I = 18 F = 0 767099 PSI = 0 THETA = -2.47142E-S E = 0.003125

THETA = -8 72311E-S E = 0.025 I = SO F - 0.616442 PSI = 0.
set -O 4 THETA - -1.2364E-7 E - 0.003125

)set delta-I 0-7
iron 5 store
RESTART STEP2
I= i8 F = 0 767099 PSI = 0 congratultlons, here is the optimal solution

THETA - -4 068E-4 E = 0,4
I = 17 = 0 714417 PSI 0 objective function vale- .6i6442d+00

THETA = -1 09,64E-4 F = 0 4 oi ta
I = 20 F - 0 6860S2 PSI = 0 )qdip

THETA = -2.096868-4 E = 0 4 Ogmom
I = 21 F - 0 669059 PSI = 0

22THTA:-4 16E-4 E"0.2 I---------- ---- ......

THETA - -2.30062E-4 E - 0 2" /. \•

)run 10 store
I - 23 F = 0 648823 PSI = 0 disp - - - -/"

THETA - -2 3Si04E-4 E - 0 2 ", P ,
I - 24 F = 0 645509 PSI * 0

THETA - -2 51992E-4 E - 0.1 .........
- 25 F - 06428 PSI- 0 ".. .

iHETA - -2S219E-4 E- 0.1
3 26 F - 0 640577 PST = 0 -9.7#- 1,.!"" ............. " -'

THETA - -4 03809E-4 E - 0.0 20 4b time 60 89
I - 27 F - 0638971 PSI - 0

THETA - -4.0168E-4 E 0 05 1e.94..4
I-29 F-063S62S PSI -0. -

THETA = -2.49178E-4 E - 0 09
I 29 F - 0.634614 PSI - 0 . .... ......... ... .. ... ... .................... .

THETA -- 2 50443E-4 E -0O.05
1 30 F - 0 633601 PST - 0

THETA - -2.50826E-4 E - 0 02S m o
1 31 F - 0 625075 PST = 0

THETA - -9.67802E-9 EOO$5 -0
1 32 F - 0 624293 PS9 - 0

THETA - -6.2S4SE-S E - 0 02S / .es . - I.
)print z 1.e -

33.9i54 9 20 4D toss 6's 08 108
13,1914
48.7632 >printz
154738 35 1873

)graphf n 13 i2S3
S7 1415

9.9e-I ' 10. 0012

" ' )stop

.... ... °.o..

S.Se-J

I 11 o16 21 26 ~ S1
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SWAY FRAMES OPTIMIZATION BY MEANS OF MINI COMPUTERS
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Summary

This paper deals with optimization of Brown and Ang (2) used the Rosen's
steel sway frames subject to stress, displace- "gradient projection method" for minimum weight
ment and buckling constraints. The basic objec- elastic design of steel rigidly jointed frames.
tive of the work is to develop an efficient As they suggest, the method is rational and
method for sway frames optimization, which suitable for large digital computers.
could be easily used on mini computers. The
problem is formulated as a mathematical prog- Romstad and Wang (3) employed an SLP
ramming one, although some ideas and results technique to get minimum weight design of
from the opti lity criteria based methods are trusses, continuous beams and rigid frames sub-
employed. ject to stress and displacement constraints.

The agorihm consists of a series of Arora, Haug and Rim (4) used state space
analysis and optimization steps. Sequential optimal control technique to optimize plane
Linear Programming (SLP) in connection with frames. In addition to AISC Code requirements
adaptive move limits is used as mathematical they also imposed displacement, natural frequ-
model. The only design variables are the cross ency and design variables constraints on the
sectional properties of the structural members, frames considered.
They are assumed to be continuous. The objec-
tive function is formulated with non-negative Calafell a d Willmert (5) proposed an SLP
coefficients, so that the dual simplex method method for planar frames, which avoids formal
could be used. analyses of the structure. The solution scheme

employs some pivoting techniques to bypassIt is assumed that in the optimum solution Phase I of the simplex method, which speeds up
only a limited number of the displacement cons- the iteration process.
traints is active. Therefore only few displa-
cement constraints should be formulated, the Majid (6) elaborated a general approach to
choice of which depends on the engineering linear structural optimization. Cross sectional
experience and estima - the designer. properties of the elements together with the

Another assumption is that dominant por- joint displacements are assumed as design
tior of normal stresses is due to bending mo- variables.
ments. By suitable transformations and simpli- Saka (7) presented a method, based on the
fications the stress constraints are stated as same assumptions as in reference (6), for mini-
lower bounds of the design variables, mum weight design of rigidly jointed frames.

Stress and displacement constraints according
Buckling constraints are incorporated into to B.S.449 were taken into consideration. The

the stress constraints. only buckling of the feature of the method is that no anlysis of theelements is considered, structure is carried out during the iteration
The method was checked with the results procedure.

obtained by other workers. In all the cases
fair results were obtained with less iterations. Majid, Stojanovski and Saka (8) gave a
This gives hope that the method proposed could method for minimum cost topological design of
be efficiently used in civil engineering steel multistorey frames in which economic and
practice, some architectural requirements determine their

final shape. They showed that thiS problem could
Introduction be formulated as mixed variable integer program-

ming problem, The examples presented showed that
Sway frames are frequently used in civil a minimum weight design, on its own, is not a

emglosierUW practice. They withstand large wind sound philosophy to be taken as a substitute
and seismic loads without lateral bracing or for a minimum cost design.
any other safeguard, and resist deflections in Levey and Fu (9) formulated the minimum
their own plane by their flexural stiffness, weight design of frames as a discrete optimizm-
It has been found out that the lateral sway tion problem. They used the complex-simplex
often governs the choice of sections for their method as a solution method, while the problem
members (1). It is also evident that exact was formulated by means of the plastic collapse
design of these frames is quite complicated theory.
problem. This is even emphasized when one tries
to optimize this class of structures. In such Miller and Moll (10) considered gabled
a came a realistic objective could be the de- frames with tapered members only and developed
sign which satisfies all the design require- a computer program for their minimum weight
ments, while minimizing the weight or cost of design. The modified interior penalty function
the structure. In spite of the problem complex- approach was used. The results obtained are of
ity, many authors have been working on frame fair practical value. This work shows a possible
optimisation by means of different approaches way to make practising civil engineers familiar
and some very good results have been achieved, with structural optimimation.
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This paper is an attampt to produce an algo- o'Ilacements and stresses in a structure are
rythm for sway frames minimum weight design, nonlinear functions of the design variables
which will be able to reflect the real struc- A(AIA 2,...,ANG). This means that the problem
tural behaviour, while being relatively simple
and easy for realization by means of mini com- is a nonlinear one.However• it could be solved

puters. The following presentation of the in an iterative manner by successive lineariza-

method should reveal its advantages and tion of the problem functions and application

limitations. of some linear programming method.In spite of
some drawbacks, the SLP techniques have some

The design problem very useful features: robustness, reliability
and simplicity.

This paper treats minimum weight design The linearization of the constraints is
of steel sway frames subject to stress, displa- carried out by means of their linear Taylor
cement and local buckling constraints. The approximations. In such a way in the v-th
shape and topology of the frame are assumed to iteration the linear programming problem
be constant. The structural elements are taken (the LP problem) could be cast in following
to be prismatic. The problem constraints are form:
formulated according to Yugoslav Standards NG
(11), although with no difficulty any other Minimize El Ai ,

standards may be employed. subject to i=l (2)

The design variables V
The cross sectional areas of the structu- S j (A)=S (A)+VS (A).(A-A) Sj,p

ral members are taken as design variables. They
are assumed to be continuous. All the relevant j=,2 ..... NC

geometric properties of the cross sections are The meaning of the symbols used is as follows:

uniquely expressed in terms of the member NG - number of different groups of elements

areas, as shown in Fig.l. and equations (1). NC - number of constraints
1 - total length of all elements with cross

sectional area Ai
A. - cross sectional area of group i

>x Sj(A) - j-th constraint of the design problem

S.(Ai) - value of the constraint function S.

at a given point Av(A, ... ANG)

Y VSj(Av) - gradient vector of Si evaluated at

Fig.l. Cross section of a tipical A

structural element A vector of unknown design variables

Av- vector of the current values of the design
variables

=a.Ab ix=(Ix/A)0' 5=p,Aq  Note that appropriate adaptive move limits are
d() added to the constraints in equations (2) in

W=c.Ad  iyr.As  order to get and mantain convergence.

Here, Ix is the second moment of area about the It is quite obvious that the accuracy of
e hthe linear approximations governs the accuracy

x-axis, Wx is the appropriate section modulus, of the whole iterative procedure. A very Im-

A is the area of the cross section, ix is the portant question is how large move limits
could be allowed and still to have good enough

radius of gyration about the x-axis, iy is the approximations of the constraints. A problem

radius of gyration about the y-axis, while similar to this one has been treated by

a,b,c,d,p,q,r and s are constans dependent on Storaanli and Sobieszczanski (13). They con-

the type of sections used. These could be cluded that for the highly idealized finite

obtained similarly as in reference (12). In element representation of their sample struc-
such a manner the designer is able to use any ture, the approximation's error is less than

table of available sections. Indeed, the real 16% over a range of -50% to 50% for simulta-
structures are composed out of discrete secti- neous multielement modifications. Because in

ons, but these assumptions considerably the advanced stages of the iteration the move
simplifie the problem formulation and solution, limits are pretty tight the linear approxima-

tions in equations (2) are fully acceptable.
Th ective function Steel sway frames show similar behaviour,
Since, oniy the minimun weight design of although for some types of loading the

steel frames is considered, 2. -,Qefficients approximation's error could be higher then
of the objective function are non-negative, reported in reference (13). For example,
This means that a dual solution to the linea- consider the portal frame shown in Fiq.2.
rized problem is readily available. Therefore, This frame was analyzed for A -60 cm2 and
the dual simplex method is used, which speeds
up the iteration process. A2=80 cm

2 . Then A1 and A2 were gradualy varied

The aH on method (one at a time) from -100% to +100%. The
The 1truotures considered are subject to response of the structure was computed by

stress, displacement and buckllna constraints, means of Taylor approximations and by means
which are formulated for selectea set of Joints of an exact analysis. The outcome of this
and members only. It is well known that consideration was that sway frames could be

more sensitive to the changes of some design
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2 6_8 x  The design constraints
)0 x ,- The displacement constraints

The joint displacements of the frame are
30 functions of the cross sectional areas,
o because all geometric characteristics of the

cross sections are uniquely related to them
through equations (1).So it could be writen:

U=U(A) (3)

Here,
=(UI'U2...I U DF) is the vector of joint

400 cm displacements, DF is the number of degrees of
freedom of the frame and A is the vector of
design variables.

I=0.995A 2 .1 7 6  
If AV=(Av ...... vG) denotes the current

W=1.007A .524 design in the v-th iteration, Uj one of the
E=21000 kN/cm 2  joint displacements and 6. its permissible

value, the representative displacement

Fig.2. A portal frame constraint takes the following form:
IJu16 , or

-j& Uj& j (4)

variables. For example, the dimensionless 
T

curves showing the accuracy of the joint The function U" could be linearized in the
dispiaoements x and c in terms of the change neghbourhood oi the current design Av,taking
in A 2 a xe plotted in Fig.3. the first order terms in its Taylor expansion:

i.0 j =U+VUj(AV).(A-A) (5)

2.0 _______ 2 -2-
Xo I I L Separation of the terms in equation (5) gives:

__ _ U=(U - VU(Av).Av) + VU(Av).A (6)

-lin -ex If c denotes the expression in parentheses,

1.0 -- _the final linearized form of the displacement
_ U. is:

SU. c'? + VU.(Av),A (7)

- 1. linex where cj is a constant defined in each4iterativeistep as

0. +. - VUj(Av).Av-1.0 0. +1.0 UV  j- I _
U is the value of the displacement U in the

2/A 2  v-th iteration and VU.(Av) is the gradient of

U evaluated at Av.

Replacing equation (7) in (4) it is possibleFig.3. Accuracy of joint displacements to write:
for the portal frime VU (Av).A ' 4j - cj (8a)

A brief inspection of these diagrams shows -VU (A').A & 6 + c (8b)that for an engineering acceptable error of - --
+15%, the appropriate change in A2 should not From these relations it could be seen that
be greater then approximately 28%. Similar for each restricted joint displacement, two
diagrams for other response quantities could constraints should be formulated. However, it
be easily obtained, is possible to take only one of equations (8)

On the basis of these considerations the into consideration:
following strategy for the move limits size When Uv > 0 equation (8a) holds, and
was adopted: j

The iteration starts with relatively when Uv 0 equation (8b) is valid.
large move limits (not more than ±50%). During j
the iteration process they are gradualy The key question in the previous
reduced till the convergence of the solution consideration is the evaluation of the
is obtained. The convergence criterion is the gradient components in a given design point
relative change of the volume in two subsequent Av. In other words the question is how to
iterative steps, which should be less then a
specified tolerance c. The value of 0.01 for calculate the partial derivatives of the
t was found to be satisfactory. speci-fied displacements for each current

design Av. A very exact method for these
calculations is given in reference (liin the
following form:

U/aAi ---. (OK/aAi),U (9)
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where K is the Overall stiffness matrix of The normal stress in a frame element
the structure. Note, that use of equation (9) consists of two parts: one due to the normal
gives the derivatives of all displacements force and another due to the bending moment:
with respect to only one design variable Ai. a ON + am (13)
This might be impractical in cases when only i -
few joint displacements are restricted. Assuming that the influence of the bending

moments is dominant, only one of equations
Another way of obtaining the derivatives (12) should be used, as shown in the next

of a given joint displacement, with respect few lines.
to all design variables, is to use the dummy
load approach due to Gellatly and Berke (15). 1. When N a 0 and MV a 0, then
The outcome of this approach is: I I

Ul/ Ai - -T.(aK/A i).ul (10) 1 N + a -j,p ; i.e.

In equation (10) U1 is the 1-th joint 
equation (12a) holds

displacement, UT is the transpose of the 2. When NV a 0 and MV < 0, then
joint displacements vector due to external N M
loads, while U1 is the vector of joint =aj,p j=-aj + am ; i.e.
displacements due to a unit dummy load Pl=l equation (12b) holds

in the direction of U1 . It should be pointed 3. When Nv < 0 and Mv a 0, then
out that equation (10) could be expressed in N M C

terms of element displacements. In such a = + aj - aj,p ; i.e
manner only elements with size characteristic equation (12a) holds
Ai will contribute to aUI/eA i . The implemen- equaton (<0an holds
tation of equation (10) requires a unit dummy n M
load to be added, as a separate loading case, E. j = aN + aM ; i.e.
for each restricted joint displacement. The -aj,p 2 J i
main feature of this method is that it is equation (12b) holds.
relatively easy to get the derivatives of any On the basis of this discussion it is
joint displacement with respect to any design easy to see that only one stress constraint
variable. More details on this topic could be per group of elements should be formulated.
found elswere (15). In this paper equation This constraint is set up for that element
(10) was used to obtain the joint displacement of the group J, which has the highest
derivatives, absolute value of the bending moment in the
The stress constraints v-th iteration. Note, that the combination

of the biggest normal force and the approp-
Exact formulation. The influence of normal riate bending moment is not taken into
stresses is dominant for steel sway frames, consideration. This case will be treated for
although in some cases shear stresses could compression members only, in the paragraph
influence the design of some structural considering the buckling constraints.
elements. However, in this paper only normal Futhermore, this load combination is important
stresses are taken into consideration. Shear for column design only.
stresses could be easily incorporated into The gradient of the function a at a
the problem formulation on the expence of .

some increase of the problem size. given design point Avcould be found by
differentiating the-equation (13) with

The stress constraints could be defined respect to the design variables Ai (i=l,.,NG):
for different groups of elements, one cons- N m (
traint per group with same cross sectional avi/aA i 

= DO//A i  i a/8A (14)
properties. This means that it is sufficient The two terms on the right hand side of the
to find the representative element for each equation (14) could be defined as follows:
group. Then for the group j (J=l,2 ..... ,NG) N
the stress constraint could be stated as; Since, a = Nj/Aj

ljil 6 Oj,p (11) it is possible to differentiate this
,where a is the actual stress in the expression and get

representative member and aj , is the N/SA (aNj/9Ai).AJ - N J(PAj/&Ai) (15)

permissible stress for group J. ~j'i=A 2

Following the same reasoning as for the Similarly, o M /Wj gives
displacement constraints, the stress constraint
for group j takes form:

Va(A) ajp v 12p (M/9Ai).Wj - Nm.(aw /8A)
J1a 'S6m/A 12 (16)

0aj(A ) . A  A aj,p + yv (12a) 1/ i (

Here, va (AV) is the gradient vector of the If use is made of equations (1) it could be

stress vi at the current design point Av, and concluded that:

a Vis a constant defined in the v-th iterative -AjAi for i-J

V V V and Ifoi-
atepas = -v Va (A ).A
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W = 0for ij formulation is more complicated and time con-i c.d.A' -I for i=j suming then the formulation of the displace-

A brief analysis of equations (15) and ment constraints. It is also obvious that for(16) shows that the stress change in an ele- their formulation at a given design point it

ment, when one design variable is varied, is necessary to compute the derivatives of all
consists of two parts: joint displacements with respect to all

- one due to force redistribution in the design variables, as shown in Table 1.

elements, caused by the change of the DESIGN VARIABLES
design variable; 1 1 NG

- and another due to the direct influence (-
of the variable change on the stress E 1 U /A 1  .) G)A
considered. - I U/_ ANG

The terms 9Nj/Ai and PMj/-Ai in equa- -

tions (15) and (16) could be evaluated simi- 1 _UI/_A i  _ UI/_ANG
larly as in reference (16). The idea is that 1] U1 j&AN
Nj and M, are components of the vector of

element forces of the representative element, H
as shown in Fig.4. Z UDF/A, I aU/9Ai I aUD/NG

H -aD DF_ ___
0

P P4Table i. The joint displacements

P6 P4derivatives

It should be pointed out that the stressP3 constraint, when the maximum bending moment is

in the span of the element, could be easily
a) Element forces in local coordinates formulated, as shown in reference (16).

U 5&TT Approximate formulation. This formulation of

U4  the stress constraints is derived on the basisU 2 0 of two assumptions. The first one is that in
U3 two subsequent iterative steps the difference

in member forces is relatively small. The
b) Element displacements in global other one is that stresses in an element

coordinates depend on its cross sectional properties only,
neglecting the influence of other elements

on the redistribution of element forces and
Fig.4. Element forces and displacements stresses. It is eveident that these assump-

tions are not always fulfiled strongly enough.
Futhermore, this vector could be easily re- However, for steel sway frames, the sway
lated to the system joint displacements by frequently governs the design, so that
means of the well known relation: stresses are not active at the optimal

S(1 design (8). Then, this formulation should
2J = !Sj'!j'Rj + P1 (17) preserve the permissible stress level in the

Here, structural elements.
Pi is the vector of the element forces, Let Mv and NV denote the maximum absolute

Uj is the vector of global end displacements i $
of the representative element, values of the bending moment and the approp-

riate normal force for group j in the v-th
vector of fixed ends forces, iteration. In such a manner the stress

Sirconstraint for group j could be stated as:
_ is the element stiffness matrix, and Nv/A + Mv/W ! j (19)

R is the transformation matrix relating the i J J - 'P
end displacements of the element in the After some rearrangement and substituting
local and global coordinate system, equation (1) into (19) it is possible to

The components of the vectors P. and Uj are write: l/d
shown in Fig.4. 1[cv Ad- Mv

Equation (17) could be differentiated j j
with respect to Ai. which gives Aj c ] (20)

* (2kaAi =(jI i).j-j + 1'

+ kj.Rj.2Uj/Ai) (18) This expression could be considerably
By means of equation (18) it is easy to calcu- simplified if on the right hand side Aj
late the derivatives of all element forces. (the current value of the design variable Aj)
Note, that the vector S /GA contains all

Ni c is introduced instead of Aj. Thus, the final, the relevant derivatives in equations (15) jS t raand (16). expression of the stress constraint for the
agroup j is:

From all these considerations it could
be concluded that the exact stress constraints
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c.N'.(A.)d-I + M] /d In Fig.5. AE' Ax, and Xy are the the

c 3 slenderness ratios of the section, E is the
A . (21) Young's modulus, ix and iy are the radii of[ c.j,p J gyration about the x and y-axis, while 1 ix

The expression in brackets is constant and liy are the effective buckling lengths

for each iterative step, so that the stress about the two axes of the cross section.
constraints are defined as lower bounds of b) Euler stresses, defined as
the design variables. a) 2 Eule 2 atreses2 defi2ned3)

aE =irE/A x  aE (3

The buckling constraints E,x x E y

These constraints are set up for the According to reference (11) to prevent
columns only. Their formulation is based on local buckling of the elements the following
reference (11) and takes into consideration conditions should be satisfied:
the local buckling of the columns. The frames OM + Nf0
are assumed to be braced against "out of plane" N + P ap (24)
buckling on each floor level, and that no W p
bending moments act about the y-axis of the
cross section (Fig.l). Few quantities, as N/A a cr,y/V (25)
specified in reference (11), are defined Here, N is the normal force in the element,before the buckling constraints are set up. M is the bending moment, A is the cross

a) Critical buckling stresses sectional area, W is the section modulus,
a -=N a =N .0 (22) is a coefficient defined as p=AaEx/N ,

cr,x x y cr,y y y 8 is a coefficient dependent on the bending
Here, acrIx and a cr are the critical moments at the ends of the column - given

buckling stresses about the x and y-axes, N with
xa = 0.4 + 0.4 M /M N 0.4

and Ny are dimensionless coefficients defined + 0 2

in the standards and a is the yielding stress 1 IIiM 2 1Y M = IM2
of the material. The coefficients N and 2 1

x y In equation (25)v denotes the safety factor,

aeff ucin s o the dimenas s ione ss iwhich ranges from 1,5 to 1.2 . The coefficient
x f0 includes the effects of the initial

Yugoslav standards, and shown in Fig.5. imperfections of the structural element. It

1.0 
is described as

0= (Oy/Ocrx - l).( 1 - Gcr,x/aE,x)
08_______(26)

0.8 Denoting s=(a y/acr,x -1).(l -acr,x/aE,x)

0x and replacing the equation (1) into (26), the
0.6  expression for f0 becomes

Ny f0 = s.c.Ad~l (27)
4y

z The equation (24) could be simplified by
x replacing
IZ t = )j/(p-l), and

0.2 substituting the equation (27) into it:

+ O
M 

+ N.s.c.Ad- (28)
A c.A

d  p

This expression could be rearranged in the
--0 following form:

= X x YA " [Ad-l'.c.(l+t.s).N + t..M (29)

A i w(E/a )2 c(E y Similarly the equation (25) could be given as:

xx=l ix/ix xy=liy/iy A N.v/acry (30)

On the basis of equations (29) and (30)
x= x /A E _yAy/A E  it is possible to state the buckling const-

raints as lower bounds of the design variables
A. To do this the same logic as for the
aisplacement constraints applies. In such a

Pig.5. Buckling curves according to manner the buckling constraints are formulated

JUS E7-081 as;
SNj~V/a,y (31)
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-1 /d variables to meet the stress requirements,

Ic.(l+t.s).N .(A
d -  

+ t..M by means of equation (21).
A j.- j- .. (32) 10. Calculate the lower bounds of the design

c.a. jvariables to satisfy the buckling

L j constraints, by means of equs. (31) and

Here, N! and M V are the maximum compression 
(32).

j 3 11. Rearrange the move limits set up in step

axial force and the appropriate bending moment 6, if necessary. F-r some of the design

for group j in the v-th iteration. The other variables the lower bounds might be de-

terms in the equations (31) and (32) have fined by the stress or buckling require-

been defined previously, ments (step 9 and step 10).

The evaluated form of the buckling 12. Solve the LP problem, the objective func-

constraints shows that only one of the tion of which is set up in step 5. The
equations (31) and (32) should be used; the constraints of the problem are defined
one which gives higher lower bound for the in step 8. The lower bounds of the vari-

design variable A. ables are stated in step 11, while the
upper bounds are defined in step 6. Note,

The design procedure that the LP problem is solved by the
standard dual simplex method, as given

The proposed design procedure is based on in reference (17). Also the lower bounds
the assumption that for steel sway frames, algorythm has been employed. In this
the horizontal joint displacements ( or at manner a new solution Av

+ 1 is available.
least some of them ) are active in the opti-
mal design. The stress constraintE are event- 13, Check up the convergence. The experience

ualy active in few sections, and they are obtained so far, shows that the objective

formulated by means of the aproximate function converges much better and faster

formulation given in the preceding paragraph. then the design variables. The convergence

In other words the stress constraints are criterion is that the relative change of

treated similarly as in some optimality cri- the objective function in two subsequent

teria based methods. This formulation of the iterative steps should be less then a

stress constraints preserves the stress level spesified tolerance e. If the convergence

in the structural elements not to exceed its criterion is not satisfied set v=v+l and

permissible value. The buckling constraints proceed to step 3, If the convergence

are given in similar form. In the cases when criterion is satisfied go to the next
no significant horizontal joint displacements step.
occur, the stress constraints should be 14. Analyze the structure for the last set of

formulated by means of the time and size design ygriables and print out all the
consuming exact formulation, also given in the relevant results.
preceding paragraph. However, in such a case
it is discussible whether such a frame could

be considered as a sway frame. The design examples

The design procedure consists of the The design examples presented have also
following steps: been solved elswere (4),(7).

1. Set up a table of available sections. All The value of Young's modulus was taken as

structural elements will be designed 20700 kN/cm
2 .

using this table. The table could be de- Example I. A two storey frame
fined in any chosen manner, although
some standardized table of sections is This example has also been solved in

preffered. reference (4), The frame geometry, acting
loads and the cross sectional characteristics

2. Evaluate the coefficients a,b,c,d,p,q,r are shown in Fig.6.
and s in equations (1).

3. Select the vector of initial design - A 200 M

variables Au. Here, the superscript vhas A A2

the value 1 for the initial design. 
2 q q-0 a !W

Prefferably the initial design should be
feasible.

4. Analyze the structure for the external A,

loads and the cross sectional properties
defined with the current design Au.

5. Set up the coefficients of the objective 609.6 41

function. Fiq.6. A two storey frame:geometry and loads

6. Arrange the move limits. Start the itera- The permissible normal stress was taken
tions with large move limits (±50%), and as 16.5 kN/cm2 , while the yield sress is
gradually reduce them to ±5%. 25 kN/cm2 . The constans a,b,c,d,p,q,r and s

7. Calculate the derivatives of the restric- have the values 1.724, 2.0, 0.87, 1.5, 1.313,

ted joint displacements by means of 0.5, 0.768 and 0.5 respectively. The
equation (10). horizontal deflection of the second storey isrestricted to 4.38 cm, while the horizontal

8. Using the results obtained in step 7 displacement of the first storey is limited

set up the displacement constraints, to 2.54 cm. The vertical displacements of the

9. Calculate the lower bounds of the design joints are limited to 2.54 cm. Two loading
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conditions are applied to the structure, in A6=186, A7=148 and A8 =122 cm
2 . The volume of

Fig.6 denoted by symbols I and II.
The iterations were initiated from the the optimal frame is 135150 cm

3 , as opposed
same feasible design point as in reference to 134500 cm3 in reference (7). The iteration
(4): A1 =A2 =A3=A 4 = 300 cm

2 . The convergence history of this structure is shown in Fig.9.
criterion was satisfied after 5 iterative Note, that the problem formulation in
steps, the optimal values of the design reference (7) required 214 constraints and 36
variables being: A1=250, A2 =132, A3=124 and design variables, while the method presented

2. T 3  needed 24 constraints and 8 variables only.
A4=226 cm

2 . The value of the objective 3 2000
function was reduced to 562661 cm3 , as I I -
opposed to 561789 cm3 in reference (4), which
is approximately 0.16% higher. Maximum stress _ hs paper

violation was recorded in the first storey
beam in amount of 1.08%, for the loading 2s°00
case II. The horizontal displacement of the
first storey is at its upper bound. The
iteration history of this structure is shown 1ae~rnce (7)
in Fig.7. 3

1000 I

900 - Thfis pp: Sao I I
800. - )0 4 8 12 14

a ~ ITERATION No.S700

0Fig.9. Iteration history of the four
storey frame
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EFFICIENT OPTIMUM DESIGN OF STRUCTURES--PROGRAM I-IDU

N, Qian Lingxi, Zhong Wanxie, Sui Yunkang, Zhang Jintong

/Research Institute of Engineering Mechanics

/ Dalian Institute of Technology, Dalian, China

Abstract and SSP. Let Ai denote all these variables and a its

An efficient optimization algorithm is developed reciprocals, the primal problem of optimum design can

for the engineering structures subject to multiple be stated as:

constraints. The highly non-linear and implicit problem
is reduced to a aequence of ciuasi-linear constrainta and Fin Ajuhta h eih fsrcue
explicit problems of the statically determinated struc-
tures. The method is based on the Kuhn-Tucker necessary "PO" = a n. (i)
conditions for optimality associated with a simple qua-
dratic programming to determine the lagrange multi- with: a - < - (2)
pliers and to delete non-active constraints simultane- i Ujl uj
ously. A number of examples including trusses and wing
structures show that the method is efficient when com- - - i - i (3)
pared with other competing techniques. where

. Introduction -- the weight of element i when Ai =,

With the development in computer science, great th th
progress has been achieved in many areas in structural element under the 1
mechanics. Of particular importance is the emergence load condition,

of the finite element method which provides an unprece- u -- the displacement in the j th constrained
dented computational capability to analyze most complex jlt

structures. At the same time, it is natural that the degree of freedom under the I
th 

load condi-
desire of structural optimization arises in the field tion,

of structural mechanics research. In 1960, it was i,uj -- the allowable upper limits of a and U,
first suggested by Schmit (1) that the coupling of il jl

finite element method and non-linear mathematical pro-
gramming would generate automated structural jesign _'Ai -- the lower and upper bounds of the design
capabilities. Since 1968, another approach, namely
optimality criterion method was introduced by Venkayya, i*
Berke, Gellatly and others (2), and has appeared to be This non-linear mathematical programming problem
more practical for the automated design of large scale "Poll is very complicated because:
systems. At the end of the last decade, considerable
efficient gains had been achieved in the mathematical 1. There is a large number of design variables,
programming approach by using approximation concepts. and necessity to identify active/passive vari-
The programs, ACCESS 1, 2 3, developed by Schmit and ables in the process of redesign.
his colleagues (3,4,5) usually generates optimum design
after only 5 to 10 structural analyses. The two ap- 2. There is a large number of inequalities con-
proaches are now comparable not only in their effi- straints, many of which are implicit functions
ciency but also in their basic concepts as pointed out of design variables, and necessity to identify
by Sander and Fleury (6) who deduced a mixed method critical/non-critical constraints in the pro-
from these two approaches. cogs of redesign.

This paper takes advantage of success of the past A practicable algorithm should be efficient so that
works and presents a new algorithm which appears to be the number of reanalysis is no more than about 10; itsI
simple in basic idea and rather efficient in computa- convergence should be stable and preferably very fast
tional aspect. The highly non-linear and implicit in the first few steps.
problem is reduced to a sequence of quasi-linear con-
straints and explicit problems. The algorithm incor- To make this difficult problem tractable, we have
porates a redesign procedure based on the Kuhn-Tucker to replace it by a sequence of relatively simple and
necessary conditions for optimality aosociated with a explicit problems. This can be accomplished through the
simple quadratic programming to detersine the active coordinated use of the following devices:
constraints and corresponding lagrange multipliers.
A modular program is coded in Structured FORTRAN 1. Design variable linking -- each independent vari-
language and automatically translated into FORTRAN IV able A controls a linking group of dependent
by a S.F. translator made by ourself. Example problems k
are presented to illustrate its efficiencies, variables FI or ti:

Ii. Basic Concepts for bar: Fi - Ak(i) F1 (4)

Consider a class of structures with preassigned for CST and SSP: t
topology, geometrical configuration and material of i - () ti
construction. They can be idealized as two or three in which
dimensional systems composed of 3 types of elements:a - dimensionless independent variable
truss bars, isotropic or orthotropic constant strain o k(i) tesinkinrp v a

triangle elements (CST) and symmetric shear panel of the linking group k,

elements (SSP). The design variables are understood to Fi, ti -- dimensional dependent design vari-
be the cross section of the bar, the thickness of CST ables of element i,
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Fi, ti -- relative cross section of bar or where
thickness of plate when Ak = 1. Ba -- independent variables which are the changes

kof current design

2. Making the constraint functions explicit --
assuming no redistribution of internal forces W(6ok ) -- quadratic objective function,
as in a statically determinated structure
temporarily in deriving the redesign formulas. W. L.K/a -- value of objective function of

3. Making the constraint functions linear or nearly k current design Cz,
linear -- using of reciprocal design variableI Gr (6o k)-- constraint functions, linear with 6ak
CLk ='k 

r

G° / Tk -Ar -_ value of constraint functions

4. Unification of constraint form -- the stress r k r; r of the current design co
and size constraints are reduced to the same
form as displacement's by the virtual work con- This problem "P2" is a quadratic programming. A
ception. sequence of them can replace the primal problem "Po"

for statically determinated structures. It also can
5. Bringing the design point to the boundary of be used for statically indeterminated structures pro-

feasible region by scaling step. viding the parameters 
T
rk updated after each iteration.

6. Selection of active (critical) constraints -- But we proceed as in the following to seek further

crude selection firstly, then automated and simplification.
precise selection by quadratic programming.

The lagrangian of the problem "P2" is

7. Approximate reanalysis techniques. (6 k, r = W (60L) + 2: Cr (6) (10)

r
Through devices 1 to 4, the primal problem "Po"

can be reduced to the following problem "Pi": Hence the Kuhn-Tucker conditions of optimality
give:

Find ak so that; 0

"Pi" ' (ak) = L/k - min. (6) a(6ok 'r r r - r

k (k 2,...,m; r - 1, 2 .... n)

with: Cr(ak) = ~rk ak - r < 0 (7) which can be reduced to:

8 a; ki - =k I (12)
(k 1, 2,...9 m; r 1, 2,.. n) Lk = r) r 1rkJ

Oak( -- reciprocal independent design variable
Ak of linking group k, 0 if 1r 

> 
0

Lk-- total weight of linking group k, + (critical)
r 

+  
Tr'k 6%~ (13)

Lk ~I Wi when Ak - , r k < 0 if)Jr "0
ick (non-critical)

Gr(a k ) -- unified expression of constraints in- The formula (12) gives 6r, the change of the cur-
cluding stress, displacement and sizeconstraints (see section III). rent design O provided that the lagrange multipliers

Trk -- parameters which are constants in Ur are all known. But the determination of Ur is cor-
statically determinated structures so related to the identification of critical constraints
that the constraint function Gr(ak) is and has been a difficult task. The traditional trial

linear of a.k (see section III), and error procedure is practical only if a few of con-
straints are imposed, and is exceedingly expansive for

W(ak) -- objective function, non-linear with (k. most practical problems. Recently Schmit and Fleury
(5) presented a sound method based on the dual program-

The problem "Pi" will be subject to further transforma- ming. We shall do as follows. Substituting (12) into
tion in applying Taylor's second order expansion to the (13) gives:
objective function and in taking 6a instead of % as n =0 if 

1
ir > 0

variables. It gives problem "P2": - t pj + br (r = 1,2,...,n), (v4)

Find 6ak so that: P<0 if =0

W(6%n) . W" + _ ( ( % 6ak  where 3

k 2trp k T* (15)
(8) 2L1  rk~

"P2" + k (8%) 
2
) --- +min. (r,p - 1, 2 ... ).

br 2Trk r G (16)
with Gr (&k) = GC + XTrk 6% 0 (9) k

k

(k - 1, 2,..., m; r - 2, 2,...,n)
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We observe that the vector of lagrange multiplier {P r A (22)
r (22

satisfying (12) and (13) must be the optimum solution
of the following cuadratic programming: m I

Find Ni} so that: Z 
rk

ci Tj 1 -Uj (23)

"PIP kQIil k-l ick"P J Q( i) - { li} [T] {li}
- {blt {1}1 -- min. (17) where - ,the reciprocal independent de-

with {0 > 0. (18) sig
I1 sign variable controlling the size of element i,

where Tii is the contribution of element i to the dis-

{'} -- a (n x i) vector of lagrange multiplier with placement u when aLk = I and
components r,

[T] -- a (n x n) matrix with components t given by
(15), T

rk T i Jk (24)

{bI -- a (n xl) vector with components br given by When element i is a bar (fig. la),
(16). This can be proved since the Kuhn-Tucker condi-
tions of problem "PI", is none other than (14). The N Nit
matrix [T] must be positive definite, this can be ascer- TJi (X-!--)i" (25)
taned since for any (n x 1) vector {y}, we have

n n m 0 -3 When element i is a CST element (fig. lb)

{y~t [TI {y} 2: y { --- ( . 'rN~+ .NNI NNi)+XNNi
P-i r-i P k~l 2Lk rk Pk r T ji - X lNx Ny +X2 (Nx Ny+N N x )+X3 Ny Ny+

m .)3 n n + X N NJ I (26)
-l ( T: y 2 Yr Trx)

k-i p=l Vr r When element i is a SSP element (fig. ic)

(19) iJi 
= 
[XN NJ 

+ 
A4NNJ 1 (27)

yk=l r T tr- ) > 0

The quadratic programming "Plj" is much simpler than Y F is the crosssection
"P2". The number of variables is n and equal to that t
of constraints. But it may be greatly reduced by a BAR
preliminary deletion of the probable non-critical ccn- I
straints. At the beginning of each iteration we can I. ,.... ..4 X

throw away a part of constraints which satisfy

Gr T- I rk ak - Ar <-BlZr8 (20) G.
k

where 0 is a slack coefficient 0.2-0.4. The lagrange
multipliers corresponding to these deleted constraints
are assumed to be zero. A point must not be over- thickness
ilooked: the remaining constraints must be linearly t
independent.

In sumary, with a current design C1, we formulate C ST
the quadratic programming "P." which will determine 

the

lagrange multipliers r, then substitute them into (10) b.
we obtain 645k and a new design Ok . .+ 6ak which will

be the start point of the next iteration.

III. Formulation of Constraint Functions t is the thickness
The unified expression of different constraint

functions is

Gr O,: (21) X
i . I Trk wl be dhs-

where r(-1,2,...,n) is No. of constraint, k(-l,2,...,m)to No. of independe t variable, A r and TAwill be des- k _

cribed in the followlog for different constraints.

1. For displacement constraint UC - .< , C.
in (20): 0

Fig. 1 elements
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In formulas (25) (26) (27): c. for SSP element's stress

(N x, N y, Ni -- internal forces In element I ( 3 H.
due to real external loads (p IS] (34)
which produce uj, to (3 N 2 + 3 N2 ) 3 N NY

(Nx  N ) - Internal forces in elemnt I in which F
° 
and t are the relative cross sec-

due to virtual loads corre- tion and thickness of element when A 1
sponding to uj. (see (4) and (5)), (S] is the matrix of trans-

aD3 aD2  formation of the element displacement vector
1 _ 2 __2 _ D 2  fD to the Internal force vector N :

DID 3 - D2  ID3 2 1
(28) {N} - [S] {D0

aD 1  
a

A3 X = 3. For lower size constraints Ak > , in (21):

1D3 - 2 (35)

where:

a -- surface area of CST and SSP element, I when k-m(r)

D1, D2 , D3 , D4 -- physical modulus for the I k A khen km(r) (36)
2' 3'4 __orthotropic material in the -10wek#mr

Hook's law: where m(r) is the No. of the design variable

(I D 1  D 2  1 1c corresponding to r-th lower size constraint.

D 2  D 3  0 ] i (29) 4. For upper size constraints Ak. 1 k, in (21):

N 1. 0 0 Di4  Ir - - , (37)

2. For stress constraint a - j < 0, in (21): V I when km(r)

r a (30) Trk t -k, Trk- (38)
k-l 0 when k 0 m(r)

m where r(r) is the No. of the design variable

Tcorresponding to r-th upper size constraint.

k-l k-1 ick IV. Program DDU

The basic steps in an iteration of optimization( x)J for bar in the reciprocal design variable's space are illus-

2 + ( 2 _ a x  + 3T 2 (31) trated in Fig. 2.

x  y Y 1. Do structure analysis at start point 1.

for CST or SSP.

Since the stress in an element is correlated to 2. Do scaling step from point 1 to 2.

the displacements of element nodes, the 
T
rk in 3. Do redesign step by Kuhn-Tucker necessary con-

(31) may be computed by the same formulas (23) dition from point 2 to 3.
(27) as in the case of displacement constraints
provided that the virtual internal forces 4. Do linear search associated with scaling step

N
J
, N

J
, NJ are produced by adequate virtual from point 3 to 5 through 4.

x Y KY
loads. Let fPVI be the vector of virtual load, A c
it is given explicitly without derivation for constraintbrevity:

breity 
feasible field

a. for bar's stress

{} F , (32) trt / AA+t.SA)y

b. for CST element's stress (A0100 constroint

[sit - 2Sl / - optimum
to (N2 + N ++ 3 N2 N.Ny)% / (A+U)

N N//

Nv - --- caling stop
2 n onlinear programming

3 9

Fig. 2 An iteration of optimisation
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The last step requires some explanation. Accord-
ing to the algorithm described in Section II, an itera-
tion is ended at point 3. To improve the convergence,
we make an additional step to search a better end
point 5. It consists of making an approximate analysis
by perturbation at point 3, then the structural behav-
ior of any point on line 2-3 can be estimated by inter-
polation or extrapolation. A one dimensional search
along the line 2-3 associated with scaling step will
give the point 5 nearer optimum.

DI)DU is a structured modular program. The module
of optimization is written in so called "meta-language'
as follows.

IPASS - 0; (IPASS keeps the No. of reanalysis)

"LOOP" Fig. 3 3 bars truss

IPASS-IPASS+l: ii) P 2 20,

{Call GLOASM -- build the global stiffness matrix allowable stress:
with the current design A*)

{Call LDLTI - make the global stiffness matrix a+- 20;
trisnoularized} l' = 15,

{Call ANAl analysis under external loadsl allowable vertical displacement of node a: 10/E,

(Call SCALOT -- scaling step to get point 2 in Specific gravity: p - I.
fig. 2: A - YA*}

(Call SELGON -- rude selection of concerned con- The results of optimization are given in Table 1
stradnts which shows that only one iteration is practically

sufficient.

{Call ANAL2 -- analysis with virtual loads corre- TABLE I
sponding concerned constraints)

{Call TAORK -- compute Trk which is the contribu- A1  A2  W

tion of elements controlled by de-
Ak -1 to the constraint r Initial 2.0 2.0

{Call TMATRX -- build the matrix (T] and vector
b} for the quadratic programming lot iteration 0.6665 0.9442 2.8292
li 2nd iteration 0.6667 0.9428 2.8284

{Call MUGRTO -- solve "P" to get {Wa) } I

{Call DELTAA -- compute 6A to get point 3 in Theoretical 0.6667 0.943 2.8284
fig. 2: A + 

6
A

(Call ONESCH -- linear search associated with
scaling step) Problem 2: 10 bar truss (fig. 4)

{Call AREUPD - get new design point 5: One load condition: see fig. 4,
(A + t 6A) y') Material: E - 10 7; p - 0.1; min cross Section A-0.1,

(Call CONVER- get convergency error EP)( V e r rallowable stress: o - 25000 (tension, compression),

"TEST"(EP.LT.TOLERA)"EXIT" allowable vertical displacement of node 1,2.3,4: + 2 in.

where, for the solution of quadratic programming " The results of optimization and the comparison
with non-negative constraints, some well-known ' with other methods are given in Table 2 and the con-
algorithms are available (7). vergent history is shown in Table 3 and fia. 5.

V. Sample Applications of DDDUIs- 3SO"-eSfO"--"60

The results for five examples will be presented 35 _ _0

below in brief smmary form and compared with other _ _ _

existing results. The efficiency of DDDU seem to be
satisfactory. The program often provides near optimum
results after a few of first iterations end gets refine- CA
ment in the subsequent iterations. This should be o
an expectant property of the optimum design program
since the designer could obtain a better design early
and stop the optimization process if too expensive.

Problem 1: 3 bars truss (fix. 3) X 4 2
Two load conditions:

i) P1  20; Fig. 4 10 bar truss
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TABLE 2

Number Final designs (in 2 ) 
3 00ACCESI

f bar ACCESS1 Schmit Venkayya Gellatly DDDU - (6)
--U-- (7)

1 30.67 33.432 30.416 31.35 30.902 ) ODU

2 0.100 0.100 0.128 0.100 0.100

3 23.76 24.260 23.408 20.03 23.545

4 14.59 14.26 14.904 15.60 14.960 7000

5 0.100 0.100 0.101 0.140 0.100

6 0.100 0.100 0.101 0.240 0.297 OR

7 8.578 8.338 8.696 8.35 7.611

8 21.07 20.740 21.084 22.21 21.275

9 20.96 19.69 21.0;7 22.06 21.156 6000,

10 0.100 0.100 0.186 0.100 0.100

Weigh 5076.85 5089.0 5084.9 5112 5069.4

It era-
trions 13 24 26 19 11 5000

01i2345 10 15 20 25

iterations

TABLE 3 Fig. 5 Convergent history of pb. 2

Iterations ACCESSi Schmit Venkayya Gellatly DDDU Problem 3: 72 bars spatial truss (fig. 6)

Two load conditions:

1 7852.9 12846.7 8266.1 8266 6575.0 i) P - P - 5000, P --5000 at nodelI;
2 6650.8 8733.4 6281.7 6356 5750.8 x y z

3 6161.4 9144.6 6065.7 5980 5603.9 ii) Pz - - 5000 at node 1,2,3,4,

4 5892.6 8332.5 5984.5 5779 5469.1 material: E - 10 7; p - 0.1; min cross section A-0.1,
5 5656.3 7243.0 5963.1 5625 5323.9 allowable stress: a - 25000 (tension or compression),
6 5426.8 6749.6 5920.1 5547 5218.1

7 5790.8 6507.9 5881.6 5470 5101.8 allowable displacement: ± 0.25 in x, y, z direction at
every node.

8 5153.8 6384.3 5848.1 5392 5079.8

9 5110.3 6339.8 5819.7 5323 5077.6 By design variable linking,number of independent
variables = 16. In Table 4 and 5 are given the re-

10 5087.2 6314.9 5795.9 5266 5069.4 sults, convergent history and comparisons.

11 5081.1 5998.7 5776.4 5225

12 5076.9 5750.1 5760.7 5200 z
13 5734.6 5748.2 5195 4 3

14 5705.6 5738.3 5206

15 5468.8 5730.7 5195 ,

16 5315.8 5724.7 5169 0 0
17 5306.2 5720.2 5147 Is

18 5215.8 5716.7 5112 so 0" Y

19 5162.9 5713.7 1v

20 5135.8 5712.2 1
21 5107.0 5502.9

22 5094.1 5343.8 7

23 5089.0 5221.5

24 5127.0 !

25 5084.9

Fig. 6 72 bars spatial truss 2
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Problem 4: 18 elements wing structure (fig. 7) TABLE 6

The structure consists of 5 bars, 5 CST and 8 SSP
elements. Number of independent variables is 16. No. of

Type element ACCESSI DDDU

Two load conditions: 1 4.045 3.2349
2 0.1001 0.1006

i) P - 5000 at node 7; BAR 3 0.1001 0.1006
4 0.1330 0.2198

ii) Pz . 10000 at node 5, 5 0.1002 0.1006
1, 2 0.08286 0.08922

material: E = 10 ; V - 0.3; P - 0.1; CST 3, 4 0.05363 0.05118
min cross section and thickness A - 0.1; L - 0.02, 5 0.03786 0.03728
allowable stress: a - 10000 (tension or compression) 1 0.3636 0.4106

2 0.2236 0.2282
allowable displacements: ±2 at node 3,4,5,6,7 in x, y, 3 0.1310 0.1237
z directions. 4 0.1156 0.1297

SSP 5 0.09166 0.09412
The results, convergent history and comparisons are 6 0.02000 0.02012

shown in Tables 6 and 7. 7 0.02000 0.02012
8 0.03096 0.03018

2 Y Weight 402.97 407.571
51 Iterations 9 10

TABLE 7

4 Iterations ACCESS1 DDDU
0 1 585.066 597.738

2 466.410 542.923
3 422.799 473.745
4 408.848 437.569
5 404.744 440.138

6 403.516 416.804
Fig. 7 18 elements wing structure 7 403.118 413.896

8 402.966 410.655
9 407.571

-Problem 5: 133 elements Delta wing structure (fig. 8)

The structure consists of 63 CST elements and 70 TABLE 8
SSP elements, the number of independent variables is No. of
reduced to 28 torough variable linking. Type variable ACCESSI DDDU

1 0.0200 0.02001
One load condition: P - 8075 at node 10 to 44, 2 0.0200 0.02001z 2 0.0200 0.020016,01,3 0.1498 0.1522
material: E = 16.4 x 106, v = 0.3, p 0.16, 4 0.1450 0.1425

allowable stress: a - 125000, 5 0.0200 0.02001
6 0.1164 0.1183allowable displacements in z direction: 7 0.1289 0.1270

CST 8 0.0200 0.02001

desll-17118-24 125-291 30 131-35136-39140-42 
4 94 4  0 0.1223 0.1211

11 0.06518 0.06616u 1±14.01±28.01±42.01±30.01±56.01±70.0±84.01±100.81 12 0.1172 0.1168-13 0.03628 0.03669
In Tables 8 and 9 are given the results of DDDU and 13 0.03628 0.03669

comparisons with others. 14 0.1074 0.1075
15 0.08406 0.08418

16 0.05036 0.05032
1 0.0200 0.02001
2 0.0200 0.02001
3 0.02172 0.02215
4 0.02001 0.02001
5 0.0200! 0.02001

SSP 6 0.02001 0.02001

7 0.0200 0 02001
8 0.05956 0.05960
9 0.07531 0.07556

10 0.07?47 0.07240
11 0.05702 0.05721

12 0.0200 0.02001
Weight 10742.24 10781.92
Iterations 9 9
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IA COMPUTER PROGRAM SYSTEM FOR
/ DESIGN OF POWER TRANSHISSON TOWERS

Lars Hanssen

SINTEF div of Structural Engineering
N 7034 Trondheim - NTH Norway

Summary

A computer program system for practical design of which would help reducing some of the time-consuming man-
power transmission towers is presented. The system ual work involved in the design process. Also, the poss-
comprises modules of interactive graphical tower spot- ibility of saving material expenses by adopting struc-
ting, structural analysis and member sizing of towers in tural optimization to some degree was a desirable
a transmission line, geometry optimization of single objective.
towers and a module for optimal adaptation of member From the very start of the project it was realized
sizes to production requirements._ that a development based on existing systems (5),(6) would

The program system was developed to enable reduc- not be feasible. It was judged as very difficult, if at
tion of material costs related to tower manufacturing all possible, to find a system which could cope with the
and to make the design process less laborious and te- design concepts well established by NVE without heavy
dious. The principles which the system is based upon modifications. It was therefore decided to develop a
reflect a compromise between flexibility and reliabi- new system which could be more or less taylored to the
lity on one side and simplicity and efficiency on the design procedures used by NVE.
other.

A treatment of the various concepts which this prog-
The tower spotting module is an independent program rsim system is based upon will be presented in the follow-

with the objective of generating best possible tower in3. Some emphasis will be put on problem character-
locations and heights along a user supplied terrain istics, solution strategy and program organization to
profile. This module is developed in interactive graph- illustrate how a structural design problem of this kind
ical mode and allows for convenient control of the tower can be approached.
spotting process. Capabilities for automatic optimi-
zation of tower positions and heights are included in Purpose and -capabilities
the module. In the planning phase of the program system some

The analysis and sizing module can handle various main guidelines for the program development were estab-
types of towers idealized as truss structures. Effi- lished, guidelines which to some extent were decisive for
ciency is emphasized by using the finite element dis- the approaches and principles chosen.
placement method with a one level subetructuring tech-
nique for the analysis and a stress-ratio procedure for The major objective was to develop a system which

the detailed sizing of individual towers. Reliability could be used to reduce material costs in the tower

of the results is accomplished by considering non-linear manufacturing process. The background for this objective
effects in the response behaviour. was that some 8000 tons of steel representing a value

of $ 9 mill are spent each year by NVE in tower prod-

A module for optimization of tower geometry of uction. Clearly a program for reducing this amount would
single towers is also available in the system. Node be advantageous.
coordinates are considered as design variables, whereas Another important objective was to reduc" manuaL
the tower topology, i e number of bar members and member work needed in the transmission line design. tlso, to com-
connectivity has to be fixed. puterize the process was belived to reduce the frequency

To comply with production constraints regarding of errors beeing made and to increase the accuracy of
limitation of number of different tower designs in the structural analysis and design procedures.
one and the same transmission line, a capability for
optimal selection of tower strength levels is included. It was emphasized that the Aystem should be easy to
This part of the design process lies in a postprocessor use. This requirement was due to the fact that it
unit and is separated from the design of each individual should be possible to operate the program by persons with
tower. little or no experience in data processing.

Efficiency of the program system modules was another
Introduction important aspect which was considered in the planning

phase. A substantial number of towers were to be de-
A computer program system for practical design of

power transmission towers (1), (2), (3), (4) has been sged e ear, and expenses related to computer
developed by SINTEF* division of Structural Engineering usage had to be as low as possible.
on request from the Norwegian Water Resources and The system should be flexible in that handling of
Electricity Board State Power System, which will be various tower geometries should be possible. In effect,
referred to as NVE** in the following, this requirement implied a system which could be used in

The towers in question are of a truss type and are design of towers of any configuration.

idealized by a set of bar members. NVE has been design- The above considerations led to a system based on a
ing power transmission towers of this type for several design process consisting of three separate stages:
years,but computerized procedures have been used to a
limited extent. The routines adopted in the design work Stage I. Tower spotting - A tower spotting module is
are well established and substantial experience and available for determination of tower locations in a user
insight into the field has been gained. defined terrain profile. In addition to tower locations,

When adresuing SINTEF Ak this matter it was thus not tower height for each individual tower is also determined.

to bring a revolution into the way of designing power is module operates independently from the rest of the

transmission towers, but rather to find a convenient tool program system and no detailed analysis and sizing of the
towers are carried out. Capabilities for optimization of
locations and heights based on empirical formulaes for

* The Foundation of Scientific and Industrial Research tower costs are included, and the tower spotting process

at the Norwegian Institute of Technology is conveniently controlled by the user.

** Norges Vassdrags- og Elaktriuitetsvesen
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Stage II. Tower geometry optimization - This stage is Several characteristics for the towers in question were
only relevant when new tower types and configurations decisive for the choice of design procedures,
are to be investigated, and will not be part of the First of all, it is realized that the tower are
routines usually adopted in the tower design process. typical truss structures with only minor bending effects
A representative set of loading conditions has to be
supplied for this module since it is neither practi- permitting analyses without rotational degrees of free-

cally nor economically feasible to perform an optimi- dom. Even so, the analysis problem is of substantial

zation of the geometry for all towers in a line. magnitude in a structural optimization context in that
towers with as many as 1000 bar members will be treated.

Stage I1. Member sizing of towers in aline - All towers To cope with local bending caused by iceload and self-
in a transmission line are analysed and member cross- weight of each member the user is given the possibility
sections are picked from a table of available profiles. to supply member bending moments which are accounted for
Tower heights and loadings have already been determined in the sizing process.
by stage I and these results are used directly by stage The tower structure is composed of plane panels and
Ill. Efficiency is emphasized in this module by using spatial sections with a high degree of repetition in
the finite element method with substructuring in the spatal Tis wit a hihzd of retiion in
analysis of each tower and the stress-ratio concept for geometry. This fact is utilized in that a one-levelmember sizing. Reliability of the results is accom- substructuring approach is adopted yielding an efficient

membr szin. Reiablit of he esuts i acom- analysis capability and leading to convenient handlingplished by accounting for non-linear response effects of user data.
in the analysis.

The towers to be analysed are usually weakly stati-cally indeterminate. This means that only a small re-
all towers in a line are analysed and members are sized distribution of member forces takes place as the tower
according to the design criteria inherent in the program stiffness changes. A stress-ratio type of procedure for
the towers are divided into strength levels. The back-
ground for this operation is that only a limited number member resizing is therefore appropriate in the design
of different tower designs can appear in a transmission process.
line. All towers (actually part of the tower) within Dynamic calculations are not included. However,
a strength level have identical strengths (i.e. their suitable load factors on the wind loading are considered
designs are identical in all respects, and the problem and prestressing of the guy system is favourable with
is to find these strength levels and how many and which respect to dynamic effects.
towers should belong to each level. A procedure for Member profiles can only be picked from a limited
solving this problem in a best possible way is available selection. This means that procedures based on con-
in the program system. tinuous sizing variables are not well suited since it

Problem characteristics would be a difficult task to relate the variables to
the profiles available. This problem is avoided when a

Fig. 1 shows a typical 420 kV suspension tower profile table with all necessary information about the
very commonly used for power transmission purposes cross-sections is made available in the computer
in Norway. It consists of two vertical panels which program.
are connected by a horizontal crossarm at the tower To include deflection constraints has not been
top and several horizontal panels at different height found necessary. It is assumed that deflections are
levels. There is also a system of guys between the two
vertical panels which are prestressed in order to reduce kept on an acceptable level through prestressing of the
displacements and to avoid undesirable dynamic effects, tower structure considered. This failure mode is
The load effects which are primarely caused by wind, assumed not to occur for the towers designed. These
ice and cooling of the conductors are transferred to
the tower through a set of crossarm conductors and one assumptions simplify the designprocedure considerably
wire on each earth-wire peak (top of vertical panel). and lead to a substantial reduction of computer time.
The height if these towers range from 15 to 50 metres Program organization
and the length of the horizontal crossarm is approxi-
mately 25 metres. Fig. 2 is intended to give a survey of the program

Other types of towers are also used by the NVE, system organization. The PINTOS part of the system

both different kinds of suspension towers and stronger (Program for INteractive TOwer Spotting) is an independent

types for termination points and angle points. These program consisting of 3 separate processors; a prepro-

towers will to a large extent have a structural behavi- cessower oterrain data input, a design processor for

ourthe tower spotting process and a postprocessor for out-
put of final results. The preprocessor and the postpro-

25 eres =. cessor are batch mode programs whereas the design module
operates in interactive graphical mode. The results

f from the tower spotting program (tower heights and

loadings) are used both as input for the MAST part of
e the system and as information about tower sites in the

terrain.

a. vertical panels The MAST part of the system which performs the
detailed analysis and design of each tower in the line

b. crossrm is divided into 3 programs, MASTI, NAST2 and MAST3c[ 
which are all batch mode programs.c. ha, isontal panels

aa MASTI is a stand-alone program for analysis and
a d. prestessed guys design of a single tower structure with given geomtry

and loading. It consists of three separate processors,
e. conductor a preprocessor for data input, a design processor for

f. earth wire analysis and member sizing and a postprocessor for
printout of results.

MAST2 is used for analysis and design of all towers
in a traasmission line and can only be used togetherwith

Fig I Typical 421 IN suspension towr ATI which initiates the calculation by analysing t-ver
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parts which are identical for all towers. MAST2 con- such programs are not always satisfactory because
sists of a series of processors for several tower types. fully automation of all possible situations occuring
The processors are divided into groups where each group in the tower spotting process is very difficult.
corresponds to one tower type and consists of one pre- In the present effort the tower spotting process
processor, one analysis processor and one postprocessor can be considered as a semi-automatic procedure where
analogous to MASTI. The preprocessor reads data for the the user has extensive control over all decisions which
line, i e tower heights and tower loading (from PINTOS) are made.
and data for tower geometry generation. The design
processor prepares data to define the towers and performs The program which is developed in interactive
analysis and sizing of each individual tower one by graphical mode, is assumed to work on a cathode-ray
one. The task of the postprocessor is to select in a screen equipped with a cursor capability. The program
best possible way a limited number of tower strength can display any portion of the terrain profile on the
levels to conform with production requirements. screen in several alternative ways. The terrain is

displayed together with alphanumeric and graphical in-
MAST3 optimizes tower geometry for a single tower formation about terrain conditions such as tower site

with given topology and loading. The program can also availability, buildings, roads etc. Zooming capabili-
be used to find the optimal prestressing level for ties are also available.
towers with prestressed guys. MAST3 is also divided
into 3 processors similar to HASTI and MAST2, and can Towers can be introduced into the terrain, posi-
only operate together with MASTI which is used to tioned and removed 'manually' by the user by operating
initiate the process through a first analysis and the screen cursor. Catenaries for critical loading
sizing of the initial tower geometry. conditions are plotted automatically by the program.

Catenary parameters are calculated approximately for
All 3 programs in MAST are attached to plotting single spans by an interpolation technique or 'exact'

capabilities, a mesh plotter MEPLOT and a production for several spans simultaneously by equilibrium
drawing plotter PRPLOT. The MAST programs are built iterations. Tower heights and positions can be opti-
up around 3 basic program units; TOG - a tower pene- mized by the program. It is assumed that the total
rator, ASI - an analysis and sizing unit and RAD - a tower cost function is proportional to the tower
result administrator. heigths and proportional to a soil valuation factor

which varies arbitrarily along the terrain profile. The
optimization capabilities of the program can only be

PREO utilized when reasonable initial values regarding
z "1 ESO- number of towers and tower locations have been given

5POSO by the user. Also, only a limited number of towers
P? should be considered simultaneously when optimizing

PREk/A tower heights and positions.

POS/A - Terrain profile

PRPLOT RE2/8 Prior to the tower spotting is initiated, the
terrain profile has to be defined between two fixed

POS2/Blocations.

A substantial amount of data is needed to complete-
ly define the entire terrain profile. The program

PE module to take care of the terrain data input is thus a

crucial factor for convenient use of the program. Photo-
graphic and ordinary land surveying is used to generate

Pcoordinates for the terrain profile surface, buildings,
RE3 roads etc along the transmission line. In areas where

photographs of the terrain are not able to reproduce
details with sufficient accuracy (heavy vegetation,

Pdifficult light conditions etc) ordinary land surveying

is resorted to. Also, soil conditions for fundamenta-

Fig 2 Program organization tion have to be registered by inspection of the ground.

The terrain profile is idealized by a number of

terrain locations defined by an x-coordinate from start
Iof profile and several y-coordinates to define the
Interactive tower spotting profile perpendicular to the line direction. The

General terrain surface is linearized between these terrain

The tower spotting process is concerned with how to locations.

determine tower locations and heights in a best possible 'Exact' catenary calculation
way along a given terrain profile between two fixed pre-
determined points. This problem has traditionally been When all towers in a section are located (Section
solved manually with the aid of a terrain profile draw- - all spans between two angle points/termination point)
ing and templates to simulate catenaries in an approxi- catenaries can be calculated for these spans. A catenary
mate way. Also, several computer programs have been is conveniently defined by the parameter c = H/q where
developed 7), (8) based on different types of proce- H is the horizontal tension force in the catenary and
dures to search for optimum locations and heights. q is the transverse loading per unit length. H depends

on the loading q, the temperature level and the stiff-
There are obvious drawbacks in the manual approach; aess of the two end supports of the wire, as illustra--

the process is very laborious, it requires a substantial ted in Fig. 3.
amount of training and the final result will be en-
cumbered with a certain degree of inaccuracy. The horizontal force H is found from the equation

H . atA2[
The computer programs developed in this field are f(H) = [h2 + (2-sinh!-- - i0 ( +C(TT 0)H ]2 - K'- 0

batch mode programs leaving all decisions to the con- Aq 2H
puter during the rover spotting process. Results from where A is the wire cross-section and Z. is the initial

1 12-39
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Fig 3 Catenary definition

length of the catenary. c
is the thermal expansion
coefficient,T-To is the Co b
temperature change, E is amnbmin' Pmin

Young's modulus of elasti- chain 2

city and K is a constant I 5s
independent of H. The re- Fig 5 Catenary parameters by interpolation

9 conductor
maining quantities are p
defined in Fig. 3. Optimization of tower heights_

Assuming all parameters in 9 The total cost of a towei section is expressed by
the above equation to be -y

known, H can be founJ by IS = (Ah+Bf(x)+C) + Ly
Newton-Raphson iteration LA S
of the relation f(H) = 0. where h is tower height, m is numbar of towers in the
When H is computed for section, f(x) is a soil valuation factor which depends
all spans in the section, Fig 4 Support reactions on the tower location chosen and A, B and C are tower
new values for the displace- constants. L is the section length and y is a cost
ments u and v can be found for all towers, see Fig. 4. parameter connected to transportation expenses.
H is recalculated until convergence. Exact catenaries Constraints to be satisfied for each tower and
are found by a separate program, (9). each span are

Approximate catenary calculation 1. Ground clearance requirements
During the build-up of a section (introduction, re- 2. Transversal insulator swing limitations

moval and positioning of towers) catenaries cannot be -"Max and min allowable tower heights

calculated according to the 'exact' procedure described The ground clearance requirement is expressed by (see
because a complete section is needed. Also, the Fig. 6 )
'exact' procedure will be too time-consuming in an inter -bbb-+ y +6(y O
active program mode. The following approximate scheme hibha-aYT YTi a YTc'+
is therefore used for incomplete sections.

where k is the constant for a parabola approximating
Prior to the tower spotting process is started, the exact catenary and 6 is the minimum allowable ground

'exact' catenary parameters are computed for a set of clearance. The transversal insulator swing limitation
actual span lengths a, equivalent span lengths b, is introduced because a minimum distance between con-
loading values p (vertical load per unit length) and ductor and tower side panel is required and is expressed
temperature values t. All parameters a, b, p and t are by T/V < tga (see Fig. 7) which yields
defined between appropriate lower and upper limits and h +h( )+h(R i k av
the range between these limits is divided into equal hice+h (a+cb)kCbR(9a, b'ka,,.,'qv'qTYTiYTj'Tk
increments. The catenary parameter is now considered
as function of the 3 variables a, b and p (or t) and where ca = qv a/ka a and cb qvb/kb b I ka and kb are

can be found for any combination of these by inter- the parabola constants for span a and b, respectively.
polation between the values for which exact parameters
are available. The interpolation is carried out similar
to an eight-node solid finite element as illustrated
in Fig. 5, where the total a, b, p (or t)-space is h
divided into a given number of elements. The catenary h
parameter is found by

C . * CO Y >Ti a Tc b IYTj

where T-C , &=(aamin)/Aa i+1
rl=I-n , n-(b-bmin)/Ab-j+l see Fig.5,
=1-c C=(P-Pmin)/Ap

-
k+

I  j Fig 6 Ground clearance requirement
Co is a vector containing the exact parameter
values for the eight 'node' corners of 'element'
ijk. qva qvb

Fo- a g.ven span, a and p (or t) are readily ill i liI
available while the equivalent span length b is comput- h-J-
ed from., hk

b = where si are the span i ngths for a certain YTi a Ti. b _Tk chainq jrT.

number of spans on each side of the span considered. conuctor

Fig 7 Transverse swing limitation
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Evidently, both cost and constraints are linear Use of tower spotting program
functions of tower heights and the problem can be solved
by linear programming (LP). To solve this problem in A set of commands is available in the design pro-

one single step is not an advisable approach because a cessor of the tower spotting program. A survey of the

substantial amount of storage and computer-time would be most important commands are shown in Table 1.

needed (500-1000 constraints in a problem with 20 towers). Table I - Survey of main commands
A simple strategy for reducing number of constraints
has therefore been adopted. Initially, only one terrain
location in each span is assumed to be critical with re-
spect to the ground clearance requirement. Constraints I Introduce new tower in cursor position
on maximum and minimum tower heights and the transverse 2 P Position tower closest to cursor until
!wing limitations are initially included only for towers tower top coincides with cursor
where allowable values are exceeded. The LP-problem 3 D Remove tower closest to cursor
based on these assumptions is established and solved, 4 B Redisplay current picture with all cosoer-
and all constraints are recalculated from the resulting tions removed
tower heights. If new constraints have become critical, tis reoved
these are added to the LP-tableau (coefficient matrix position
for LP-problem) and a new LP-solution is found. The 6 F Display picture ahead of cursor position
process is continued until no new constraints are added. 7 X Compute exact catenaries for current tower
To avoid oscillations in the iteration process, con- section
straints are never deleted from the LP-tableau. Good Secti
initial assumptions regarding the tower heights are tower section
thus advantageous for an efficient solution. 9 M 'Manual' opLimum tower positioning, i e

1) move tower closest to cursor
Optimization of tower positions 2) optimize tower heights

Before starting the optimization process it is 3) mark total tower cost on screen
assumed that all towers to be optimized are given 10 U Optimize tower position for tower closest
reasonable initial positions. The reason is that the to cursor
optimization procedure is not capable of handling 11 A Optimize tower position for all towers
local minima and separated feasible domains. As a specified
guide for the user when giving initial tower positions 12 0 Retrieve optimal configuration alternative
the program has the possibility to put a marking on the
screen representing the total cost of the tower line. The terrain profile is usually extending over
By successive positioning of each tower a cost curve several kms and has to be divided into small portions
can be displayed giving a rough indication of usable to fit into the graphical screen with a reasonable sca-
initial tower positions. ling. The terrain is conveniently scaled to comprise

15-20 towers in one picture. The lay-out is deter-
The optimization process is based on a separation mined by a set of parameters which can be chosen by the

of position variables and height variables. Tower
positions are optimized tower by tower until no im- user. An example of picture lay-out is shown in Fig.9.

provement of the cost function is obtained. For each The screen cursor is automatically displayed on the

towerscreen and its position is adjusted by two steering

found for the tower in question and a limited number of wheels on the screen console. Display of new terrain

towers on each side. Thus a set of one-dimensional portions is controlled by means of the cursor and thecommands B, N and F, see Table 1.
minimizations is carried out where the variables 

are

tower positions and the merit function is the total cost
of all towers. Since all design constraints are
considered when heights are optimized only maximum
and minimum limitation on tower position change need
to be imposed. A macro flow diagram of the process is 21 32 17 23 15 27 - tower heights

shown in Fig. 8. '30d354'332
' 
391 482 -span lengts

The total cost of all towers will be a continuous 5
but non-differentiable function and the one-dimensional 4 6 3 4 5 cursor
minimizations are carried out using the golden section 3
iteration piocedure.

START

I =i, NLOOP -- -- -- ---

K- 1, NMA SW.. 100 100 2000 250
500 ±cursor steering

Determine towers to be height cro s
optimized (a given number of I Console
towers on each side of tower K) I- -J-- - -

Find optimum position of tower K Fig 9 Screen picture lay - out

keeping all other towers at fixed
locations (Golden section search) New transmission line towers are added from left

1 - to right in the terrain profile, and one tower section

no is introduced at a time. A reasonable initial con-
Convergence figuration of the towers is generated by conands

yes I, P and D. During this process approximate catenaries
are displayed, enabling the user to satisfy the
ground clearance requirements. When all towers in a

section are included, exact catenaries for all spans

Fig 8 Optimization of tower positions can be computed using command X. Height optimization
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of the towers within the section is then carried out are resized according to the member forces found in the
by command M. analysis. Experience has shown that the iteration con-

The configuration generated is now considered as an verges fairly rapidly, usually after 2-3 cycles.
initial suggestion for an optimum configuration for
the current tower section. This solution must be SubstructurinS
stored before further refinement of the section is The structural analysis is based on a displacement
started, which is done by calling the command S (Set formulation of the finite element method combined with
optimum solution). Optimum tower positions are de- a one level substructuring technique. This approach is
termined for all towers in the section one by one. well suited in the present case since a high degree of
Height optimization is carried out for a small number repetition in geometry is observed for the towers to be
of towers (3-5) on each side of the tower for which the designed. Firstly, the data handling becomes convenient
location is to be optimized. Sufficient accuracy is for the user who can work on independent planar substruc-
thereby obtained and the optimization process is fast tures to a large extent. Secondly, the substructuring
enough in an interactive design context. Optimum technique is efficient in that reduction of the finite
tower positions are fcund by commands M, U and A. element equations is carried out for different substruc-
When optimum positions for all towers in the section tures only. Thirdly, the substructuring technique is
are found, towers can be added to and/or deleted from suitable for reanalysis when parts of the structure are
the section to investigate alternative configurations. changed. This is indeed the situation when several
New catenaries are determined (command X) and all covers in a line are analysed.
positions are optimized again. As many configurations
as desired can be investigated for each tower section. An example showing how
The oetimum configuration is retrieved by calling a suspension tower can be
command 0. When the current tower section is considered divided into substructures
satisfactory, a next section is initiated by adding is presented in Fig. 11.
a suitable number of towers to the next angle point. Here the vertical and hori-

zontal panels are considered
Member sizing of transmission line as two-dimensional substruc-

General tures, whereas the top cross-
arm is divided into three-

A transmission line in this conext consists of a dimensional substructures.
given number of towers with given geometry and loading Alternative ways of substruc-
resulting from the tower spotting program. Design vari- ture division can also be
ables are thus member cross-sections for each of Lhe imagined.
towers in the line.

A sizing has to be carried out for each individual Prestressing

tower, the efficiency of the design procedure for one The effect of self- Fig 11 Substructuring of
such tower is therefore of vital importance. Several weight and prestressing of suspenslon tower
approaches were considered before the program was guys is considered as one
developed; both dynamic programming, mathematical pro- loading condition. Guys are connected to supernodes
gramming and optimality criteria methods, only (nodes connecting the substructures) and pre-

A well known optimality criteria method is the stressing forces are prescribed by the user. An ini-

fully stressed design concept which is based on the tial analysis for the selfweight and these prestressing

hypothesis that all m ..bers should be fully stressed forces results in new guy forces which are deviating

in at least one loading condition. This leads to the from the prescribed ones, and an iteration process is

very simple stress ratio iteration which is well suited necessary to account for this unbalance. Total number

fur the present problem since no deflection constraints of iterations needed for this loading condition is

are to be considered and overall structure stability is usually in the range of 4-8, and depends on the stiff-

known a priory to be non-critical. Also, the towers in ness of the guys compared to the overall stiffness of

question are very often weakly statically indeterminate the structure.

requiring a small number og iterations in the stress
ratio procedure. In the present case a fully stressed Loading
design cannot generally be expected since design When the prestressing phase is completed, the
variable linking caused by fabrication and symmetry structure is subjected to an arbitrary number of
requirements will be utilized, loading conditions caused by wind, ice and temperature.

in Fig. 10 Each loading condition is treated individually and twoThe design procedure is illustrated inFg 0 kinds of non-linear effects can be accounted for;

which shows that a sequence of cycles consisting of an a) large transverse deflections of guys caused by ice

analysis phase and a sizing phase follows after the

initial design is chosen. In each cycle all members loads and b) slips in-bolts connecting different bar
members. The first effect is illustrated in Fig.12a
where also the behaviour of a simple no-compression bar
is shown. The second effect is illustrated in Fig.12b

where the reduction in member stiffness depends on the
Assume i lcross-sections difference between hole- and bolt diameter Ad.Asueinitial cossc

Anal sialysis An iteration is carried out for all loading con-
ditions. A constant stiffness procedure is adopted

Sizing hase where the same stiffness matrix is used throughout
n the entire iteration, see Fig. f2c.

Convergence Sizing phase

When member- and guy forces have been determined
by the analysis phase, members and guys are resized to
resist these forces. Symetry requirements and

Fig 10 Analysis/sizing iteration fabrication constraints are handled by member profile
linking, i e members are divided into groups such that
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generally be different for all towers. This is not a

guy force member force feasible result in a production context where only a
small number (5-10) of different tower strength levels

no -mine these strength levels (assuming that the number 
of

no-conpr. n-linear levels is given) and to find the most favourable strength
bar teory level for each tower. The following simple example

shown in Fig. 13 is intended to illustrate the situ-
ation.

linear guy elongatio member elongation
theory 2 3 4- initial strengths

R Fig 12 a b C d e f

4a) Nmn- linear
~l relation for guy

b) Non-linear 1 234 2 134 3 124 4 123 12 34 13 24 14 23
relation for member 1 444 2 444 3 444 4 333 22 44 33 44 44 33

r c) Iteration procedure 13 14 15 13 ( 14 14
r

Fig 13 Example of strength level selection

all members in a group have identical cross-sections. Four towers containing only one member each are

Member profiles are chosen from a profile table designed,yielding four different tower strengths. For
containing cross-sectional data for a limited number of simplicity, the tower number is also representing the
profiles which are arranged in a sequence corresponding tower strength and cost. If the production process

to increasing cost per unit length. requires only two different strength levels, there will

All members are sized against material failure and be 7 different alternative ways a-g to achieve this, as
buckling. Sizing against buckling is also performed for shown in Fig. 13. The total cost of each alternative
member subsets ('long bars'). The bolt connection capa- is computed remembering that all towers within a
city is considered in the sizing process. Design cri- strength level will have the same strength (and cost) as

teria conform with the European recommendations for the tower with highest strength. Clearly, alternative
steel constructions (ECCS 1978) which are concentrated e is the most favourable one yielding the lowest total

to a few subroutines and can easily be replaced by cost.

other criteria. In a realistic problem the tower strength is

Transmission line approximations represented, not by a single number, but by as many as

A substantial number of towers with given heights 50 different profile groups for each tower. In a
uandlingha to ber nalysed aow sid ding hetransmission line comprising 300-400 towers the optimal

and loading has to be analysed and sized during the de- strength level selection is actually an enormous
sign process of a transmission line. To achieve reason- operation.
able efficiency it was necessary to make several short-
cuts and assumptions regarding the design procedure. A graphical representation of a problem with 11
The most important of these will be mentioned and com- towers is given in Fig. 14. For simplicity, it is

mented upon in the following, assumed that the number of member groups is the same

a. The tower loading is independent of tower stiff- for all towers. The individual design of each tower

ness. This implies that the loading is computed on the is represented by a graph yielding a profile strength

basis that all towers are infinitely stiff. Several for each member group. Three possible strength levels

loading conditions (15-20) are applied representing are indicated as full curves in the same diagram.

different combinations of wind, ice and temperature Since no strength reduction is possible for any of the
loads, towers, the strengths for tower no. 1, 2, 3 and 11 are

increased to coincide with level no. 1, strengths for
b. The horizontal crossarm is assumed to have the tower no. 6, 7 and 9 to coincide with level no. 2 and

same stiffness for all towers in the line. This implies strengths for tower no. 4, 5, 8 and 10 to coincide with
that all substructures in this part of the tower need level no. 3. If the strength level graphs should
be reduced only once and can be used in the analysis of happen to cross each other, the strengths for each

* all towers. tower should be increased to coincide with a level

c. Each tower is analysed and sized separately.
The member grouping is however, the same for all towers ()
(short towers may miss some member groups) while the - - 5
final profile assigned to each group varies from one 04
tower to the next. 1

d. The geometry near the tower base is generated '-. -,,-- 6 
from a small amount of user data to facilitate data - * c
input.

e. Number of sizing cycles is set equal to one Ii -

(one analysis followed by a resizing). Approximately 5% 2

error in member forces is introduced through this I--

assumption. --- 9

Optimal selection of tower strength_____________

As all towers in a line are designed independently 1 2 3

the tower strength (represented by the cross-sectional member group

profiles for all amber groups in the tower) will Fig 14 Tower strength repmwtation
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yielding the least tower cost increase. Ideally, all suited in an initial stage to eliminate possible local
possible shapes and positions of the strength level minima. Powell's method is used as a final stage and
graphs should be investigated to find the absolute best should not be initiated too far from the minimum. One-
solution. In practice, such an attempt is not feasible dimensional searches are carried out using the golden
and an approximate 3-step procedure is resorted to. section ratio iteration or by quadratic interpolation.

The first step is concerned with proper selection A simple console-type truss shown in Fig. 16 has
of NSL towers, the strength of which are used as an been optimized with respect to two geometry variables
initial set of strength levels (NSL = number of strength using Powell's method. The cost function has been
levels). These towers can be chosen by the user. They plotted as a two-dimensional contour map and shows that
can also be determined by the program based on the several local minima and maxima are present in the
assumption that the initial strength level graphs (Fig. interesting variable range. The global minimum was
14) should be as far apart from each other as possible. found with sufficient accuracy after 13 function evalu-

ations where each evaluation contained one analysis and
The second step is to increase the strength for one sizing phase.

each of the remaining towers in turn to coincide with x stort
the most favourable strength level. During this oper- 10 tons x 2
ation each strength level is not assumed to be fixed I
but is also increased along with the strength of those -n 2.0
t*wers which are already included in the level. Fig. 7
15 is intended to illdstrate the effect of increasing '.

the~ strength of tower no. k to strength level Z. 1. On n

strength strength l1im

level Inew level J

Fig 16 Console-type truss
4 ower k .Conclusions

member group member group A computer program system for design of power
transmission towers has been presented. Emphasis has

Fig 15 Strength level correction been put on approximations and assupmtions which are
necessary to obtain a system which can be used in

When the second step is completed a first solution practical tower design work.
is available. This solution can be used directly or it The program system presented is suited for towers
can be improved further through a third step which which can be idealized as truss structures. Parts of
implies that each tower in turn is shifted from one the system may be of general interest, for instance
strength level to the next until no improvement in total the tower spotting module and the modules for analysis,
cost is achieved. The process can be considered as a member sizing and geometry optimization of single
minimization problem where each tower represents one towers. The modules for member sizing of all towers
variable which can have as many values as number of in a line and the postprocessor for optimal selection
strength levels. Since several minimum points will be of strength levels may be of less general interest
present for this problem, an absolute minimum cannot be unless a certain amount of modification is made.
guaranteed. Experience has shown, however, that good
solutions are obtained. The program system is not yet available to the

public, but will probably be released in the near
Optimization of tower geometry future.
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..... "--~ CURRENT RESEARCH ON SHEAR BUCKLING AND THERMAL LOADS
WITH PASCO: PANEL ANALYSIS AND SIZING CODE
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Hampton, VA 23665

Summary mass index

A computer program PASCO for obtaining the
detailed dimensions of optimum (least mass) stiffened X,Y,Z coordinate axes
composite structural panels is described. Design
requirements in terms of inequality constraints can be x,y,z coordinates
placed on buckling loads or vibration frequencies,
lamina stresses and strains, and overall panel stiff- a coefficient of thermal expansion
ness for each of many load conditions. General panel
cross sections can be treated. an earlier paper, y Nx/Nx
PASCO was described and studieI'ere presented which E
showed the importance of accountin, for an overall
bow-type imperfection when designin a panel--a AT change in temperature
capability available in PASCO. Since that paper,
detailed studies have shown that the buckling analysis A buckling half-wavelength
VIPASA in PASCO can be overly conservative for long-
wavelength buckling when the loading involves shear. ul, u2 Poisson's ratios of composite material in
To alleviate that deficiency, an analysis procedure coordinate system defined by fiber direction,
involving a smeared orthotroic solution was investi- u2 " Ml E2/El
gated. Studies are presented that illustrate the
conservatism in the VIPASA solution and the danggr in p density
a smeared orthotropic solution. PASCO's capability to
design for thermal loadings Is also described. Design o stress
studies illustrate the importance of the multiple load
condition capability when thermal loads are present. Subscripts

1 fiber direction

Symbols 2 normal to fiber ;irection

A planform area of stiffened panel i integer associated with plate element I

B panel width (see fig. 6) Introduction

E Young's modulus 4- The introduction of composite materials has
greatly expanded the options for obtaining efficient

e overall bow in panel, measured at midlength structural designs. Because of the large number of
(see fig. 1) design options, the task of finding the optimum config-

uration for a composite structure is more difficult
G12 shear modulus of composite material in than for the corresponding metal structure. This

coordinate system defined by fiber direction opportunity to obtain superior designs together with
the difficulty of selecting among many options is

I I moment of inertia making automated structural sizing p9 increasingly
attractive design tool. Not only do composite

L panel length (see fig. 1) materials provide an increase in the number of design
variables, they can also cause an increase in the

Mx applied bending moment per unit width of complexity of the failure modes. Rules of thumb that-
panel (see fig. 1) prevent undesirable proportions for metal structures

are often inadequate for the corresponding composite
, Nx,NyNxy applied longitudinal compression, transverse structure. For that reason, the automated structural

compression, and shear loading, respectively, sizing procedure must incorporate accurate structural
per unit width of panel (see fig. 1) analysis methods. For stiffened composite structural

panels, a computer program denoted PASCO (Panel
Nx Euler bIckling of panel - buckling load for Analysis and Sizing COde) has been developed and des-

E x - L cribed in references 1-4. PASCO Includes both the
generality necessary to exploit the added design flex-

P lateral pressure ibility afforded by compolite materials and an accurate
buckling analysis--VIPASAo (Vibration and Instability

S area of panel cross section of Plate Assemblies including Shear and Anisotropy)--
to detect and account for complex buckling modes.

u'v,w buckling displacements PASCO can design for buckling, frequency, material
strength and panel stiffness requirements. An impor-

Smass of stiffened panel tant limitation of PASCO is that VIPASA underestimates
the buckling load for long wavelength buckling when the

__2. -
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loading involves shear, bounds on extensional and shear stiffness may be pre-
scribed. The vibration frequency of the panel

This paper is divided roughly into three parts. (including the effect of prestress) may be specified
In the first part, the capabilities of and approach to exceed a given value. Buckling loads and vibration
used in PASCO are described briefly. In the second frequencies are calculated by the VIPASA computer
part, the conservatism in VIPASA for long-wavelength program.5 Stresses and strains in each layer of each
shear buckling is explained and illustrated. To plate element are calculated and margins against
alleviate that deficiency, an alternate analysis pro- material failure are calculated based on an assumed
cedure based on a smeared orthotropic solution was material strength failure criterion.
investigated. Calculations are presented which show
the danger in using that solution. In the third part, Optimization Approach
PASCO's capability to design for thermal loadings is
described. Design studies illustrate the importance A nonlinear mathematical programming approach with
of the multiple load condition capability when thermal inequality constraints is used go perform the optimiza-
loads are present. tion. The optimizer is CONMIN. 7

Description of PASCO Sizing variables.- The sizing variables (design
variables) are the widths of the plate elements that

PASCO is described In detail in references 1-4; make up the panel cross section, the ply thicknesses,
therefore, the description presented here is a summary. and the ply orientation angles. Any set of widths,

thicknesses and orientation angles can be selected as
Capabilities the active sizing variables. The remaining widths,

thicknesses, and orientation angles can be held fixed
PASCO has been designed to have sufficient or linked linearly to the active sizing variables.

generality in terms of panel configuration, loading, Upper and lower bounds can be specified.
and practical constraints so that it can be used for
sizing of panels in a realistic design application. Objective function.- The objective function is the
The panel may have an arbitrary cross section composed panel mass index WIA , the panel mass per unit area
of an assembly of plate elements with each plate -r-
element consisting of a balanced symmetric laminate of divided by the panel length. The panel length is
any number of layers. The panel cross section, fixed; therefore, the quantity that is minimized is
material properties, loading, and temperature change the panel mass per unit width.
are assumed to be uniform in the X direction (fig. I).
Any group of dimensions, including ply angles, may be Constraints.- Inequality constraints can be placed
selected as design variables; the remaining dimensions on buckling loads or vibration frequencies (loaded or
can be held fixed or related linearly to the design unloaded), lamina stresses or strains (material
variables. strength constraints), and panel stiffness. These

constraints can be applied for each of many load condi-
tions.

x For the buckling and vibration constraints,
',- N, separate constraints are applied for each wavelength.

L .With this approach, panels can be designed with a
.,Q 'v ~ different margin of safety for each wavelength. Con-

NX straints can also be placed on several elgenvalues at

I >N"the same wavelength.
N,

YX For the material strength constraints, three
Y' strength criteria are available in PASCO: maximum

lamina stress, maximum lamina mechanical strain, and
~.N the Tsai-Wu criterion8 . For the maximum stress

criterion, tension and compression limits are placed
N" 1yon lamina stresses in the fiber direction and trans-

verse to the fiber direction. Limits are also placed
z on the shear stress. The maximum lamina mechanical

strain criterion is defined similarly, except that the
thermal strain is subtracted from the total strain to

Figure 1.- Stiffened panel with initial bow, applied provide the mechanizal strain. The Tsai-Wu criterion
loading, and coordinate system. involves a quadratic function of the stresses. Failure

is assumed to occur when the stress state in any lamira
The panel may be loaded by any combination of in- exceeds the failure criterion.

plane loadings (tension, compression, and shear) and
lateral pressure as indicated in figure 1. Multiple For the stiffness constraints, upper or lower
load conditions can be treated. Thermal stresses bounds can be placed on the extensional stiffness, the
resulting from temperature changes are calculated. The shear stiffness, and the bending stiffness. These
material properties corresponding to the temperature of stiffnesses are "smeared" orthotropic stiffnesses for
each plate element may be changed for dlfferert load the overall panel, not individual plate element stiff-
cases. The effect of an overall panel imperfection e, nesses. The extensional stiffness is associatd with
shown in figure 1, can also be taken into account. One the Nx load, the shear stiffness with the Nxy load.
of the improvements that has been made to the code and the bending stiffness with the Mx load. These
since reference 1 Is that an overall bending moment Mx, loads are shown in figure 1.
shown in figure 1, can be accounted for in an approxi-
mate manner. Constraint Approximation.- A constraint approxi-

Realistic design constraints such as minimum ply mation approach 9 is used in PASCO to Increase the
thickness, fixed stiffener spacing, upper and/or lower computational efficiency when the program Is used for

sizing. That approach Is depicted schematically in
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Similar expressions are assumed for the inplane dis-
placements u and v. The functions fl(y) and
f2(y) allow various boundary conditions to be pre-
scribed on the lateral edges of the panel. Boundary

S Fconditions cannot be prescribed on the ends of theANLSI 0 VIPASA FAsIs EIGENVALUES j panel.

ANALYSIS *SYRENUK ANAYSIS pnl
MDLE 0 E4YSES FOR SMAREDI For orthotropic plate elements with no shear

ORf4OROPIC STV NESSES loading, f2(Y) is zero. The solution fl(y) cos x

gives a series of node lines that are straight, per-
pendicular to the longitudinal panel axis, and spaced

TAYIOR SERIES o TAYLOR SERIES FOR X apart as shown in figure 3. Along each of these
MODULE CONSTRAINT APPROXIMAIION node lines, the buckling displacements satisfy simple

support boundary conditions. For values of A given
by X = L, L/2, L/3. /m, where m is an integer,
the nodal pattern shown in figure 3 satisfies simple

RESIZING -CO -AINOP IMIZER support boundary conditions at the ends of a finite,
MODULE rectangular, stiffened panel of length L.

Wilt - lines

Figure 2.- General sizing approacV used in PASCO.

figure 2. In the analysis module, all constraints are
calculated with VIPASA and supporting subroutines.
The program identifies the critical constraints and,
using finite difference approximations, calculites I I I I
derivativcs of the critical constraints with respect j I I

to the sizing variables. These derivatives are then X -

passed to the Taylor series module which generates a I I
first order Taylor series expansion of each constraint. I I
These expansions provide the approximate constraints
for COWfIN. COW4IN interacts only with these approxi-
mate explicit functions that represent the contraints, NY

not with VIPASA.

The design strategy consists of a series of sizing
cycles in which CONIN adjusts the values of the sizing Y
variables based on approximate values of the con-
straints. An upper limit is imposed ,n the change of Figure 3.- Node lines produced by w = f1 (y) cos wx
eech sizing variable during each sizing cycle. The end
point of one sizing cycle becomes the initial point of For anisotropic plate elements and/or plate
the next sizing cycle. Accurate values of the con- elements with a shear loading, f2(Y) is not zero.
straints and derivatives of the constraints are then (Because anisotropy generally has negligible effect
recalculated, and new Tay'c" series expansions are for long wavelength buckling modes and because it is
generated. Ten si:irg cycles are usually adequate to these long wavelength modes that are troublesome,
obtain convergence if the initial design is reasonably reference to anisotropy is dropped in the following
well chosen, discussion). Node lines are skewed and not straight,

but the node lines are still spaced A apart as shown
Shear Buckling Problem in figure 4. Since node lines cannot coincide with

As is pointed out earlier in this paper, an
important limitAtion of PASCO is that VIPASA under- .. Nodelines
estimates the buckling load when the loading involves
shear and the buckle mvdc is a general or overall mode Ny
In which a single half wave extends from one end of the
panel to tle other. That snrtcomlng is explored in
this secticn. N,

VIPASA Buckling Analysis I I I

VIPASA, the buckling analysis program incorporated N \ I

in PASCO, treats an arbitrary assemblage of plate
elements with each plate element I loaded by Nx \ I |

NY, and Nxy I The buckling analysis connects the N NY

individual plate elements and maintains continuity of N V

the buckle pattern across the intersection of neigh- x
boring plate elements. The buckling displacement w
assumed in VIPASA for each plate element is of the y
form

w = fl(Y)COS wx - f2(Y) sin wx (1) Figure 4.- Node lines produced by w - fi(Y)cOS wx
A - f2(Y) sin wx
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the ends of the rectangular panel, the VIPASA solution
for loadings involving shear Is accurate only when -
many buckles form along the panel length, in which
case boundary conditions at the ends are not important. XY
An example in which X L/4 is shown in figure 5. S- I Stiffener

INx i

y__N

l'Y

N, Figure 6.- Finite stiffened panel of length L and
width 8, simply supported on all four edges,and subjected to shear load Nxy.

Figure S.- Buckling of panel under shear loading.

Mode shown is A =L/4.

As A approaches L, the VIPASA buckling anaylsis - 8

for a panel loaded by Nx Ymay underestimate the
buckling load substantially. One explanation is as
follows: As seen in figure 5, the skewed nodal lines --. NW@Iline

given by VIPASA in the case of shear do not coincide
with the end edges. Forcing node lines (and, there- N- -
fore, simnle support boundary conditions) to coincide
with the end edges produces long-wavelength buckling t -
loads that are, in many cases, appreciably higher than I
those determined by VIPASA.

In summary, for stiffened panels composed of
orthotropic plate elements with no shear loading, the
VIPASA solution is exacl in the sense that it is the
exact solution of the plate equations satisfying the s.s.
Kirchoff-Love hypothesis. However, for stiffened
panels having a shear loading the VIPASA solution can
be very conservative for the case A - L. --

Because VIPASA is overly conservative in the case
of long-wavelength buckling if a shear load is present,
other easily-adaptable analysis procedures based on L
smeared orthotropic stiffnesses have been explored for
the case A - L.

Figure 7.- Node lines given by VIPASA for shear
Smeared Stiffener Solution buckling with A L.

The objective of the analysis is to solve the
shear buckling problem for the finite panel illustrated
in figure 6. For buckling half-wavelength A equal
to panel length L, the mathematical model solved by -
VIPASA and the resulting node lines are similar to
those illustrated in figure 7. The panel in figure 7 _ Ss
is infinitely long in the X direction. I

II I

It is assumed that a better approximation to the
solution for the finite panel would be obtained with
the infinitely wide panel sham in figure 8. Unfor-
tuniately, the mathematical model illustrated in figure
B cannot be analyzed with VIPASA because VIPASA re-
quires that the panel be uniform in the direction of
the infinite dimension. However, the mathematical I
model obtained by smearing the stiffnesses of ihe stif- I
femed panel of figure 8 can be analyzed with VIPASA. 11
That solution is referred to as the smeared stiffiener I
solution. It is obtained by interchanging the x and y , . -

loading end stiffnesses. The eigonvalue used is the N S.s
lowest of the set for I - B, 3/2, 8/3,... Mere I is
the panel width. (The attengt to IWrove on the VIPASA
solution for long-wavelnolth sheer buckling is mer, Figure 8.- Node lines for buckling of infinitely-wide
Involved then the discussion presented here. However, stiffened panel.
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the basic feature--smeared stiffener sol ution--of that
solution approach and the conclusions regarding its
suitability are the same as those presented here. A 12.70cm
more complete discussion is presented in references 2 -- (5.10.
and 4). -- 6.35 c . .

12.5 in.1

Examples

Two stiffened panels were analyzed with PASrO and
with the general finite element structural analysis 3.434cm
code EAL (refs. 10, 11) to assess the validity of the U.3l5 _in.I
VIPASA analysis for long wavelength shear buckling and
the smeared stiffener solution. Both panels had six
equally-spaced blade stiffeners, were 76.2 cm (30 in.)
square, and were made of a graphite-epoxy composite
material having the material properties given in table Figure 10.- Repeating element for example 1, composite
I. The loadings were combinations of longitudinal blade-stiffened panel.
compression (Nx) and shear (Nxv). A schematic drawing
showing the loading and overall dimensions for the formulation of the Plan type.10,12 The buckling
example cases is shown in figure 9. The manner in or geometric stiffness matrix for the element is
which the applied loads were distributed over the based on a conventional displacement formulation that
cross section--the prebuckling stress state--is includes terms allowing inplane (u and v displacements)
discussed in reference 2. In particular, the Ng load as well as out-of-plane (w displacements) buckling
was distributed assuming uniform strain ex of the modes. The Plan membrane formulation allows a single
panel cross section with free transverse expansion of element across the depth of a blade stiffener to
each plate element, so that N was zero. Buckling accurately represent its overall inplane bending

i behavior. The EAL designation for this element is
boundary conditions were simple support on all four E43. The finite element grid chosen for the EAL model
edges. These boundary conditions are defined in figure is shown in figure 11. Two elements are used along
9. The panel cross sections were treated as collec- the depth of the blade, four elements are used between
tions of lines with no offsets to account for thick- blades, and 36 elements are used along the length,
nesses. (Offsets are available in PASCO). The first making a total of 1296 elements, and 1369 nodes. Based
example is discussed in greater detail than the second on convergence studies and other comparisons, it is
example. believed that the finite element calculations presented

In this paper differ from the exact solution by no more
N, than approximately one percent and, therefore, provide

N benchmark calculations.

76.2cm

'3.0 i =0

76.2cm l 1
-- (30.0in.b7[I

Buckling boundary condtions are simple supporl on all four og

0. L: u and w are unrestrirl vw. a

y - Q B: v and4, are unrestrained. u= w :0 -

Figure 9.- Loading, dimensions, and boundary conditions
for stiffened panel examples.

Example 1.- A repeating element of the composite
blade-stiffened panel is shown in figure 10. Element
widths are also shown. The wall construction for each
plate element is given in table II. Only half the
laminate is defined for each plate element because all
laminates are symmetric. Plate element numbers are
indicated by the circled numbers in figure 10. Fiber Figure 11.- EAL finite element model for example 1,
orientation angles are measured with respect to the X composite blade-stiffened panel.
axis, which is parallel to the stiffener direction.

The single finite element type used in the EAL Buckling results are shown in figure 12. The
model for this and the other example is a four-node, curves indicate VIPASA and smeared stiffener solutions,
quadrilateral, combined membrane and bending element, and the circular symbols indicate EAL solutions. The
Both the membrane and bending stiffness matrices for solid curve represents the VIPASA solution for buckling
the element are based on the assumed stress, hybrid half-wavelength A equal to L. The dotted line at
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VIPASA, X = L
......... VIPASA, A = L/2
--------- Smeared stiffener solution

0 EAL --- --
320 - : "',

240-. . _ _ '

20

N.

120

40 -- _ - _

0 204 0 80 10 120 140 160 80 Figure 13.- Shear buckling mode shape obtained with EAL
NW.kWm for example 1, composite blade-stiffened panel.

Example2.- A repeating element of a heavily-
Figure 12.- Buckling load interaction for example 1, loaded jmiste blade-stiffened panel is shown in

composite blade-stiffened panel. figure 14. The wall construction for each plate
element is given in table IV.

the top of the figure represents 
the VIPASA solution

for A equal to L/2. The dashed curve represents
the smeared stiffener solution and indicates solutions 12.Tcm

for the lowest buckling load of the set X = B, B/2, (5.0in.I
8/3 ..... where B is the panel width. The corner in 6.35cm _
the dashed curve that occurs at Nx equal to approxi- 12.5 in.)
mately 130 kN/m (750 lb/in) indicates a change in mode
shape for the smeared stiffener solution. For Nx -- -- -

less than 130 kN/m, the buckling half-wavelength trans- T a
verse to the stiffeners is equal to 38 cm (15 in.)
which is three times the stiffener spacing. For Nx
greater than 130 kN/m, the buckling half-wavelength 5.wm C
transverse to the stiffeners is equal to 76 cm (30 (7.
in.) which is six times the stiffener spacing.

For this example, the smeared stiffener solution
gives reasonably accurate estimates of the solution for
all combinations of Nx and Nyy. For the loading
Nx = 0, the smeared stiffene, solution is about five Figure 14.- Repeating element for example 2, heavily
percent lower than the EAL solution. For this same loaded, composite blade-stiffened panel.
loading, the VIPASA solution for A = L is about 63
percent lower than the EAL solution. For the loading Buckling solutions for example 2 are shown in
Nx - 0, the VIPASA solution for A = L and the EAL figure 15. The solid curve indicates the VIPASA
solution agree to within 0.3 percent. solution for A = L. The dotted curves indicate

VIPASA solutions for A = L/2, L/4, and L/5. The
Detailed comparisons and benchmark calculations dashed curve represents the smeared stiffener solution.

for six loadings are presented in table I1. In this As in the first example, the corners in the dashed
table, the quantity denoted FACTOR is the solution in curve indicate changes in mode shape. For Nx less
terms of a scale factor for the specified loading. For than about 700 kN/m (4000 lb/in) the buckling half-
example, for the loading Nx = 350.3 kN/m, Nxy = 175.1 wavelength transverse to the stiffeners is 1.5 times
kN/m (Nx - 2000 lb/in, N = 1000 lb/In) the EAL the stiffener spacing. For Nx greater than about 700
solution of FACTOR= 0.4f14 means that the solution is kN/m but less than about 1600 kN/m (9000 lb/in) the
Nx = 0.4764 x 350.3 - 166.9 kN/m (952.8 lb/in) NXy = buckling half-wavelength transverse to the stiffeners
0.4764 x 175.1 = 83.37 kN/m (476.4 lb/In). is 2.0 times the stiffener spacing. For N greater

than about 1600 kN/m but less than about 1800 kN/m,
Finally, the buckling mode shape obtained with EAL the buckling half-wavelength transverse to the stif-

for the case N - 0 is shown in figure 13. This con- feners is 3.0 times the stiffener spacing.
tour plot of tRe buckling displacement w shows that For this example, the EAL results fall below both
the buckling half-wavelength transverse to stiffeners the smeared stiffener solution and the A = L/2, L/4,
is approximately equal to three times the stiffener and L/5 curves. For the N. = 0 case, an examination
spacing, which was predicted by the smeared stif- of the EAL buckling mode shape presented In figure 16
fener solution, shows that the lowest buckling load is an oeerall mode

(A - L) rather than a A - L/2 mode, which might
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estimated the overall buckling load. One factor that
- - VIPASA. X=L appeared to contribute to the error in the second
......... VIPASA, A = U2. U4, U5 example was that the buckle half-wavelength transverse-----SA soto the stiffeners was only 1.5 times the stiffener
... Siuarmdslffer solutio spacing. Usually, that short a wavelength invalidates

0 EAL the stiffness smearing approach. In PASCO, the smeared
- Istiffener solution should not be accepted if the buckle

half-wavelength transverse to the stiffeners is less
- -t - than 2.5 times the stiffener spacing.

-1400_" - - - Because an automated design procedure generally
exploits a defect in an analysis, it is recommended

1200 that the smeared stiffener approach not be used in
/X. U2 sizing applications. The panels designed using theNxy 000 L _ standard VIPASA analysis will be liqht-weight and

*N 0 . . conservatively designed.

M 800 0In all cases, the finite element solution for
X L14 overall buckling falls between the VIPASA solutions for

bw r__- X = L and A = L/2. A solution approach for overall
= I A =5 shear buckling that assumes the buckling mode to be a

400 combination of the first few VIPASA modes is being

studied. A special procedure is needed to combine
I these modes in such a way that the boundary conditions2W iat the panel ends are satisfied.

200 4W 600 0o 1000 1200 1400 1600 T80 2000 Thermal Loads In Panel Design
NX kN/m The PASCO program can perform a simplified thermal

stress analysis, add the stress resultants due to the
Figure 15.- Buckling load interaction for example 2, temperature effects to those obtained from other

heavily-loaded, composite blade-stiffened loadings and then determine the buckling load of the
panel. panel. A brief summary of this analysis will be given

followed by design studies that illustrate how temper-
have been assumed since the A = L/2 solution is near ature and thermal stress can be treated in PASCO.
the EAL solution. Detailed comparisons of solutions
for six loadings are presented in table V. Thermal Stress Anaysis

Discussion of results.- The basic conclusion that
can be drawn from these calculations and from similar In PASCO, a basic assumption in the buckling
results presented in reference 4 is that a buckling analysis is that all structural quantities and loadings
solution based on ftearing the overall stiffnesses of are constant along the length. Therefore, temperatures
a stiffened panel should be used only with caution, must be assumed constant along the length, and any

stress distribution determined as being representative
In the first example, the smeared stiffener of the stress distribution in the center of the panel

solution underestimated the overall buckling load is also assumed constant along the length. Temperature
slightly. In the second example, it greatly over- may vary along the width and depth direction of the

panel but is constant through the thickness of a given
wall cross-section. The temperature distribution is
prescribed; it does not change as the sizing variables
are changed.

The classical equation for thermal stress in a
beam is the basis of the analysis

'0 =ELT - S JcEAT dS - T/ EATIz dS (2) f
S S

This equation suitably modified to account for ortho-
"tropic laminate properties (as shown in detail in ref.

2) is used in two different ways in PASCO. Consider a
panel over many supports as illustrated in figure 17.
The behavior of an individual bay would depend on its

• , :location. In the end bay, the stress distribution
predicted by equation (2) would develop. The end bay
would also have a bow produced by the bending moment
generated by the underlined term. If there were an
axial load Nx as well, this bow and the bending -.

stresses produced by the bow would be increased by the

N

Figure 16.- Shear buckling mode shape obtained with EAL
for example 2, heavily-loaded, composite
blade-stiffened panel. Figure 17.- Panel over many supports.
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ratio 1/(i-y), the beam-column effect. All these _ _

effects are included in PASCO when a parameter ITHERM

is set equal to 1.
12.70 cm

In the center of the panel, any tendency to bow 
5.0 n. I

would be restrained by adjacent bays and the stress +cm . .

distribution would be given by equation (2) with the 
(2. n

underlined term omitted. In this case, there would be

no bow due to thermal stress. This stress analysis is

performed when the parameter ITHERM is set to zero.
3. 276 cm

When designing a panel subject to temperature, it 290 in. I

is customary to require that the load also be sustained
without temperature. In addition, if the panel spans
many supports and if the same detailed dimensions are
to be used for both end bays and interior bays, then Figure 18.- Repeating element for graphite-epoxy panel
the panel must be designed to carry the load with and designed for load conditions 1 to 5.
without the thermal bow. The result is a multiple
load condition problem. Such design problems are change in each element is as follows: skin, OK; first
illustrated in the following examples. element in blade (adjacent to skin), -36.10K(; second

element, -66.701(; third to seventh elements are
Examples -86.1

0
K, -97.2

0
K, -105.5OK, -108.3

0
K, -111.1

0
K.

Design requirements.- Several example studies were Graphite-epoxy panels, fixed ply angle.- Results
carried out to determine the effect on panel mass of of the design study for the graphite-epoxy blade-
design requirements involving temperature change. All stiffened panel with fixed ply angles are presented in
studies used the overall dimensions, basic configur- table VI. The first column (far left) indicates the
ation, and stacking sequence of the blade-stiffened load conditions used to obtain a design. For example,
panels used in the shear buckling studies. Three the third entry in that column indicates load condi-
types of studies are presented. In the first study, tions 1, 2, and 3. The second column is the mass
panels were made of a graphite-epoxy material having index W/A of the minimum mass panel that supports that
the properties given in table I. Sizing variables were T
the depth of the blade and the thicknesses of the combination of load conditions. The final five columns
plies; ply angles were fixed. The second study was are the ratios of the lowest buckling load to the
similar to the first, except that ply angles were design loading for each of the five loading conditions.
added to the sizing variables. In the third study, The ratios are applied to both the compressive load
panels were made of aluminum. The importance of the and the change in temperature.
thermal bow and the importance of the multiple load

condition capability are demonstrated. The data in the first row shows that a panel
designed for a temperature change (load condition 1)

To provide for the bending loads that occur when need not carry the load when the temperature is
the panel is allowed to take on a thermal bow, the removed (load condition 3). The panel designed for
blade portion of the stiffened panel was divided into load conditions 3, 4, and 5 is the same as the panel
seven sections as shown in figure 18. (The load Nx designed for all five load conditions. The dimensions

I of the repeating element for that panel are shown in

in each plate element i is uniform). The tip element figure 18. Thicknesses are given in table VII. The
of the blade was made very small so that prebuckling skin consists of +450 plies only; the blade consists
strains could be calculated accurately near the tip of of 00 and +450 plTes only.
the blade. These strains were monitored and used in
the material strength criterion that is based on Graphite-epoxy panels varilable ply angle.- In two
maximum mechanical strain. The normal strains were panels, ply angles were allowed to vary. Each panel
required to be less than 0.004, and the shear strain was designed to carry load conditions I to 5. In the
less than 0.01. first panel, only the angles in the skin were varied.

The result was that the skin of the final design

The following five load conditions were used: consisted only of +58.20 plyl and the mass index
was reduced 6% to L.052 kg/mJ. In the second panel,

Load Nx, kN/m Thermal Temperature the angles of the plys originally at +450 in both the
Condition (Compression) Bow Change, &T, OK skin and the blade and the angles of The plys origin-

ally at 00 in the blade were varied. The additional

1 175.1 No -111.1 mass reduction was negligible.
2 175.1 No Variable
3 175.1 No 0 Alumlnum anels.- Design studies similar to those

4 175.1 Yes Variable presentedT ntale VI for graphite-epoxy panels were
5 175.1 Yes -111.1 also carried out ,vr aluminum panels having the

material properties given in table VIII. Results are

The loading 175.1 kN/m corresponds to 1000 lb/in, and presented la table IX. Since uniform temperature

the temperature change -111.1
0
K corresponds to -200

0
F. changes produce no thermal stress for these panels, the

Temperature changes are measured with respect to the original five loading conditions reduce to three: 1,
temperature for a zero residual stress state in the 2, and 4. The repeating element for the panel that
composite material. Normally, this reference temper- supports all three loads is shown In figure 19.
ature is higher than room temperature. The three
design temperature changes then correspond to a uniform Discussion of results.- Three conclusions can be
cold condition (AT - -111.10K), a transition condition drawn from these calculations. First, when design re-
in which the skin is hot and the tip of the blade is qulrements involve thermal loads it is advisable to use

cold (variable), and a uniform hot condition (AT - 00). a multiple load condition approach with various temper-
In the transition condition (variable), the temperature ature distributions and end support conditions. For

the examples presented in this paper, the Increase in -

12-54



2. Stroud, W. Jefferson; and Anderson, Melvin S.:
PASCO: Structural Panel Analysis and Sizing Code,

_11 2170cm Capabilty and Analytical Foundations. NASA TM
15.0 n. 1 80181, 1980.

6.5n - 3. Anderson, Melvin S.; Stroud, W. Jefferson;
Durling, Barbara J.; and Hennessy, Kat.herine W.:

_-- ......... PASCO: Structural Panel Analysis and Sizing Code,
Users Manual. NASA TM 801C2, 1980.

0. 15 CM
4.156cm (O.M in.2 4. Stroud, W. Jefferson; Greene, William H.; and

11 636 n.) Anderson, Melvin S.: Buckling Loads for Stiffened
0. 249cm Panels Subjected to Combined Longitudinal Compres-
0.0982,n. sion and Shear Loadings: Results Obtained with

_PASCO, EAL, and STAGS Computer Programs. NASA TM
83194, 1981.

Figure 19.- Repeating element for aluminum panel 5. Wittrick, W. H.; and Williams, F. W.: Buckling
designed for load conditions 1, 2, and 4. and Vibration of Anisotropic or Isotropic Plate

Assemblies Under Combined Loadings, Int. J. of
panel mass caused by using this approach is small com- Mech. Sci., Vol. 16, 1974, pp. 209-239.
pared to the increase in load carrying ability for off-
design load conditions that may be encountered in 6. Vanderplaats, Garret N.: CONMIN - A Fortran F, -
service. This is true whether the panel is graphite- gram for Constrained Function Minimization.
epoxy or aluminum. User's Manual. NASA TM X-62,282, 1973.

The second conclusion is that it is more important 7. Vanderplaats, G. N.; and Moses, F.: Structural
to use the multiple load condition capability for com- Optimization by Methods of Feasible Directions.
posite panels than for metal panels. The increase in National Symposium on Computerized Structural
the number of design variables provided by composite Analysis and Design, Washington, DC, March 1972.
materials allows a composite structure to be tailored
very well to a specific load condition. However, this 8. Jones, Robert M.: Mechanics of Composite
highly tailored structure may have very little load Materials. Scripta Book Co., 1975.
carrying ability for off-design conditions. This
point is illustrated in reference 13 for the case of 9. Schmit, Lucien A., Jr.; and Miura, Hirokazu:
damage tolerance in wing structures. Approximation Concepts for Efficient Structural

Synthesis. NASA CR-2552, 1976.
The third conclusion is that ply angle variation

can provide a moderate (6%) reduction in mass even in a 10. EISI/SPAR Reference Manual, System Level 103,
five-load-condition-design. Engineering Information Systems Inc., San Jose,

CA, January 1979.Concluding Remarks

11. Whetstone, W. D.: Engineering Data Management and
A computer program denoted PASCO for obtaining the Structure of Program Functions in New Techniques

dimensions of optimum (least mass) stiffened composite in Structural Analysis by Computer (Compiled by R.
structural panels is described. The capabilities of J. Melosh and M. Salana) ASCE Preprint 3601, ASCE
and approach used in PASCO are discussed briefly. Convention and Exposition, Boston, Massachusetts,

1979.
PASCO's buckling analysis (VIPASA) is reviewed,

and an important shortcoming of that analysis--under- 12. Gallagher, Richard H.: Finite Element Analysis,
estimation of long wavelength shear buckling loads--is Fundamentals. Prentice-Hall, 1975.
explained. Studies involving combined longitudinal
compression and shear loadings are presented to demon- 13. Starnes, James H., Jr.; and Haftka, Raphael T.:
strate VIPASA's conservatism for long-wavelength shear Preliminary Design of Composite Wing Box Struc-
buckling. It is shown that an easily adaptable smeared tures For Global Damage Tolerance. Proceedings of
orthotropic solution may be unconservative for pre- AIAA/ASME/ASCE/AHS 21st Structures, Structural
dictinq long-wavelength shear buckling. Therefore, it Dynamics, and Materials Conference, Seattle, WA,
is recommended that the smeared solution not be used May 12-14, 1980, pp. 529-538.
for sizing applications.

Studies also demonstrate the capability in PASCO TABLE I.- LAMINA PROPERTIES OF GRAPHITE-EPOXY
to design for thermal stresses, to account for multiple MATERIAL USED IN CALCULATIONS
loading conditions, and to use ply angles as sizing
variables. The importance of using the multiple load
condition capability for thermal loadings is illus- Symbol Value in Value in US
trated for both qraphlte-epoxy and aluminum panels. SI Units Customary Units
Ply anqle variation provided a 6% mass reduction for
a multiple load condition case. El 131.0 GPa 19.0 x 106 psi

E2  13.0 GPa 1.89 . 106 psi
References G12  6.41 GPa .93 x 1O6 psi

1. Anderson, Melvin S.; and Stroud, W. Jefferson: A ul .38 .38
General Panel Sizing Computer Code and Its Appli- C 1 -.278 - 10-6 1/'K -.21 . 10-6 1/F
cation to Composite Structural Panels. AIAA J., I 2 28.8 . 10-6 I/-K 16 x 10-6 I/0 r
Vol. 17, No. 8, August 1979, pp. 892-897. p 1581 kg/m 3  0.0571 lbm/in 3
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TABLE II.- WALL CONSTRUCTION FOR EACH

Layer number Thickness Fiber Factor

starting with -_ orieitation, kN/mVP
outside layer cm in. deg VIPASA Ortho.

______________ ____ ____ _____ Orho. EAL
Plate elements I and 3 Nx  Nxy A = L X = L/2 plate

1 0.01397 0.00550 45 0 175.1 2.9225 6.6998 9.2435 6.4424
2 .01397 .00550 -45 87.6 175.1 2.6742 6.0385 8.0628 5.753

.01397 .00550 -45 175.1 175.1 2.4574 5.4654 6.7945 5.1630
4 .01397 .00550 45 350.3 175.1 2.0997 4.5367 4.8627 4.124
5 .01397 .00550 0 700.5 175.1 1.5964 2.6424 2.4543
6 .12573 .04950 90 175.1 0 9.9724 10.7300 10.076

Plate element 2

1 0.01397 0.00550 45
2 .01397 .00550 -45
3 .01397 .00550 -45
4 .01397 .00550 0 TABLE VI.- MASS INDEX AND RATIO OF BUCKLING LOAD

.02794 J.01100 - 0 TO DESIGN LOAD FOR FIVE GRAPHITE-EPOXY PANELS
DESIGNED FOR 3EVERAL COMBINATIONS OF

LOAD CONDITIC! S

TABLE III.- BUCKLING LOADS FOR EXAMPLE 1 Ratio of lowest buckling

Design W/A load to design load for
Factor load the following load

Loading, conditions kg/i 3  
conditions

kN/m VIPASA Ortho. EAL 1 2 3 a 5

N Ny X = L X = L/2 plate
x __ 1 2.610 1.00 0.05 0.05 0.05 0.13

0 175.1 0.5721 1.6641 1.4683 1.5525 1,2 4.132 1.00 1.00 .98 .87 .77
35.0 175.1 .5353 1.5614 1.3098 1.3985 1-3 4.158 1.00 1.00 1.00 .88 .77
87.6 175.1 .4862 1.4248 1.1222 1.2060 1-4 4.297 1.07 1.00 1.00 1.00 .03
175.1 175.1 .4182 1.2357 .8222 .8397 1-5 4.325 1.04 1.00 1.00 1.00 1.00
350.3 175.1 .3200 .4690 .4764
175.1 0 1.0005 .9970 1.0030

TABLE IV.- WALL CONSTRUCTION FOR EACH
PLATE ELEMENT IN EXAMPLE 2 TABLE VII.- WALL CONSTRUCTION FOR EACH PLATE

ELEMENT IN GRAPHITE-EPOXY PANEL DESIGNED
FOR LOAD CONDITIONS I TO 5

Layer number Thickness Fiber
starting with oripntation,
outside layer cm I in. deg Layer number Thickness Fiber

starting with orientation,
Plate elements 1 and outside layer cm I in. deg

1 0.01618 0.00637 45 Plate element; I and 3
2 .01618 .00637 -45
3 .01618 .00637 -45 1 0.01411 0.005555 45
4 .01618 .00637 45 2 .01411 .005555 -45
5 .06325 .02490 0 3 .01411 .005555 -45
6 .10566 .04160 90 4 .01411 .005555 45

Plate element 2 Plate element 2
S 0.02090 0. 00823 45 1 0.00214 0.000842 45
2 .02090 .00823 -45 2 .00214 .000842 -45
3 .02090 .00823 -45 3 .00214 .000842 -45
4 .02090 .00823 45 4 .00214 .000842 45

5 .17145 .06750 0 5 .17679 .069604 0
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TABLE VIII.- PROPERTIES OF ALUMINUM USED
IN EXAMPLE CALCULATIONS

Value in Value in USSyibol SI Units Customary Units

E 68.9 GPa 10 . 1O6 psi
G 26.2 GPa 3.8 . 106 psi

.33 .33
23.4 x 19-6 ]/OK 13 . 1O-6 1/oF

p 2712 kg/m
3  0.098 Ibm/in

3

TABLE IX.- MASS INDEX AND RATIO OF BUCKLING LOAD
TO DESIGN LOAD FOR THREE ALUMINUM PANELS
DESIGNED FOR SEVERAL COMBINATIONS OF

LOAD CONDITIONS

Ratio of lowest buckling

Design W/A load to design load for
load L the following load

conditions kg/m 3  conditions

1 2 4

1 8.866 1.00 0.86 0.27
1,2 9.158 1.00 1.00 .20

1,2,4 10.569 1.4? 1.00 1.00
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PANDA--INTERACTIVE COMPUTER PROGRAM FOR
PRELIMINARY MINIMUM WEIGHT DESIGN OF

7 COMPOSITE OR ELASTIC-PLASTIC, STIFFENED
CYLINDRICAL PANELS AND SHELLS
UNDER COMBINED IN-PLANE LOADS

David Bushnell
Lockheed *Palo Alto Research Laboratory

3251 Hanover Street, Palo Alto, California 94304

An analysis and an interactive computer program and general buckling patterns are assumed to have the
are described through which minimum weight designs of form
composite, stiffened, cylindrical panels can be
obtained subject to general and local buckling v(x.y) =C(cos[(n+mc)y-(m+nd)x) - cos[(n-uc)y+(m-nd)x)}
constraints and stress and strain constraints. The
panels are subjected to arbitrary combinations of in which either c or d are zero. depending on the
in-plane axial, circumferential, and shear resultants. --geometry and the stiffness of the entire panel or
Nonlinear material effects are included if the N whatever portion of the panel is under consideration.
material is isotropic or has stiffness in only one'\
direction (as does a discrete or a smeared stiffener) .7 The skin is cylindrical with radius R and the
Several types of general and local buckling modes are stiffeners are composed of assemblages of flat plate
included as constraints in the optimization process, segments the lengths of which are large compared to
including general instability, panel instability with the widths and the widths of which are large compared
either stringers or rings smeared out. local skin to the thicknesses. These flat plate segments are
buckling, local crippling of stiffener segments, and oriented either normal or parallel to the plane of the
general, panel, and local skin buckling including the panel skin.
effects of stiffener rolling. Certain stiffener
rolling modes in which the panel skin does not deform Figure 1 shows an example of the panel geometry.
but the cross section of the stiffener does deform are The overall dimensions of the panel are (a.b) and the
also accounted for. The interactive PANDA system spacings of the stiffeners are (ao . bo ).
consists of three independently executed modules that
share the same data base. In the first module an
initial design concept with rough (not necessarily
feasible or accurate) dimensions are provided by the RING
user in a conversational mode. In the second module SRNE

the user decides which of the design parameters of the
concept are to be treated by PANDA as decision
variables in the optimization phase. In the third
module the optimization calculations are carried out.
Results are presented of a parameter study on
optimization of hydrostatically compressed, ring
stiffened. elastic- plastic cylindrical shells -------
designed for pressures from about 700 psi to 5000
psi. The feasibility of the optimum designs obtained
by PANDA are verified by applications of BOSOR5. SKIN

Obiective Introduction o_

The objective of the development of PANDA has

been to create an interactive computer program for
engineers which derives minimum weight designs of Q
stiffened cylindrical panels under combined in-plane
loads. Nx . NY . and NxY . The loading of the
stiffened panel is assumed in most cases to result in
uniform membrane strain components e x and ea in both
skin and stiffeners and uniform shear strain exy in
the skin. Heridional bending between rings in the
prebuckling phase is included for shells without axial
stiffeners. Nonlinear material behavior is included
in the prebuckling analysis if the material is
isotropic or has strength only in one direction
(smeared or discrete stiffeners).

Buckling loads are calculated by use of simple
asemed displacement functions. For example, general
instability of panels with balanced laminates and no
shear loading is assumed to occur in the familiar Fig. 1 Stiffened cylindrical panel with overall
v(x.y)s csin(ny)sin(mx) mode. In the presence of dimensions (a.b). ring spacing a o , and stringer
in-plane shear and/or unbalanced laminates, both local spacing bo
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Mat a Properties The buckling formulas are derived from Donnell's
equations (Reference [13) with a posteriori

If the material is orthotropic or anisotropic. application of a reduction factor *(n2c - l)/n
2  

for
buckling is assumed to occur at stress levels for panels in which the axial half wavelength of the
which this material remains elastic. Feasible designs buckling pattern is longer than the panel radius of
are constrained by maximum stress or strain criteria, curvature. R. The circumferential wave index, nc
Plasticity with arbitrary strain hardening is equals n 7T R/b or n r Ri/bo . with n being the number of
permitted if the material is isotropic or if it has half waves in the circumferential direction over the
stiffness in one coordinate direction only, as does span b or bo . respectively.
the continuum representation of each segment of a
smeared stiffener. The cylindrical skin and stiffener The many types of buckling included in the PANDA
segments can be composed of multiple layers ot analysis are summarized in Table I and are briefly
isotropic or orthotropic material, as depicted in Fig. described next.
2. Each layer has a unique angle of orthotropy
relative in the case of the panel skin to the Skin Buckling. For the case of balanced laminates and
direction of the generator (x- direction) and in the no in-plane shear, local buckling of the skin is
case of a stiffener segment to the stiffener axis. In assumed to have the form
the buckling analysis the segments of the stiffeners rnki X
are assumed to te monocoque and isotropic or ( s r sin sin m 1n)
or thotropic, not layered anisotropic. Therefore. C i sin
equivalent orthotropic properties for stiffener skin skin sn b
segments are calculated from input data for the
stiffener segment laminates provided by the program in which ngkin and *skin are the numbers of
user. half-waves tween stringers with spacing bo and

rings with spacing a o , respectively. Equation (1)

implies simple support boundary conditions at

os B ling stiffener lines of attachment. With shear present
and/or unbalanced laminates the skin buckling pattern

Optimum designs with respect to weight are has the form given in the second paragraph under

obtained in the presence of constraints due to local Objective.

and general buckling, maximm tensile and compressive
stress or strain, maximum shear strain, and lower and Gnal instability.. General instability buckling

upper bounds on skin layer thicknesses, stiffener modes of panels with balanced laminates and no shear

cross section dimensions, and stiffener spacings. also have the form given in Eq.(l) with ao . bo
Design parameters allowed to vary during the nskin . and skin replaced by quantities appropriate

optimization phase include panel skin laminae to the overall dimensions (ab) of the panel. PANDA

thickness and winding angles, spacings of stiffeners. also calculates values for -semi-general" instability,
and thicknesses and widths of the segments of ring and that is buckling between rings with smeared stringers

stringer cross sections. and buckling between stringers with smeared rings.

N R

S Stiffeners. Local buckling of the itb

stiffener segment implies
NI 

i = X
i 

)i Y f
w stiff - tiff sin i-) sin \-- (2)

N for each stiffener segment with both long edges

supported (called "internal" segments in Fig. 3). As
shown in Fig. 3 the quantitX i is the coordinate along

N the stiffener axis, Yi is the coordinate

perpendicular to i in the plane of the ith stiffener
gsegment, bi is the width of the stiffener segment.

-- I (INSIDE) and I is the length of the stiffener segment. (U=f o
2 for stringers and £ bo for rings). For stiffener
3y _t3 segments with only one long edge supported. (called

"end** segments), the local buckling modal displacement
is assumed to be in the form

I, (stiff 
;stiffY-

_ The stiffener segment buckling analysis is carried out
with the assumption that each -internal- segment

2 buckles with its own 'i . This assumption implies
that rotational incompatibility exists at junctions
between segments with differing critical values of

DETAIL AAit . "Rnd- pegmeonts are assumed to buckle at the
critical i

J 
of the segment to which they are joined.

Fig. 2 Coordinates. loading and wall construction The buckling modes (2) and (3) are shown in Fig. 4.
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Rng Modes. Additional types of panel and stiffener paper. They do warp. however. The other types of
buckling are considered here. These are called rolling instability do not involve the skin at all.
..rolling- modes. The first kind of rolling mode Only the stiffener web deforms, the rest of the
involves both skin and stiffeners and is local or stiffener cross section displacing and rotating as a
semi-general. the characteristic half-wave-length rigid body. as displayed in Fig. 5b. One of these

being integer fractions of the lengths (a. . bo ). or rolling modes (Fig. 5b) occurs in both rings and
(a.bo ) or (a. . b). In these rolling modes the stringers and in both curved and flat panels. In this
stiffener cross sections rotate about their lines of mode the buckling deformations are nonuniform
attachment to the panel skin as shown in Fig. 5a. The (sinusoidal) along the axis of the stiffener.
cross sections do not deform in the plane of the

Table I Buckling Modes Included in the PANDA Analysis

TYPE OF TYPE OF
BUCKLING MODEL USED FOR ESTIMATE BUCKLING MODEL USED FOR ESTIMATE

i. General Buckling of skin and stiffeners together 5. Local Same as 2. "Local instability" except
instability with smeared rings and stringers. Panel rolling with that the strain energy in the stiffeners

is simply supported along the edges x = 0, skin buckling and the work done by the nrebuckling
y = 0, x = a, and y = b. between compression in the stiffeners are

stiffeners included in the buckling formula.
2. Local Buckling of skin between adjacent rings (Fig. 5a) Stiffener cross sections do not deform
instability and adjacent stringers. Portion of panel as the stiffeners twist about their

bounded by adjacent stiffeners is simply lines of attachment to the panel skin.
supported. Stiffeners take their share
of the load in the prebuckling analysis 6. Rolling
but are disregarded in the stability instability Same as 3. "Panel instability", Type
analysis.

(a) with (a). except that the strain energy of3. Panela rings and work done by nrebuckling

instability stringers compression along the ring centroidal
Buckling of skin and stringers between (Fig. ea) axis are included in the buckling
adjacent rings. Portion of panel formula. Ring cross section does not

(a) between bounded by adjacent rings is simply deform as the ring twists about its line
rings with supported. Stringers are smeared. of attachment to the panel skin.

smeared Simple support conditions imposed at y =

stringers 0 and y = b. Rings take their share of Same as 3. "Panel instability", Type
the load in the prebuckling analysis, (b) with (b), except that the strain energy of
but are disregarded in the stability smeared stringers and work done by prebuckling
analysis, rings compression along the stringer

rings centroidal axis are included in the
Buckling of skin and rings between (Fig. 5a) buckling formula. Stringer cross sectior
adjacent stringers. Portion of panel does not deform as it twists about its

(b) between between adjacent stringers is simply line of attachment to the panel skin.
stringers supported. Rings are smeared. Simple
with support conditions imposed at x - 0 and 7. Rolling Stringer web cross section deforms but

smeared x = a. Stringers take their share of the of stringers the flange cross section does not.
rings load in the prebuckling analysis, but no buckling Buckling mode has waves along the

are disregarded in the stability of skin stringer axis.
analysis. (Fig. 5b)

4. Local 8. Rolling Ring web cross section deforms but the

crippling of of rings. flange cross section does not. The
stiffener no buckling buckling mode has waves along the ring
segments Individual stiffener segment buckles as of skin axis. This mode is sometimes called

If it were a long flat strip simply (Fig. 5b) "frame tripping" by those interested in
(a) supported along its two long edges. submarine structures.

"internal" Loading is compression along the
segments stiffener axis. Curvature of ring 9. Axisym- Same as "Rolling of rings", except that

(Figs. 3, 4) segments is ignored. metric rol- the buckling mode has zero waves around
ling of the circumference of the panel.

Individual stiffener segment buckles as rings, no
if it were a long flat strip simply buckling
supported along the long edge at which of skin

(b) it is attached to its neighboring (Fig. 5c)
"end" segment or to the panel skin, and free

segments along the opposite edge. Loading is
(Figs. 3, 4) compression along the stiffener axis.

Number of half waves along the stiffener
axis is the same as that of the part of
the structure to which the "end" is
attached. Curvature of ring segments is

1 1inored.
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The other rolling isode (Fig. 5c) occurs only in gjgjmjLg
the cases of internal rings on cylindrical panels
under external pressure and external rings on The subroutine CONMIN [2.3) is used in PANDA for
cylindrical panels under internal pressure. In this finding minimum weight designs. This subroutine.
node buckling deformations are uniform along the axis written by Venderplsats in the early 1970's. is based
of the ring. Stiffener rolling in the more general on a nonlinear constrained search algorithm due to
mode (Fig. 5b) is due to compression along the Zoutendijk (4]. Briefly, the analytic technique used
stiffener axis and is only weakly dependent on the in CONMIN is to minimize an objective function (panel
curvature ot this axis. On the other hand. the local weight, for example) until one or more constraints, in
ring buckling depicted in Fig. 5c is axisymetric and this case buckling loads, maximum stress or strain.
arises because of the circumferential curvature cf the and upper and lower bounds on decision variables.
stiffener axis and prestress in the stiffener become active. The minimization process then
segments. It is interesting to note that axisymetric continues by following the constraint boundaries in
rolling can occur even if there are no compressive decision variable space in a direction such that the
stresses anywhere in the structure, as is the case for value of the objective function continues to
internally pressurized cylindrical shells with decrease. When a point is reached where no further
external rings. decrease in the objective function is obtained, the

process is terminated.

Y3
STRINGER

bS3 b*2

SEGMENT 3 ("END") /7SEGMENT 2 ("END") L

.--SEGMENT 
1ENLI tS ~ *

t YJ x t . I .

SKIN

(a) A "T"-shaped stiffener must be treated as
if it consists of three segments, one
"Internal" and two "endsm.

3t

SKIN

(b) Segments Qpnd(2).are (c) Segment ,is an "end.
"ntanl" ; Won Und{5 are

fig. 3 Stiffener nomenclature and local coordinates f and
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Reiw9 ihs Liegatue AUl Evluion~ gL PANDA IuanerfectionSnitv

A brief review of previous york on optimizatiun It should be emphasized that PANDA does not
of stiffened shells and panels under destabilizing account explicitly for initial structural
loads is given in Ref. (53. In addition. Ref. (5) imperfecions. As the code is now written, the user
contains results of many test cases for buckling and should design a panel to higher loads chan those
optimization in which comparisons with the literature actually to be seen in service; the deleterious
are given. effects of initial imperfections can be accounted for

in this way.

Zay AL Calculatins in ZAMD

"INTERNAL" SEGMENT 2 igures 6 and 7 show the flow of calculations in
LOCAL BUCKLING ib PANDA. Each oi the top two boxes in Figure 6
AXIAL HALF WAVES represents a separate interactive computer program.

_ SIMPLE SUPPORTI In the first program (called BEGIN) the user, with a
2 .',- -'END" SEGMENT 3 s pecific concept in mind (e.g. knowing in advance

SUPPORT FREE w y~n
2  that he vacts to find the minimum weight design of a

S IPP.T 3composite cylindrical shell of 7 layers stiffened by
T-shaped composite internal rings and I-shaped
aluminum e'xternal stringers) provides the material

LOCTEAL" UCGLINT IPEUPR properties, loads, and starting design in a
AXIA HAL WAVS. Iconverseational1 mode.

Establish a

Storting design.

EACH "INTERNAL" STIFFENER SEGMENT IS ASSUMED EeueBGN

TG BE SIMPLY _SUPPOR TED AT ITS EDGES, THE "END"
SEGMENT REMAINS STRAIGHIT IN THE WIDTH COORDIN
ATE AS SEGMIENTS S 2AND 3 BUCKLE TOGETHER WITH Set up a vector of
THE SAME A ih decision variables,

M01I) I =11 NOV)

Fig. 4 Local buckling of stiffener segments Eeue EIE

Loop: Do Igo, 1 1,NOV

~~ Axi mol TcEhTngENE

Calclat gIet in the weih decsdo

varibl: CON INU .0

IWVE ANLRA -... T.
j PLAENAL FPPR)D o

(NO MA Ne the 5

Fig. ~ esgn Y. (Use nf cl m .cm d, car*U fr mFig. ~ ~ ~ 0 5 Thre ftypes of ht[Xag modifiemedotmiato el
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In the second program (called DECIDE) the user 3. a computation from the known strain field and known

decides whether he wants to do simply a buckling material properties of how much of the total load is

analysis of the starting design or whether he wants to carried by the skin and how much is carried by the

do an optimization analysis. If he wants to do an stiffeners. (The in-plane shear load is carried only

optimization analysis, the user is then asked, also in by the skin.)
this second program, to identify which of the design
parameters are to be allowed to vary during the In the case of panels or complete cylindrical shells
optimization process, that is which of the design stiffened by rings and subjected to uniform laterial
parameters are to be -decision variables- and what are pressure, the stress in the skin midway between rings
the lower and upper bounds of these decision can be rather sensitive to the ring cross section area
variables. The user can also specify at this time and spacing for configurations with rather closely
that certain of the design parameters be **linked*' to spaced rings. Such configurations represent optimum
(to vary in proportion with) certain of the decision designs of submarine pressure hulls, for example. The
variables. For example, in laminated composite wall buckling pressure corresponding to local instability
construction the thicknesses of layers with plus depends directly on the midbey circumferential stress.
winding angles are usually taken to be equal to those When the material behavior is nonlinear, the buckling
with minus the same winding angles; the width of pressure corresponding to general instability also
Segment 3 of a T-shaped stiffener is equal to that of depends on the state of strain at midbay because the
Segment 2 (Fig.3a). reduced moduli of the skin there naturally act to

decrease the coefficients Cij of the integrated

When the first two programs have been executed constitutive law. which appear in the buckling

(through commands "RUN BEGIN" and **RUN DECIDE. equations.
respectively), the user next executes the main
analysis module through the command "RUN PANCON". Inclusion oL Plasticit., The flow of calculations in
which performs, with some on-line interaction with the the prebuckling phase is displayed in Fig. 8. As can
user, the rest of the calculations indicated in be seen from this flow. the process is iterative. In
Figures 6 and 7. the presence of plastic flow, the objectives of the

prebuckling computations, in addition to the three

PrebukliAna lsis just listed for the elastic case. are:

If the materials of the skin and stiffeners 1. to compute instantaneous values for the reduced
remain elastic at the load level specified by the moduli of each layer of the panel skin, which are used
designer, then the prebuckling analysis consists of: to calculate the integrated constitutive law governing

stability; and
I. an approximate determination of the circumferential
strain midway between rings and circumferential strain 2. to compute instantaneous moduli of the segments of
at ring centroids for panels stiffened by rings only; the rings and stringers.

2. an approximate determination of the axial bending These objectives are summarized in the two boxes in
midway between rings; and the lower left-hand corner of Fig. 8. Iterations at a

given design state continue until the prebuckling
strain components change no more than . 01 Z from

their values as of the previous iteration. Figure 9
shows the results of several prebuckling iterations

for a given design and load for a ring stiffened
1. Calculate prebuckling state cylindrical shell subjected to uniform hydrostatic

compressioc. Quadratic extrapolation of the strain
2. Calculate constitutive coefficients governing components is used every four iterations.

stability for all possible modes of buckling

Bifurcation klin

3. Calculate buckling load factors for all possible It is easy to see from Fig. 6 that if there are a
modes ofbuckling large number. NDV. of decision variables (NDV > 6,

say) many. many buckling load factors must be
0I) shell general, semi-ganers;, and local, computed, especially if the case is complicated so

that many different kinds of buckling modes must be
considered. For example, in the case displayed in

(2) stiffener segment crippling Fig. 10. for which 11 different types of buckling are
investigated, as listed in Table 1. there might be as

(3) rolling with skin participation many as 7 decision variables: to ao , bo , ts b
s  .

tr . and br (identified in Figure 10). Thus. each

It) stiffener rolling without skin participation execution of the loop. (I = I. NDV). in Figure 6
requires calculation of NDV * 11 = 77 critical
buckling load factors. Each of the 77 critical

4. Set up a vector of constraint conditions which include: buckling load factors represents the results of
minimization of the potential energy with respect to
the wave indices 5 and W and the buckling nodal line

) bucklIng margIn. for all posse modes of buckling, slopes c or d. In order to save computer time in

121 stress or strain margins In each shell wall layer and PANDA the buckling modal parameters, ii). i(i). c(i).
and In each stiffener segment. and d(i), i = 1, 2 .. 11 corresponding to the 11

critical modes for the current -baseline" design
(X(J). J = 1. NOV) are held constant for the slightly

S. Calculate weight. perturbed designs Y investigated in the loop over NDV.
These perturbed designs must be evaluated with regard
to stress and buckling in order to generate gradients

Fig. 7 The structural analysis module of PANDA. This of weight and constraint conditions needed by the
module is embedded in the executable processor PANCON. optimizer CONMIN E2,3].
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Parameter Studle k&lhaU D osgn A Elastic-Plastic. this second optimization process. It is seen from
Rine-stiffened Cylinders under Hydrostatic Cgmggsjo Table 3 that for a wide range of design pressures the

optimum design is characterized by many nearly
Tables 2 and 3 and Figures 11-16 pertain to this simultaneous buckling modes.

investigation. The main purpose of the study is to
compare PANDA buckling predictions for optimum designs IORDBS Results

and BOSOR5 [6] predictions for the same designs for a
range of loading over which the amount of prebuckling Figures 11 and 12 show the BOSOR5 models. Half
plastic flow varies. BOSOR5 is an appropriate the length of the shell is modeled, with symmetry and
standard of comparison for ring stiffened cylindrical antisymmetry conditions as indicated in Fig. 11. (The
shells stressed under hydrostatic compression beyond mid length of the cylinder is at the top of the
the material proportional limit; there exist numerous figure.) The reference surface of the cylindrical
comparisons with test results [7]. shell is taken to be the inner surface. The web of

each ring, treated as a flexible shell branch, is
UEM Relts assumed to penetrate the flange to the middle surface

of the flange. The material of the ring at the
The optimum designs and buckling pressure factors structural plane of symmetry at the bottom in Fig. 11

and modes from PANDA are listed in Tables 2 and 3. A has half the stiffness of the other rings. All
typical configuration is shown in Fig. i1(a). The flanges except the two nearest the midlength of the
decision variables in the optimization process are the shell are modeled as discrete rings; the top two
six dimensions listed as headings in columns 3-8 of flanges are modeled as flexible shell branches. The
Table 2. The results for each design pressure in stress-strain curve for the material is given in Table
Table 2 were obtained by first optimizing such that 19 of Ref. [5).
the ring spacing was included as a decision variable.
The ring spacing was then set to a new value as near Figure 12 shows the nodal points in the
the optimum value as possible consistent with the discretized BOSOR5 models of the optimum designs
condition that there be an integral number of rings corresponding to each of the design pressures po
within the cylinder length of 172 inches. A new listed in Tables 2 and 3. Nodal points are
optimum was calculated corresponding to this new value concentrated in the portion of the structure nearest
of ring spacing. which was not allowed to vary during the plane of symmetry at the top of Fig. 11 in order

.00 EXTRAPOLATION STRINGER

00442 CLSHELL

EXTRAPOLATION DESIGN PARAMETERS: RING
0.40 0 , sn , bo , t s . b , 

t
r , br

120= a

.00436- EXTRAPOLATION 720

.IN~S -0.87S = t

--
v . 0.3

C.04436 a = 38000

ET = Ed100

.04426

1.0= t
r

.60425.60H422 O

0 I I I STRINGERS
0 2 o 6 16 12 14

PRESUCKLING ITERATION
RING

Fig. 9 Typical convergence of the prebuckling strain
in the plastic region. This case corresponds to a fig. 10 King and stringer stiffened cylindrical shell
hydrostatically cpressed. ring stiffened cylindrical with dimensions typical of a large containment vessel
shell. for a nuclear reactor.
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Table 2 Optimum Designs of Hydrostatically-Compressed, Ring-Stiffened Cylinders Derived
by PANDA. Radius to Shell Middle Surface = 44.625 in.; Length = 172 in.;
T-Shaped Internal Rings.

W EB FLANGE
Thickness Ring

Pressure Weight of Shell Spacing Thickness Height Thickness Height
p0 (psi) (lbs) (inches) (inches) (inches) (inches) (inches) (inches)

677 2898 0.289 5.93 0.112 3.44 0.077 1.65

1355 4951 0.493 9.05 0.202 5.03 0.131 2.51

2032 6835 0.688 11.47 0.276 6.21 0.177 3.17

2710 8662 0.807 11.47 0.351 6.95 0.262 4.51

2710* 8724 0.822 11.47 0.346 6.85 0.261 4.46

3388 10694 0.998 13.23 0.460 7.82 0.310 4.97

4066 12682 1.244 15.65 0.560 7.96 0.377 4.75

4743 14667 1.519 19.11 0.651 8.42 0.394 4.60

* Model in which the shell wall is treated as if it consists of five identical
layers, in order to account for the variation of midbay prebuckling axial
strain through the wall thickness.

Table 3 Buckling Pressure Factors and Modes for Various Types of Instability Predicted
by PANDA

Design Rolling Rolling,
Pressure, General Local Skin Buckling Buckling with Skin No Skin Axisymmetric

Po (psi) Instability Buckling of Web of Flange Buckling Buckling Rolling

677 1.0011(1,2) a 1.0003(1,16) 1.0(40) 1.0(40) 1.0(1,10) 1.11(4) 1.21(0)

1355 1.0(1,2) 1.0(1,13) 1.0(29) 1.0(29) 1.0(1,9) 1.05(3) 1.10(0)

2032 1.0(1,2) 1.0(1,12) 1.0(24) 1.0(24) 1.0(1,8) 1.01(2) 1.03(0)

2710 1.0(1,2) 1.0(1,11) 1.0(22) 1.0(22) 1.01(1,6) 1.00(l) 1.00(0)

2710 b  1.0(1,2) 1.0(1,10) 1.0(22) 1.0(22) 0.999(1,5) 1.01(2) 1.02(0)

3388 1.02(1,2) 1.03(1,10) 1.06(19) 1.04(19) 1.03(1,6) 1.03(2) 1.04(0)

4066 1.0(1,2) 1.07(1,9) 1.10(19) 1.11(19) 1.06(1,7) 1.07(2) 1.08(0)

4743 1.0(1,2) 1.07(1,8) 1.06(1,7) 1.07(3) 1.08(0)

aNumbers in parentheses are (axial, circumferential) waves in buckling pattern (axial

halfwaves, circ. full waves). For local skin buckling and rolling with skin buckling
the axial half-wave-index refers to the number of half-waves between adjacent rings.
Where only one number is given, it refers to the number of full circumferential waves.

b5-layered model.
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Fig. 11 Hydrostatically compressed, internally ring stiffened cylindrical shells: Modeling strategy for

BOSOR5 analyses of the minimum weight designs obtained by PANDA for desgn pressures po ranging

from p = 677 psi to po = 4743 psi. (Sep Table 2 for dimensions.)

PLANE OF SYMMETRY

....................................... I
_. --

* i

* I

-.- .. ].

(a) (b (c (d) (a) M) (g)

p = 677 psi p
0  

1355 psi p = 2032 psi p = 2710 psi p = 3388 psi po = 066 psi Po 4743 psi

Fig. 12 Hydrostatically compressed, internally ring stiffened cylindrical shells: BOSOR5 discretized
models corresponding to minimum weight designs obtained by PANDA for design pressures ranging
from 677 psi to 4743 psi. (See Table 2)
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to obtain converged buckling pressures for local between rings. One can see from the pre-bifurcation

shell. web. and flange buckling modes, deflected shape shown in Fig. 15(a). for example, that

there is more axial compression and hence greater

Figure 13 demonstrates that all of the optimum effective strain at the outer fiber of the shell wall

designs are stressed beyond the material proportional than at the middle fiber, to which the solid points on

limit at design pressures po from 677 to 4743 psi. the stress-strain curve in Fig. 13 correspond. This

It is interesting thet for optimum designs with P0  bending effect is not included in the results shown in

from 2710 to 4743 psi the effective plastic strains at Fig. 14 because the shell wall in the PANDA models

the mideurface halfway between rings are close to the from which Fig. 14 was generated was assumed to

0.2 per cent yield strain, a result obtained from a consist of only one layer. The instantaneous

rather rigorous analysis that confirms the (tangent) stiffness coefficients Cij for the

appropriateness of earlier engineering design stability analysis are calculated only at the middle

practice, surface of each layer. so that in the case of a

one-layered model axial bending is not accounted for.

Cmariso gL ZAIDA Amd IQ R u E &kling Z*U&LU

Figure 14 represents (indirectly) a comparison Figure 16 demonstrates the effect of modeling the

between PANDA and BOSOR5 buckling predictions because shell wall in the PANDA analysis as if it consisted of

the lowest buckling load factor for each optimum 5 layers of equal thickness rather than just one

design predicted by PANDA is very close to unity (Pcr layer. In Fig. 16 comparisons between results from

design pressure. po ). Typical buckling modes from BOSOR5 and PANDA are given for the case Po = 2710

BOSOR5 are plotted in Fig. 15. psi, with buckling pressures plotted as functions of

the number of circumferential waves _n. Figure 16(a)

Figure 14 indicates that PANDA yields slightly displays this comparison for the optimum design

unconservative local skin buckling loads and web corresponding to use of a one-layer PANDA model (Table

buckling loads for optimum designs for pressures Po 2. fourth row), and Fig. 16(b) gives comparisons for

in the range from 677 to 3388 psi. This slight the slightly different optimum design (Table 2. fifth

unconservativeness is an effect of nonlinear material row) obtained by PANDA with use of a five-layer

behavior. It is caused in large part by the neglect model. In the five-layer model the degree of

in the one-layer PANDA models of the variation of unconservativeness of the PANDA predictions

axial strain through the shell wall thickness half way corresponding to local skin buckling has been reduced

by about half and the PANDA prediction of the pressure

at which local web buckling occurs is no longer

greater than the BOSOR5 prediction for this mode.

110 P0 - 2710 psi po 
= 

3388 psi The five-layer model in PANDA is more accurate

than the one-layer model because of the contribution

PO 2032 psi
100 looo

1.12 0
47413 p'si 0

90 po = 0616 psi
-- 1  0 AXISYMMETRIC COLLAPSE

P 15pi1.10 - GENERAL INSTABILITY
-00 00) LOCAL SKIN BUCKLING

10 0 WEB BUCKLING
1.0 01

70 20l CIRC. WAVES

7-po 677 psi a

w 1.06 i2)

PROPORTIONAL LIMIT 00
.0 0(0)

IA 
a.

I 104 (2)

IA SO ( ((22

o (0) (2 I)

1.02 (2)8

0 --- LOWEST CRITICAL LOAD FACTOR
a.0 / FROM PANDA (0) (0)

30 
e 1

20 O= DATA POINTS FOR MATERIAL (2)
STRESS-STRAIN CURVE USED
IN BOSORS AND PANDA

10 - MIDDAY MIDDLE SURFACE EFFECTIVE STRAIN (4) (13) (9)
FROM BOSORS ANALYSIS OF OPTIMUM DESIGNS
FROM PANDA 1(16)

I I I I I 1 "I 1 2 3 4 s 7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 DESIGN PRESSUREI677 psi

STRAIN I)

Fig. 14 Hydrostatically compressed. internally ring

Fig. 13 lydrostatically compressed, internally ring stiffened cylindrical shells: Comparison of buckling

stiffened cylindrical shells: Midbsy effective loads obtained from PANDA and from BOSORS. This is a

membrane strains at the design pressures for the comparison because the critical loads from PANDA are

optimized configurations shown in Figure 12. all very near unity, as seen from Table 3.
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INTERACTIVE OPTIMUM DESIGN SYSTEM

- T. Altuzarra, C. Knoof-Lenoir, C. Sayettat and G. Touzot
/ Universitg de Technologie

BP 233, 60206 Compi~gne, France

This work is concerned with the development of an tion process. The nodes of this "moving mesh" are

interactive system for .,- definition, analysis and located on straight lines called "meridians" (Figure 1)
optimization of two-dimensional elastic structures. At
any time during the optimization process, the user can, meridians S
with the help of his personal experience, either
continue iterations, if the shape evolution of the me
structure seems to be interesting, or interact, if he
considers that the search direction of the algorithm

will not yield to a correct solution. All the
information is stored in a logical an relational data
base, which contains, besides the curre t state of the
structure, the "history" of its evolutiont. Thus,
several previously obtained configurations can be
easily merged and compared.

fixed
1. - Introduction area

This paper deals with the elaboration of an

interactive system combining computer aided design,
fin*te elements and mathematical optimization technics, Figure I
for the optimum shape design of two-dimensional
structures. The coordinates of the nodes located on the boun-

dary S are computed using the optimization program
First, methods have been developped to represent or are given by the user. The coordinates of the nodes

the admissible variations of unknown boundaries and in the moving area are modified in order to maintain a
several optimization methods have been implemented and regular mesh : each node remains on its meridian
tested [1], [21. defined by a fixed node and a boundary node ; moreover

the node is "homotheticaly" translated along the
Then the resulting finite elements and optimi- meridian (Figure 2).

zation programs have been integrated into an B
interactive graphic package (PREMEF) leading to the 08,
"S.I.C." design system. F : fixed node

B, B': boundary node before
The purpose of this system is to provide the A , and after updating

possibility to interact with the optimization process, A A, A' : node located on the
to examine intermediate results, to modify the shape meridian before and
obtained by the algorithm, to add or remove design after updating '
parameters or constraints during the computations. F AF . A'F

BF B'F
2. - Optimization problem Figure 2

2.1. - Definition of the design parameters. The parameters definition procedure consists in

defining for each meridian
We consider a plane elastic structure V sub-

jected to high stress concentrations. A part S0 of - the corresponding design parameters, if any.
the boundary of V is supposed to be known. - the relationship between the coordinates of the
Another part S is to be determined in order to reduce boundary node of the meridian and its design
the maximum stresses which exist on a part a of the parameters or those related to other meridians.
boundary of V. This information constitutes the "meridian type".

The shape of S is defined by boundary node In order to allow various kinds of boundary deforma-
positions and is constrained by several requirements tion, the following meridian types are defined
which depend on the particular structure considered (negative type means no design parameter associated to
bourdary variations limited by internal and external this tvpe of meridian)
limits S. and Se, curvature sign or regularity,
parts of S supposed to be straight lines .... Some of a) type I (meridian (I) on Figure 3)
these shape restrictions are explicitly taken into
account by selecting convenient design variables ; the - the parameter is the distance I-I0
others are added as optimization constraints. - the slope of the meridian is fixed ; the boun-

dary node can move along a segment of meridian
The design variables are to be selected to : limited by Si and Se.

- lead to complex enough boundary shapes b) type 2 (meridian (J))
- minimize the computer time related to the number

of variables and constraints the parameters are the coordinates of the
- avoid unadmissible shapes of boundary and boundary node

elements. - the slope of the meridian is variable ; the
boundary node is restricted to move inside a

A particular mesh is defined near the unknown given rectangle.
boundary S ; it will be updated during the optimiza- -____
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I

c) type -1 (or -2) (meridian (K))
reduces both the number of parameters and the

- no parameter number of constraints.
- the boundary node K remains on a straight

segment AB. The coordinates of the node K are other types of meridians can be defined in
computed from the parameters of the meridians order to represent particular geometrical
(A) and (B). The type of both end meridians (A) shapes such as circles. The only condition re-
and (B) is I (or 2). The node K is a slave quested is that the coordinates of the moving
node. The nodes A and B are master nodes. nodescan be derived with respect to the parameters

d) type -3. (meridian (C)) a good choice of the meridians (initial moving
mesh) preserves good shapes for moving elements.

- no parameter
- the boundary node C belongs to a straight the finite element connectivity is not changed
boundary segment CB which remains parallel to during the optimizatiorn process ; this sim-
its original direction. The coordinates of C plifies thL programs, saves computer time and
are computed from the parameters of the type I avoids numetical instabilities due to remeshing.
meridian (B).

the procedure can be extended to three-
dimensional problems.

S.,S internal and (2) 1Se extera lThe technological restrictions imposed to the
of S solid shape can be taken into account by a convenient

(1)(2) meridians types (I) choice of meridians, by putting limits on the para-
S S' examples of meters and by adding constraints to the optimization

boundaries (I) problem. For instance, the curvature of S between 3

(-3) (-3)A10nodes can be controlled by anon linear constraint

moving C(p) < 0

K' B' K'a fixed 2.2. - Formulation of the optimization problem.
S \area

B The risk of crack initiation is related to the
Si \ stress 

0
T in the direction tangent to the boundary.

Thus we minimize the maximum value of aT on a

given part s of the boundary
Figure 3

Minimize max T (I)
S s

e) type 4 (or -4) (meridians (E) and 
(F) on

Figure 4) It would be possible to minimize any other func-

tion of stresses, strains and displacements.
This type is used to represent slider contact

between two solids V I and V2 . If the meridian types After discretization this is expressed as
are 2 (or -2) in the solid V1, the corresponding
meridian types should be 4(or -4) in the solid V2. Minimize (max ok) (2)
The coordinates of the boundary nodes of V2 are k
computed from the parameters related to the meridians
of V(. with respect to the design parameters p

(-2) (2)

\ \ where ak k -I. L are the values of aT cal-
V I  \ culated at discretepoints of s. Let U be the

nodal displacements vector, K the structural stiffness
'qE contact matrix and F the vector of equivalent nodal loads.

connected F\ Ws have
nodes \K(p) U = F(p)

(4) T\ \ -4) ak (p ) %_ (p) U

2  We can note that vector Rk  depends only upon the

design parameters required to define the discretiza-
tion point k ; on the other hand, U depends on all
the design parameters.

When each meridian type is defined, the global set
of design parameters As stated in (2), the problem cannot be solved by

a gradient method, because the "maximum" function
p- (p1... py cannot be derived. We transforme it as :

defines the shape of S. Minimize p with respect to the variables (p,p) (3)
subject to the constraints

Some remarks can be made about 
this parameter

definition procedure: p - k 0 k-I,..., L

- the use of design parameters that are more where u is an additional variable introduced to take
restrictive than the coordinates of each the "maximum" function into account.
boundary node is very suitablebecause it
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With the design parameter set previously defined, * criterion
k can be derived with respect to p ; gradient calcu- * F.E. data

lations are carried out by using an adjoint state
vector, Pk this involves the solution of This is controlled by anoveralcontrol processor

which avoids unuseful calculations, and updates the
K Pk = Rk data as required.

for each ak, but it avoids approximate and expensive 3.2. - ETAMINE data base management system.
numerical derivations. Finally, gradients are
expressed as The SIC system manipulates several kinds of data,

the number of which is increasing during the system
DO 1k. KU 3 developmnent

Pi pi k i - data related to the geometric definition of the
structure : points, lines, circles, polygons,

The problem stated in (3) can be solved by any surfaces, objects and sub-objects which are
classical minimization algorithm admitting non linear collections of previous entities.
constraints. Different methods have been tested : line-
arized centers method, penalization methods ; we data related to finite elements : nodes and
finally adopted a Powell's algorithm [3], [4] : it is a elements computed by automatic mesh generation
variable metric method where the search direction is programs, loadings and boundary conditions,
calculated by solving a quadratic programming problem ; mechanical properties, solutions (displacements
each iteration may require more than one criterionand and stresses).
constraints calculations, but the algorithm is very
efficient and convergence is generally fast (less than data related to optimization : meridian types,
10 iterations), design variables, constraints, configurations

(all the data defining the structure and its
2.3. - Problemsrelated to batch processing, shape at a given level of optimization).

Several problems are related to the use of shape Numerous relationships exist between the previous
optimization programs in a batch processing environ- data : for instance a node should be linked to its
ment: meridian, to its elements, to boundary conditions ....

- any automatic convergence criterion cannot stop ETAMINE allows the creation, deletion and
the computations if a boundary shape becomes updating of any kind of data and data link . It is a
"strange" in a human sense, data base system build on entity-relation principle

with a hierarchical data structure. The data organisaton
- often, it is only necessary to compute the first can be dynamically modified. ETAMINE is written in

improvements of the shape and 'o submit it to ANSI FORTRAN and exists in 16 and 32 bits versions.
the users's judgment.

For instance the access to the coordinates of the
- a minimin number of constraints should be used first node on a meridian is written as

in the first iterations. Additional constraints
should only be added if they appear to be CALL BASE('I COOR OF NODE I OF LINK N OF MERI 7')
necessary.

3.3. - PREMEF finite element pre-processor
- the data preparation is longer than in standard
F.E.M. analysis. PREMEF is an interactive finite element data

preparation system. It is based on a hierarchical
These problems can be simplified using interactive structure of points, lines, surfaces, solids. It

technics. includes the following set of functions

3. - The S.I.C. interactive optimum - creation or modification of entities from
shape design system keyboarddigitizer

3.1. - General organization.: - selective display and erasing of entities on
color raster screen

The main functions of the system are
- mesh generation on lines, surfaces, volumes

-creation, display, and updating of finite

elementsdata (mesh, boundary conditions, - several geometric operations such as surface
loading ), and data related to optimization intersection,
(meridians, constraints, criterion). These
functions are provided by the PREMEF finite - display of analysis results : deformed shapes,
element pre-processor. stress level contours...

- management of a large amount of data related to - interface with analysis and optimization
several configurations of the solid, to F.E. programs.
computations and to optimization. The data are
stored in the ETAMINE data base management Some examples of PREMEF commands are
system.

SHOW /POIN Displays all points in the data base
- management of computation modules to allow
dynamic changes of ERASE /ELEM 7 10 Erases elements 7 to 10

2 design parameters
* constraints
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SURF SI PI P2 P3 P4 /CYL -reatesa cylinder It indicates if the module is to be executed or
defined by points not for the problem considered. Moreover the
P1, P2, P3, P4. table is organized in such a way to provide the

sequence of module executions.
MESH SI meshes the surface SI

- The second flag is set off when the results of
OPTI 2 executes 2 iterations of optimization. the module are no more available because some

of its input have been modified. The flag is

3.4. - Computation control processor, set on after the module execution.

From the user's point of view the optimization 4. - Examples
procedure appears as successive structural computations.
After each analysis, it is possible to modify any kind 4.1. - Square plate with a hole.
of data. The overall process is illustrated by
Figure 5: In the first example (Figure 6) the problem is to

determine the shape S of a hole located at the
center of a square plate ; uniform normal tensions are

Geometric definition of the structure applied on the edges BC and CD of the plate. The
shape optimization reduces the maximum stress on the
boundary of the hole.

Mechanical data : loadings,boundary conditions,material properties I

Variable area and design parameters definitionC

Optimization problem formulation : selection
of the criterion and constraints

< Finite element analysis <.

L B

EE

userr' Go back to any level Figure 6

decision

The mesh uses 6 or 8 nodes isoparametric elements;
12 elements are included in the variable area. The

Figure 5 boundary S is defined by alternating type I and

type -1 meridians, so that the middle node of an
In such a procedure a number of checks must be element is linked to the corner nodes. The shape is

performed to verify the data consistency at any time then defined by 7 nodes which move along fixed men-
and to select the next module to execute. dians. There are 7 design variables, and 5 constraints

Any inconsistent information provided by the user to maintain the convexity of S.

is detected and pointed out by the system. A first The computer time required for one analysis (in-
check is done at the data definition level. A second cluding criterion, constraints and gradient computa-
check is performed just before activating F.E. tion) is about 16 seconds on VAX 780.
modules in order to detect any data omission. The data
base is explored and all necessary information is ex- Two types of loading are considered
tracted to create the equivalent of the data set
required by a batch run. uniform tensions :F - I on BC , F =I on CD.

Another problem is the determination and optimi- The optimization process has b en

zatin o th seuene o modle xectios. heninitialized with two different initial shapeszation of the sequence of module executions. When (a) and (b Figure 7a b). The solution, which is

successive computations and updatings are done some obviously a circle and a uniform stress di-

results remain valid and others should be updated z for 
tribution, is obtained in both cases.

instance, it is not usefull to recompute the stiffness

matrix corresponding to the fixed elements as long as The initial shape (a) requires 5 analysis and
the fixed area is not modified. This management is the stress reduction is 40 %. The initial
performed with the help of a table driven control shape (b) requires 12 analysis. In this case,
processor ; two flags are associated with each execu- after 4 analysis, the optimization procedure
tion module is interrupted (shape b'), then the search

direction algorithm is reinitialized. The next-the first flag is set on or off during the iteration is very efficient and gives the

problem formulation and then is never modified.
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optimum circular shape, 4.2. - Disk of aircraft engine

- uniform tensions : F - I on BC, F - 3 on CD. In the second exampleaaircraft engine disk is cons-
In that case, the bounds are reached by some dered (Figure 8). The shapes of two boundaries of this
parameters so the stress distribution is not structure are to be determined : the partsG'K' of the
completely uniform. The maximum stress blade (on Figure 9) and BE of the disk. The stresses
reduction is 60 Z ; it required 12 analysis are calculated along AB.
(200 seconds of VAX 780 computer time) (see

Figures 7c). The centrifugal force of the blade is represented
by a uniform tension applied on the segment H'G'. The
problem is discretized with 134 quadratic elements
(58 in the variable area), 26 parameters of different

types, and 20 constraints to maintain the regularity
of the curvature of S.(Figure 9).

|• / I The optimization is carried out in two phases

/16 discretization points are used to compute
the stresses to be minimized. The first itera-

_ tion (2 analysis) gives the boundary (p'). The
maximum stress decreasing is 34 %.(Figure 10)

--to improve this result the number of discretisa
E/. tion points is increased : the next iteration

I (2 analysis) uses 32 points to compute the
"._J •stresses. It gives the boundary (p'). It can be

---- initial shape , noted that the stress distribution is then
optimum shape A uniform on a large part of the boundary.

E BOUNDARY A The computer time required by one analysis (as

previously defined) is about 2mn with 16 stress points

Figure 7a and 2mn 30" with 32 stress points (VAX 78C).

F F

shape b
~ shape b'A

.... initial shape

//

--- end of the Ist phase
-optimum shape

EA

BOUNDARY A

Figure 7b
Typs ofmeridians

* +1
---- initial shape * +2

- optimum shave ' +4

o -1
o -2

7' ' shape c-3

/ area
: A

SBOUDARY A

igure 7c Figure
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... .. shape p"
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Figure 10

5.- Concluding remarks

The two examples have been presented to show the
efficiency of the optimization procedure. The advan-
tage of interactive design system appears when it is
used to solve complex or uncompletely defined problems.
It is then possible to solve successive approximate
small problems or to test successive design hypothesis.
The next developments will be directed towards an
extension of the types of design variables (thickness,
mechanical properties), of the criterion and the
constraints (different functions of stresses and
displacements, weights,...). Then a tri-dimensional
extension should be considered.
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OPTIMAL PRINCIPLES FOR DESIGN

SAzfooo Q OF INDETERMINATE TRUSSES

Louis M. Laushey
University of Cincinnati
Cincinnati, Ohio 45221

Summary Introduction

The methods suggested for the design of indeter- The design of an indeterminate truss is present-
minate trusses resemble the straightforward steps in ly a cut-and-try process. The stresses can be
the design of determinate trusses. Stresses of the determined only for a trial structure that is fully
highest amount are selected first to satisfy con- proportioned. After trial areas are assumed, the
tinuity. Then optimum reactions are chosen, followed redundants can be calculated, the bar forces found by
by the determination of the member forces to satisfy statics, and the trial stresses determined by
static equilibrium. Finally, the member areas are dividing these bar forces by the trial areas. The
obtained by dividing the forces by the stresses.F,..-- member areas are then resized on the basis of the

stresses from the trial, and the process is
The calculations usually required to design a repeated. There should be a convergence with each

redundant truss are greatly simplified and reduced, iteration.
Simultaneous equations are avoided for multiply-
redundant structures. No iterative trials are There is no knowledge or guarantee that any
needed for a convergence to an indefinite optimum. convergence will lead to members sized so that each

will be stressed to some specified maximum amount.
Two principles are introduced to achieve an There is sometimes no guarantee that the final

optimized design directly. structure will be of minimum weight.

1. The Transmissible Potential Energy of the A well-designed indeterminate structure requires
loads and reactions. calculations blended with judgment of the efficiency

of the proposed geometrical arrangement of the
2. The Conservation of Volume of the structure members. An optimum design must provide for:

under loads.

1. Compatible Strains. - Member strains that
The Transmissible Potential Energy of the satisfy the continuity of the structure; no misfits

external loads and reactions is equal to the sum of or gaps at the joints, and no displacements at the
each member force multiplied by the length of the reactions.
member. This principle applies to both real and
virtual loads. The total volume required of all of 2. Predetermined Stresses. - Member stresses
the members is proportional to this product, EIFIL, equal to the maximum allowable design specifications,
since ZAL = ZFL/S. Modified shear and moment or as near as can be to satisfy compatible strains.
diagrams are used to determine IIFIL.

3. Optimum Reactions. - Redundant forces, and
The Conservation of Volume leads to a range of other forces that follow by statics, that require

statically correct reactions that require the same areas of the members that sum to the minimum total
volume (or weight) of truss to carry the same loads, weight.

Maximum allowable design stresses are found The Direct-Design Method

applicable for all those indeterminate trusses where
Z SUL - 0 over both the tension and the compression The Direct-Design Method reverses the usual

members separately. Specifically, since ESUL must be design process for an indeterminate structure.
t c t c, if t -The method first satisfies the continuity of

zero, if EUL = ULt - 0, then StEUL + c = strains with the assignment of the highest possible

S St(O) + S(O) O. allowable stresses; then selects optimum redundantforces; and finally determines the optimum member

The weights of indeterminate trusses are com- areas that yield the least total volume of the

pared to the weights required of alternative deter- members

minate trusses. Conditions for identical weights
are described, and found to exist in practical Continuity and Stresses

situations. When a virtual load is applied at each redun-

dent
Emphasis is placed on the important conclusion dan

that some indeterminate trusses cannot be optimized I# x A" - 0 - E ES(UL) - 0
to the extent of the maximum allowed stresses in all

members. Reasons why are shown, and easy methods For the most optimal structures, E(UL) will be
are given to arrive quickly at near-optimum designs, equal to zero; proof to be given later. Further,

the E(UL) over both the tension and compression
The classic three-bar truss is shown to be members separately will be zero, ideally. Then with

analyzed easily, and designed directly, by the the modulus of elasticity (E) constant,
direct-design method. E 1JL 0 a cUL 0
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For these situations, the tension and compression
stresses, St and Sc' can be the maximum allowable FiV 4design stresses. Fortunately, Sc does not need to

equal St, thus allowing for smaller stresses in the

compression members.

Redundant Reactions 2lb

Forces can be assigned to the redundants and
the remaining forces determined by statics. The
member areas are calculated from these forces and _ -% '

the assigned stresses. Several redundant forces can [
be tried to result in the most practical dis- 0 .OLsO DiL,
tribution of member sizes throughout the structure.

Minimum Weight+ 70L CJod

The same minimum total weight of structure will
result from any selected redundant force; proof to 7..0 "
be given later.

Other Considerations .4,lSfW'CO

Only well-configured indeterminate structures Stre,3seb
can be designed to the maximum of optimality. A + 10 + 20
haphazard addition of redundancies can result in an
a-kward structure where the members are literally -0

loading each other, instead of sharing the external
loads. The art and intuition of the designer is -ESUL-0 Tats.
all-important in the delineation of the conformation SOL " '

and dimensions of the line diagram of the structure0 
SUL 0 Col r.

for which member sizes will be sought. The early
recognition of the members that will be in tension, 2
and those in compression, will be helpful in con-

ceiving a well-configured structure that can be
optimized easily for least weight.

Illustrative Example

Fig. Ia shows a one-degree indeterminate truss + 0
for which areas are required to minimize the weight 0 0
of the structure.

Fig. lb contains the listing of the virtual
bar forces U, and UL, when the center reaction is 1 0 0L
chosen as the redundant. The summation of UL is R31. rX
shown to be zero over the whole truss, over the -. 0 C 6ras
diagonals (all in compression), and over the 'd 25 %23
chords (all in tension). IF W. t : 1" ' 40

Fig. lc shows arbitrary design stresses that AL -,15

can be assigned to achieve the requirement of
ES(UL) - 0. Fig. Id shows that the ES(UL), like '.
EUL, is zero over both the tension and compression
members.

Fig. le and If involve two arbitrary sets of
reactions that satisfy statics. For the top chord %141*
to be in tension, the right reaction must be less
than 40, and the left less than 60. The top chord +
must be in tension to agree with the sign of the
stress assigned in Fig. Ic.

The EaL, the volume of truss material required,
is exactly the am, 187.5 cu. units. All other 4 AL
statically-consistent reactions, within the ! - L
limiting range, would require exactly the se AL CA045 44- ar1?.15
volume of material.

Tranmissible Potential Energy "01 t. &/ ! F" * \ AtL a 161$
This principle of the transmissible potential I. 'C oT!eC

energy of the loads and reactions is basic to the 
o o

development of direct, optimom-design method. Fig. 1. Illustrative Example

13-2
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Fig. 2 illustrates the concept.

F- " ' AL L i.
L L FL-EA&L 'EFLrO forId
The usual assumption is made that the area and t - fo

specific weight of the bar is unchanged for the tfor ?.
calculation of the stress from the load F, but the
length changes by an amount L. The equation

A1 - 1, to be used frequently, is based on this I
AE'

assumption. Hereafter, the change in volume will be P
A A~L.I

Well-known in mechanics is the principle of thetransmissibility of a force, allowed for certain F L,
purposes. However, the potential energy of a force

is changed when it is translated along its line of
action. In Fig. 2, the work done is FL if one or
both vector arrowheads (the points of application)
were translated to touch each other. As an aside,
the modulus of elasticity might be viewed as tFLs-PA
E = - . the transmissible potential energy re-

A Vol.'
quired for a unit volume change.

Application

In a network of members, the sum of the trans-
missible potential energy (TPE) in all of the members
will be found equal to the TPE of the loads and
reactions. Plus and minus signs must be attached to
each FL to distinguish between arrowheads that would
move forward along their lines of application (for W-
compression), and in the reverse sense (for tension).

If all loads and reactions act at a commonslevel, F e
there is no TPE. The sum of FL over the members is
zero. If the loads and reactions are not applied at
a common level, the sum of FL over the bars can be
calculated easily.

Fig. 2a shows load Pa acting at the same level
line of action as the reactions. There is zero TPE
because the vector heads of the resultant of the

* reactions and the load touch each other. If Pa were

raised to the position shown by Pa, the TPE would be Fi 1 F

minus Pay Fig. 2b shows the amount of the TPE for a S 0
group of loads.

Fig. 2c demonstrates that the TPE need not be OU,,eS
calculated in only a vertical direction in the manner
of true potential energy being able to do work
because of an elevated vertical position. Fig. 2d
shows that the TPE is independent of the internal _____

arrangement of members, and independent of UL 0
determinacy or indeterminacy. 4 for vi ruoMl

Fig. 2e indicates the importance of the location Oafds
of the arrowheads, and how movement must be made to
alignment to calculate the TPE. Fig. 2. Transmissible Potential Energy

Fig. 2f shows that a couple, or couples, have no
PTE, for they inherently can be translated or rotated
without affecting the statics of the reactions.

Fig. 2g provides the transition to further
usefalness, indicating that a virtual load has
touching arrowheads when a bar is cut. Redundanta
then conveniently produce EUL - 0.
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Conservation of Volume

Assuming no change in volume of the assemblage + 0 K 4X=
of members when loaded, 0A AL = 0. Fi4.30

Then ZA AL 
= 

ZA(-) = Zl--EFL FL0 -

It is proved then that there is no change in 3 3 K -. L 0
volume when there is zero external transmissible ') ' 1P
potential energy. More generally, the internal K .FL' .
volume change is equal to the transmissible potential 41 :
energy of the external loads and reactions, divided Trens-On + 30O
by the modulus of elasticity.

Minimum Weight Fin3b

To minimize the total weight of a truss, EyAI. vK 12%O1~
must be minimized, or to minimize the volume, EAL
must be minimized. FL V

The magnitude of the redundants in an indeter- -- 4O 'Z '.t5O Ijf1L x 275
minate truss that minimize the volume are disclosed
by differentiation. d F9d EAL 0 Fij.U

dR dR S Z r
If the stresses have been set previously to 1 24 FL 0-

satisfy ESUL = 0, the stresses can be considered [ O .FIL = 2Z5
constants. Then (0I 2.

d EFL = 0 = EdF L = EUL = 0

dR dR y#r+iC,&I t o 0 (0 4FIL =_I
Any redundant then will yield the same minimum

total volume if EUL has already been made zero. The T L
only limitation is that the selected redundant T L - G
forces must be within the range that will produce
signs of the stresses that were assigned to the Fig. 3. Shears and Moments
members in setting ESUL =0.

shear multiplied by i/V, the FL for each diagonal is

The Importance of EIFIL 2

The concept of EFL for real applied loads was FL = (Shear)(v-)

found useful because it permitted extension to the Moment Diagram. Fig. 3c shows the moments at all
application of a 1-lb. virtual load, giving ZUL =f 0. Mmn iga. Fg csostemmnsa l

upper and lower chord panel points. The moment is
Incidentally, students find the EFL useful as a shown constant over a panel length because the force
check on the probable validity of their calculation sn constant ove appane lh bcae t or

of mmbe fores.in the bars of the opposite chord are constant over
of member forces. the length of the panel. The force in any chord is

Volume Proportional to hEFL th, moment in the appropriate opposite chord divided
by the spacing of the chords. The FL for each chord

FL is then
Since volume - EAL - E-, and F and S have the hFL h

same sign, all members contribute 
positive amounts

in the summation. Again, if the stresses have
alread bhen s ecdoation.sAgainifyh cti , he Vertical Members. The EFL in the verticals must bealready been selected to satisfy continuity, the addt h umtosfrtecod n ignl

minimum EIFlL will correspond to the minimum volume, added to the summations for the chords and diagonalsto complete the total summation.

Magnitude of EIFIL Total Volume

Analogous shear and moment diagrams, modified The truss that is perfectly optimized to minimum
slightly from tho'se for beams, can be constructed volume will have the same EIFIL over both the tension
and used to determine EIFIL. The modified shear and and the compression members. The stresses in each
moment diagrams can be best explained by examples. will have been set to the maximum design amounts.
The goal will be to relate the ordinates of these
diagrams to the member forces and the volume needed t cfor the truss. 11

Vol - EAL T IFIL + I IFIL

Shear Diagram. Consider first an uncomplicated truss t c

shown by Fig. 3a. The shear is restricted to the
diagnal. Fg. b sovsthe hea ineac pael.These requirements are shown to he met in thediagonals. fig. 3b shows the shear in each panel. example, Fig. 3.

Since the force in each diagonal is the vertical

13-4
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Alternative Structures 

The advantages and disadvantages of indetermi- F % k, 4
nate structures artwell-known, and will not he dis-

and determinate trusses, to carry the same loads,
does need to be given some attention. The following (4L4 100+
example will disclose the weights required for + +different types of trusses. 5 9S 0 1&1 ZIFILO 1500 C

Fig. 4a shows the amounts of F and (FL) for cO I GO5
two determinate trusses. The summation of IFIL over
bcth the tension and compression members is the FI. AL
same, 1500. This result only illustrates that the UT
design stresses can always be used to determine UL
the areas in a determinate truss. 0 0 I L t

Fig. 4b shows the addition of a tie rod between 0L-0

the trusses, making the truss indeterminate. The + +1/ L
values of ULT are seen to sum to zero over both the !| -
tension and the compression members. Thus, ESUL = 0 .

is satisfied by- c = 0 and 
1 UL = 0. The 4C

design stresses for tension and compression can be __

equal to those used for the determinate truss. +(FO),, _, +1.F'

Figs. 4c and d show the amounts of F d FL for ZIFIL 00 C
two arbitrary sets of reactions that satisiy statics.

Again, as for the determinate truss, the ZFL is 1500 1 0 O +

over both the tension and compression members. The 40 1 0
required weight would be identical 

t
o that for the

determinate trusses. Any end reactions between 0
and 60 would yield the same total weight. Fi -44A +G,(r.0_

Fig. 4e assumes the end reactions to be zero.
This truss also requires the same total weight as
all of the others. (!10 7_IFIL- 100 t
Discussion of Results. The shear and moment diagrams 1500 C
explain the previous results of the same required ) L

weight for all trusses. e45 *S )

The shear ordinates in each of the panels for -0 zoo 7.0

the alternative trusses are:

Panel H4.4 (40 1 )

1 2 E 4 12.0
Fig. 4a 60 60 60 60 240 (F L) (+ 4to ' (+460) F-4FIL- 1500t
Fig. 4c 40 80 80 40 240 ?IfqL- 1500 C,
Fig. 4d 20 100 100 20 240 120 & 120
Fig. 4e 0 120 120 0 240 740

The moment ordinates over the panel length,
calculated at the appropriate panel point are: Fig. 4. Alternative Structures

Panel Point The shear and moment diagrams for the different

trusses are not identical, but their areas are equal
1 2 _3 4 E if the real values of the areas are summed. Equal

Fig. 4a 180 180 180 180 weights then result for all these alternative

0 0 720 trusses.

Fig. 4c 120 120 120 120 Summary. The real values of the ordinates and areas
120 120 720 of the shear and moment diagrams determine the

Fig. 4d 60 60 60 60 member forces and the areas required in the chords

240 240 720 and diagonals.

Fig. 4e 360 360 720

13-5
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Internal Redundants .

It would be a gross mistake to conclude that all
indeterminate trusses can be ideally optimal. Fig. 6c Fig. 6d

indterinae tusss an e iealy otiml.3. Calculate ISUL., required to be zero.Cross-Bracing. Consider Figs. 5a and 5b. 3 aclt STrqie ob eo

3 V UL For Fig. 6c, 0 = St[-2(Lv)+v] 
= 

Stv(l- L] = 0

The required geometry would be one vertical
bar, X = v, a trivial solution.

1LIV 2 2
For Fig. 6d, 0 S (- - + v) + S (- -l)

t 2v c 2v

Sc  v2 h2

giigS 2t 2

Fig. a Fig. 5b Results show that the compression bar should

be omitted if v -1i; otherwise the third bar should
There is a dilemma in the assignment of working be in compression or tension, depending on v < h.

stresses to make ES(UL) = 0. Inspection of Fig. 5b

shows there should be tension in one vertical, one 4. Determine the volume required for Fig. 6d.
horizontal, and one diagonal for ESUL = 0 over the
tension and compression members separately. This (FI+F 2)2. F3£ 2 .2)_ff--[(F +F2) + (F3£)
arrangement would be awkward for the loads shown in AL= s + s3 I2' 3 2

Fig. 5a. Both diagonals and both verticals should t 3 t (v -h

share in supporting the loads instead of one member
loading another. Inspection again shows that Bar 3 should be

omitted because of (v 2-h 
2
) in the denominator.

The common usage of two crossed diagonal
tension rods, with negligible compression capability, F 2 + F kh
is a statically determinate arrangement that is, Then EAL 2 PTE h yhS-

however, appropriate for moving or variable loads. t t t

The Three-Bar Truss 5. Determine the reactions and bar forces by
statics, Fig. 6e, and the areas using S as the

Following the many previous investigators of allowed working stress. t

this classic problem, the author can't resist HV -
applying the direct-design method to the three-bar H P-Hi
truss.

In Fig. 6a, the problem is to minimize the total
weight required to support the loads P and H. The
following steps will illustrate and summarize the Fig. 6e
direct-design method. tHiize 6 e

Optimized Bar Forces

h 0.5 0.5
As a check,

> t

146. Summary :

S6 PTE - SEVol - EcZnol EEAVol.

Fig. 6a Fig. 6b Previous Work

The ideas and methods presented here are those

1. Apply a 1-lb. virtual load at the center published by the Author in 1958. * Any repetition is

reaction and get the U-forces, Fig. 6b. Then for the information of those who did not see the
more extensive original publication that includes

£2 1 2 v2 2 _ h
2  

theorems and corrollaries for minimum weight, and
UL - I x v - 2(T) = v -v-h] many optimized designs for multiple external and

2 internal redundants using a method of superposing
PTE - _ a group of statically determinate sub-trusses.PTE =-~(h2v v

and as a check, E UL - PTE

*"Direct Design of Optimum Indeterminate Trusses."2. Conceive stress patterns, two alternativesLui .ashy De.198 Ppr167ST,
shon on Figs. 6c and 6d. Louis M. Laushey. Dec., 1958. Paper 1867, ST 8,shownon Fgs. c an 6d.1( ur. Struct. Div., ASCE.



A NEW METHOD FOR OPTIMAL DESIGN OF STRUCTURES

a bA~~2~~r ~Renwei Xiaa, P. T. Hsu , N. M. Chenc70 / / CCollege of Engineering
Boston University
Boston, NA 02215

Abstract tions he(A) - 0, (e-1,2,....E), may be equilibrium

A new method for optimal design of structures is equations and compatibility equations of the structure
under the action of external loads. In general, thepresented. The structure is subjected to multiple equality constraint equations are dealt with in struc-

loading conditions and behavioral constraints on nodal tural analysis, so that the optimization problems in-
displacements, element stresses and constraints on tuaanlssohtteopiztonrbemi-dispaceent, eemen stesss ad costrint on dude only the inequality constraint equations, which

member sizes. This new method is based on the Kuhn- mayde h ly noine a ri n ost a ses e rfo e, h e
Tucer ondtios, n wichthegraiens o acive may be highly nonlinear in most cases. Therefore, the

Tucker conditions, in which the gradients of active minimization problems discussed here are generally very
constraints are expressed through Taylor series expn- complicated, which can only be handled through various
sion in terms of design variable so that a new deaign numerical techniques.
point can be generated. Recursion formulas for the
iteration determination of the design variables are n

thus derived.-K- Euclidean space E
N
. Any point or vector A - {AI, A2,

The relat6A, tasks of computing the first and sec- .,) 
T 

in the space represents a design program. The
ond derivatives of nodal displacements and stresses ig
with respect to design variables are also formulated. set of points
These formulations are simple and powerful. A typical R {A'(A) < 0, j-1,2. J}
three-bar trx.ss structure has been optimized to illus- R
trate the application of this method. Since the dir- is defined as the feasible region. Any point A cR
ection of the optimization process is directly derived represents a feasible design program, which is called
from the Kuhn-Tucker conditions, it has been shown the feasible solution. If A ER and there are some i's
that this new method is considerably more efficient, such that gi(A) = 0, with i £ I(A), where I(A) -fi{

I. Introduction g(A) = 0, 1 < i < J) = (1,2,...,m), then the point A

is at the boundary surface of the feasible region R,
As the finite element methods are progressed and the corresponding constraints gi(A) - 0, i c I(A),

along with the development of large scale digital com- are called active constraints. Because of the linear-
puters, the computational methods of structural opti- ity of the objective function (5), the optimal point

nization have been one of the most important research
subjects in the "ield of structural mechanics in the certainly lies at the boundary surface.

last twenty years. Numerous significant work on It is well known that two approaches of optimiza-

strtrtural optimization have been done by L. X. tion are most used in structural design; the mathema-

(1-3) (4-5) ( 5-8) tical-programming approach and the optimality criteria
Schmit

-
, R. H. Gallagher , R. A. Gellatly

-
, method. In the former approach the iterative design

(10 B.11- and1ma formula can be written as. B.Venkava ( )E. J. Haug an1-m2) y ( k+l )  
(k) (k)

. 
(k) =

others (13-15). A "A +a S (k

The mathematical formulation of structural opti- where a
(k ) 

and S(k) are the step size and the direction
mization can be stated simply as follows: vector in the kth iteration, respectively. The differ-

Find A - {A1, A2  ..., A1 }T, (design variable (1) ences among various mathematical programming approaches

vector) lie only in differenc ways t3 decide a and S . It
suchthat (A) < 0, (J,2.....J) (inequality (2) is worth noting that most of the methods used at pre-

j - constraints) sent to define the direction vectors are based on saim-
ply reducing the values of the objective functions, and

h (A) - 0, (e-1,2,...,E), (equality (3) they do not have any direct relationships with conver-
constraints) gent conditions or the Kuhn-Tucker conditions, which

and f(A) - Min (objective function)(4) can be expressed as

In the truss design, if the structural configur- M

ation is given the design variable vector A will con- Xi" Vg (A) + Vf(A) 0 (7)
sist of the cross-sectional areas of the bars. The X > 0
objective function f(A) is generally taken to be the i 0
weight of the truss. With pi and Li being the density where Vgi(A)'s are active constraint gradients, Vg,(A)=

and the length of the member i, respectively, the ob- RR (A) 9gi(A) T
jective function can be expressed as, A A a s a

NaA I  and is are the Lagrangian
f(A) = E p LiAi (5) multipliers: Vf(A) is the gradient of the objective

3_f(A) f(A) .T
The inequality constraints gj(A) < 0, (J-1,2....J) funcon Vf(A) ... 

)

here may, according to design requirements, be dis- When the optimality criteria methods are used to
placement constraints, stress constraints, geometry solve optimization problems, a Lagrangian function is
constraints and others. The equality constraint equa- generally written as

J
Visitng Research Professor from Peking Institute of .(A) - f(A) + E j(A)

b Aeronautics and Astronautics The conditions for the optimum value of the objective
Asociate Professor of Systems Engineering, deceased function f(A) with the constraint functions g(A)'s

Professor of Aerospace and Mechanical Engineering can then be obtained,

13-7

, ,10W I l l l l .....



II

a af(A) + j •0A (9) (7) or (13). The constraint functions gi(A), (isi,
3+ 1 i  2,-',m), at the new point A should be expressed

through the Taylor series expansion at the current

1 • g3(A)=0 (i=l,2,'" ,N) point A. T
gi(A)-g i(A. )+Vgi(A. )T (A-A. ). 

(A-A. (A. (A-A"

From equations (9) a simplified form of optimality
criteria can be written as follows: where H (A.) is the Hessian matrix

J ( 2gi A )
r1 A3 e . 1 (1i1,2,.-',N), (10) .............

,() / (A

where e =-( -- /M.-.-) 411) Hi(A.)=

It has the physical meaning as the energy density in 2, 2gi

the structure. .gi(A). .............. (A)

always be satisfied unless the design point A happens * 2

to be an optimum. Therefore it is necessary to form
an iterative formula, and then the constraint gradients at the new point

Ai(k+l) (k) A *ei) (i-l,2,..*,N)(l2) A should be
A J.1 a ia Vgi(A)-VgI(A.)+HI(A.)"(A-A.) (16)

It is obvious that equations (12) are associated with By substituting equation (16) into equation (7) or

convergent condition (9) or (10), and they have been (13), a new design point can be obtained as

used successfully in some optimal designs. But there 1
is still no guarantee that they will always be con- A=A. - H(A.) -(vG(A.)" A+Vf(A.))) (17)
vergent. wh r )(.- ( . "+ - AThe method to be presented in the following is where H(m) IHI(A.)+A -H(A.

based on the Kuhn-Tucker conditions, in which the m
active constraint gradients are expressed through i-l AiHi(A.)
Taylor series expansion in terms of design variables.
So that a new design point, at which the Kuhn-Tucker and A= -LVG(A.TVG(A.
conditions would be satisfied, can be generated
directly. Naturally, because of the approximations Because of the approximations of the Taylor series
of Taylor series expansion, the design procedure expansion, a recursive expression for the determin-
developed in this manner still requires some steps of ation of design variables is necessary:
iteration.

In addition to the constraint gradients, the (k+l)= (k) (k) 1 (k) (k) VfA(k))A
Hessian matrix of the second derivatives of the A A H(A ) .(VG(A ).A
constraint functions is also included in the method
presented here. It seems that the computations of (k-0,1,* ) (19)

the first and second derivatives of the displacements The convergent condition of equation (19) is naturally
and, especially, the stresses of trusses are quite (k)
extensive and complicated. However, it is possible the, Kuhn-Tucker conditions at point A . that is

to derive simple formula for computing them as we (k ) (k)
will present them in the following. VG(k 

)  
+vf(k)

) 0

so that A(k+I).A
(k )

II. Design Theory

III. The Derivatives of Structural Behaviors
In mathemtical-progroaming approaches, the Kuhn-

Tucker conditions is given by equation (7) or, From the statement mentioned above, it is quite
evident that computing the derivatives of structural

VG(A)-A + Vf(A)-O (13) node displacements and element stresses with respect
to design variables is an important task in not only

where -, the approach presented here but also the other
VO(A)[vgl(A), Vg2(A),"". ,Vg(A)3 methods of structural optimization. During the last

T few years some work on the computational methods of
A * (Al ,A2,.-.Am

T  
the first derivatives of structural behaviors with

respect to design variables have been developed 
(
18-22.

The Lagrangian multipliers can be determined from the But it seems that the computational formulas of the

following equat~on UT) second derivatives of structural behaviors, which are

)T T. necessary In the method presented here and some other
A- - LVO(A) VG(A,I VG(A)T.vf(A) (14) mathematical-programming approaches, have not yet

beec achieved. Obviously, the computations of the
Obviously, equation (7) or (13) In general does not second derivatives of displacements and stresses are
hold except when A is en optimal point. A new design quite extensive and complicated, especially for the
point should then be generated to satisfy equation case where the number of design variables becomes too
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large. However, it is possible to derive simple 1
formulas for computing the second derivatives for U
single force elements, such as axial force bars and F Pp-2
shearing panels. mg -q Pq P - P -U3PP.l

3.1 The First Derivatives qp q-2
[3

q 
-1

For a truss structure the displacement Ur at [ g (24)
some node point of the structure can be calculated

by the virtual load method as
(21 )  Where 1pA mqAnpq are direction cosines of the angles

sVH -
SR 

- L between the line pq and the three coordinate axes:
Ur - il (20) OX, OY and OZ, respectively.

Ei Ai For simplicity, the equation (24) can be re-
written as

a - C? U (25)
Where S is the internal force in the ith bar element g g g

due to a unit virtual force applied in the direction Where EUr. j E _HC-. {-l ,-m ,-n ,l ,m ,n I
SR is the internal force in the ith bar element g L pq pq pq pq pq pqg

induced by the external loading system acted on the T
structure. U - 23U- 'U-,'U-p'U3qU-2"U-q- IU-q

Li, Ai and E are the length, the cross-sectional g

area and Young's modulus of the ith bar, respectively. From equation (25), the value of the stress a in
N is the numbers of bars of the structure. gelement g of the structure can be viewed as the
By taking the derivative of Ur with respect to

design variable A,, the following equation is obtained. Cralo t gneralize actual d ispla o
C along the generalized actual displacement U, so

that it can be derived as
-- • j R V S R

as V L N H V s 1gaur SL _s' as - '  s s  
i) Li H i

HAJ AlAHla E i (26)E Aa i gil E Ai
aI a

Where SV
g 

is the internal force in element i induced
The summation of the term on the RHS should actually i
be zero, because it represents the virtual work dQne by the generalized virtual force Cg, which is applied
of the self-equilibrium internal force systems and i
displacements. Equation (21) then becomes in the directions corresponding to the displacement

vector U of the element g. Other symbols in equation

aV . R . L (26) have the same meanings as those described in
Ur 2equation (20).

j E A
2  Referring to equations (20) to (23), It is

aa evident that the derivative of the stress eg, is

or Lor _.£ - .1 .1 .1 , (l,2,.-.,) (27)
V R L AJ E

aur - (J.l,2,- ,N) (23)
A a jIt is important to point out that the compu-

Where a
V  

d a e V and tation of the derivative of stress is just as simple
R a a are stresses corresponding to an as that of displacement, and both can be calculated

respectively, for only one virtual loading case.
a From equation (27) it is clear that the deriv-

atives of stress with respect to design variables are
From thematrix methods 30
ot heu ltrxzero except for determinate structures, because

of structural analysis, it is zr xet3
wa elelentg ofth the structurein the generalized virtual force C expressed in equation

in comen coordinate system (25) is a set of self-equilibrium forces.
(Fig. 1) can be expressed as

3.2 The Second Derivatives

The computational formulas for second deriv-
94 -atives of displacements and stresses can be derived

..... by means of the equations (23) and (27).

. . ',- '-. f'By differentiating equation (23), the following

5' equation Is obtained

o2U 1 V a K OV L
SA - ( ov +j .

2  (28)
.1Y
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By applying equation (27) and from the defini- (.-1,2,'-,W)

tion of all the pareeters, the following expressions (k-l,2,--',N)
can be given

R Vj R From equation (34), it can be seen that if only

0 0 stress constraints are considered, no matter how many
._ k k "k (29) active stress constraints are there, the computations

EAk of the Hessian matrices of stresses can be completed
by only one structural analysis when Gaussan elimi-

anOvj oV nation technique is used to solve the matrix equation
and ao

V  
k k " (30) of equilibrium which has (N+l) force vectors, one of

8A E _ which is corresponding to the loading condition, the

tk others correspond to virtual force systems.

Where 
Vj represents the stress in element k 

due to 4. Illustrative xaumple -o --

the generalized virtual force CP, which is applied A consideration of a ' /

in the directions corresponding to the displacement three-bar truss example A
vector U of the element J.shown in Fig. 2, has beent_ At

j commonly used to demonstrate

is the stress in .element k induced by a unit 
v/rious optimal design 

I
Ok approaches. The truss is

r subjected to two loading

R conditions. Because of the RR is the stress in element k due to the ex- symmetry of loading and R,20.O'I - ,

ternal forces acted on the structure, geometry the number of design O...,
By substituting equations (29) and (30) into variables and constraints can Fig. 2

equation (28), the second derivative of displacement be reduced. In this case,

U with respect to design variables can finally be design variables A, and A3 must be Identical, and
r only one loading condition should be considered. The
derived as (,)

d e aallowable stresses and a .20,000 psi for positive

a2O
j  

L.J"L stress and a (-).-15,000 psi for negative stress.
r .O= + OR OV) (31) Only stress constraints are taken into consideration

aAaAkk k Ejk here.

TWo kinds of design steps are alternatively

(j-1,2,.-. ,N) taken in design procedure. One is the scaling step
which moves a design point to the boundary surface

(k-l,2,---,N) along a line joining the origin of the N-dimensional
coordinate system to the current design point in

The number of structural analyses for computing the design space. The other is to modify the design at
Hessian Mktrix of the second derivatives of node the boundary surface according to equation (17). The
displacement from equation (31) is thus as high as results of the computations are shown in Table 1.
(N+2). However, it should be pointed out that the The optimal design is quickly achieved in just four
(N+I) structural antlyses for virtual force con- iteration cycles.
ditions expressed by the superscripts V,, (Ta1,2,---,

N), and V in equation (31) can simultaneously be
completed when Gaussean elimination technique is used Iteration Cycle Design Variables Weight
to solve the matrix equation of equilibrium which ,
has (+I) virtual force vectors. Thus the evaluation (k) A(i (2 Ai2 W(lbs)
of the second derivatives does not really add too 1( 2 (i
much extra effort in computation. 0 0.707 0.707 2.707

The second derivative of stress a with respect

to design variables can similarly derived by differ-
entiating equation (27) 2 0.757 0.507 2.6W8

2 3OVg R 3 0.792 0.4o00 2.640
..- R.L... . . + . L 4 0.789 0.408 2.639
3A j3 Ak AkD~

Vj Vg 5. Conclusions

Where -o
v  

Ok . Ok " k A new mathematical-programing approach has been
I - - _ (33) developed for otpiaml truss design. The approach is

based on the Kuhn-Tucker conditions. The active

constraint gradients involved in the Kuhn-Tucker
Substituting equations (33) and (29) into equation conditions are expressed by Taylor series expansion
(32), the second derivative of stress then is in terms of design variables, so that a new design

£ point pan be generated.
The computationl formlas for the first and

L j k 3 second derivatives of node displacements and element
&. R Vg R 0 • €,__)_ ,. stresses for truss structures have also been derived.

3 A j Ok k j These formulas can be used not only in the method
presented here, they also can be applied to other
methods of structural optimisation and approximating
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OPTIMAL FINITE ELEMENT DISCRETIZATION
A DYNAMIC PROGRAMMING APPROACH
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SUMMARY An investigation from the topological aspect rational approach to this is taken the initiatives by
of the optimal finite element idealization is carried McNeice and Marcal[1], Prager[2]and the related
out for the linear elastic system. The criterion for authours, who minimize the total potential energy under
the topological optimization is based on the the fixed discretization topology with respect to the
minimization of the total potential energy, the nodal coordinate specifying the present discretization
Rayleigh quotient, and the energy quotient for the geometry. Carroll and Baker[3) investigated the
static equilibrium, free vibration, and Euler buckling existence of the optimal solution and Carrollf4]
problems, respectively. Firstly, in order to clarify treated not only the elastostatic problem but also the
the relation between the functional to be minimized and eigenvalue problem. Furthermore, Seguchi et al.[5]
the discretization topology, the dynamic programming egeneralized this technique to cover not only the
approach proposed by Distefano et al. is extended to discretization error but also the computational error
the two kind of eigenvalue problems, that is, the free irtin e t alo te c tion evibrtio andtheEule buklin anlysi. -by introducing the two factor decision criterion of the
vibration and the Euler buckling analysis. - total potential energy and the condition number.

For the discretization optimization, t r ure On the other hand, many of the recent
of the multistage decision process is easily seen in investigations discuss this problem from the practical
static equilibrium problem and the usual dynamic point of view. they are intended to obtain the nearly
programming procedure works well. The optimization optimal discretization scheme by interactive
problem for the free vibration is similarly formulated application working with the finite element solutions.
in the multistage form, but this is more complicated The outline of the investigation is found in the review
than the above case and the approximate solution paper by Shephard[6]. The techniques are useful to
procedure using upper-bound property of the improve the initial estimate of the pattern in the
eigenfrequency is also proposed. In the case of Euler practical computer works under the current state of art
buckling, the usual decomposition procedure to the in the computer performance but there might be
multistage form does not work, since the static ambiguity in the discretization optimality as in any
equilibrium field in stable mode is coupled with the heuristic approach.
optimization of the discretization in unstable mode. The purpose of this paper is to obtain the optimal
To overcome this difficulty, the inverse transformation discretization topology by incorporating the variables
technique is introduced and the state reduction of the topology into the finite element formulation
technique gives the optimal discretization topology, restricting the element attribute and discretization

approximately. Some numerical examples show the number. The topological optimization procedure is

remarkable improvement of the accuracy by thenubr Thtolgiaopmztonrceres
topologicl oim izatioent a the imrancb e oformulated in the context of the dynamic programing,
topological optimization and the emeta lizaof the minimizing the functional for static equilibrium
topological aspect of the finite element idealization. problem, free vibration problem, and Euler buckling

problem of linear elastic systems. Firstly, in order
to clarify the relation between the functional and

INTRDUCTION discretization topology, finite element analysis
procedure based on dynmic programming is presented

The finite element method becomes tremendously popular and, secondly, topological optimization process is

in applied science. It is so broadly known that the revealed. Some numerical examples also presented.
accuracy of the finite element solution largely depend
upon the discretization scheme used such as element DYNAMIC pROGRAMMING APPROACN TO
model, element number, discretization geometry and

topology that the user of this method usually select a FINITE ELENEIT ANALYSIS

discretization model at the beginning of their work.
Although a simple approach to the more accurate The dynamic programing formulation of the finite

solution is to increase the discretization number or to element method proposed by Distefano and Samartine(7)
employ the higher order elements, it leads to the for static equilibrium problem is introduced and
increase of its computational cost. One of the extended to the optimization process of the finite
rational method to conquer this is to improve the element discretization topology to be discussed in what
finite element discretization pattern under the follows. Here, its outline is briefly reviewed and its
restriction of diseretization number. This problem is extention for free vibration and Euler buckling
referred as the optimal discretization problem. The analysis is presented.
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STATIC EQUILIBRIUM PROBLEM[7] Substitution of (7) and (8) into (5) gives the

Without loosing the generality, it is possible to group recurrence relations for RR, r, and 4:
the whole finite elements into (N-i) strips as shown in 0-
Fig.1. Denoting the strip column displacement vector Rn=K11(n)-K12(n)[K 22(n)+Rn i]K (n) (9a)
for nodes which are on the column n, u, 

the strain

energy and the work done by external force of the strip ro=-P(n)+K(n)[K(n)+R -1P (n)-r°01 ] (9b)
n are expressed as n 1 12 22n+12

U(u ,u )=(1/2)[u ] K (n) K (n) iu 1 (la) o o (K(n)+R0  -p (n)-. O 0 (9c)nn 1 n 211() +12 2n+1] [2nr n+1]n (9c)un [ . n Kt_ () ~ n Sn= P(n)-rn+I 2
21

n  
K22(n n+e1

(u u (n 1 22 n1 ( The initial conditions of the recurrence formula (8)
V n,Un+l)=[Un Un+1 P 1(n)( and (9) are

respectively, where P4 (n) and P2(n) are the column Ru 1+r1=0 (10)
force vector corresponding to the n and n+1 side of the
strip n. o 0 0

1 2 m Rn=O r, O s =O (11)

2 r32 .A (N.4) FREE VIBRATION PROBLEM
9 :' A leading principle for free vibration problem of

c1) ,I . / (N,) undamped system is of the harmonic version of
/ * -- Hamilton's principle. According to the usual finite

n.2 (N.2) stationality of the functional L;
2e 

n

n.3 N1) L(u)=o2T(u)-U(u) - - stationary (12)11

where U is strain energy and T is the kinetic energy.
Finite Element Grouping Elements This stationary condition is attained in the dynamic
Discretization to Strips programming approach here. Total functional L is

expressed as the sun of one of each strips as follows:
Fig.1 Discretizatoni and Strips

L(uI1 -. ) n n n+ =n - (&2Tn-Un+Vn) (13)
Since the total potential energy of the system, J, n=

can be obtained by the sum of the potential energy of
each strip n, Jv, as where UA and Vrc are defined by (la,b) and

N-1 -

J(Ul,..,UN)n.Jn( Un,Un+l) (UVn) (2) Tn=(1/2) [un un+ 1 [ M11(n) n n (14)

According to the principle of minimum potential energy,
the minimization problem In this case, force vectors P (n) and P 2(n) in V
mn . [ 1 +( satisfy the self-equilibrium ondition;

u+V-2+.. NVNI=O or Pl(n)+P 2 (n-1):o (15)

must be solved to obtain the nodal displacements. To
accomplish this minimization by dynamic programming, Introduction of new functional defined by
the following functional fn(un) is introduced.

N-1uU ) (4) gn( )=stationaryu (j=n+t,..,N) L L (UiUi+1)  (16)
fn( Un) =minu (J=n+l, ., N)z-Ji (Usvil 

=-

n jin gives the recurrsive formulation for stationary problem

From the definition of f", the recurrsive formulation of functional L,
for the minimization problem (3) is obtained as
fn(un)=min unt+1Jn(Un ,un l fn )+f (Un+ ) () n (n) =stationar n+1 Ln (un un+ )+g+l(U+I)] (17)

and then the stationary condition for these subproblems
and the necessary condition of minimization can be are
written as

Jn/4Un+l + dfn l/du+=O (6) 11n/AUn+l + dg+l/dUn+l = 0 (18)

As far as linear elastic systems are concerned, the For the linear elastic systems, a following quadratic
functional f" should be expressed as a quadratic form form can be suitably employed for gn:
of un as follows:

fn(Un)=(1/2)unRnU + u r° (1/2)30 (7) gn(Un )=(1/2)un[ 2 Sn-Rnun-u n- Jsn-r n].(1/2)tn (19)
nnun n n n

where the matrices I, vectors rf, and scalars 34 are Thus the stationary condition (17) becomes
to be determined later. Using (1) and (7), the
necessary condition (6) is expressed explicitely as [{K22(n)+Rnn- 1 {)22 (n)+S1 )n

u_ .- EK (n)+R°_ ])[K 2 (n)u_+r° [-P)(n)n (8) 2K21(n) (20)
+, z 22 . . ln) 221 M21 %[P2()rn. l2n+31 ] 0

13-14



Substituting (19) and (20) into (17) and comparing the HK (n)+Ifn+-}.(KG (n)+ flcorresponding coefficients, the final form of governing 22 n+1 22 +3n.1 n
equations are obtained as +[K2 1 (n)-K2l(n) n (31)
[ K22 (n)+R n+1 )-?{M22 (n)+Sr,+ 1 }]Un+ 1  e

Iln=K 1 (n)-2K 12 (n)A(n)Ki,(n )

[K2 1(n)-) 2M 2 1 (n) ]Un 0 (21) n K2(n)A(n)(K 22(n)11 n+1 A(n)K 21(n)

Rn K11 (n)-2K12 (n) 22 (n)+Rn+i)BnCn K (n)-2KG (n)A(n)Ke1 (n) (32)n11 1 CCn[2 l%%"= 11 ef 12 21(n ef(2

SnM 11(n)-2M12 (n)B nCn+CnBn[ M 2 2(n)+Sn+1]BnCn  +K12 (n)A(n)[K 22(n)+ 1A(n)K21(n)

r n=O , SnzO , t n=0 I Y=0 I SN=O (22) %n=0 , Tn=O , n=O ' Y O 19 N =0

Bn=( K22 (n)+Rn+1).U{M22 (n)+Sn+1}]-i where 1Cn=K21 (n)- M21 (n) n= 1,2,....N-I A(n)=[{K2 ()n+i )-A{K 22 (n)+Y'+ -

The non-trivial conditions for (21) K e(nK(n)K WGj(n)
2 ij ij+ } i,j=1,2

det[K 22 (n)R 11 2 1=0n=,2,..,N-1 (23) The non-trivial condition of (31) is the characteristic

are the characteristic equations for free vibration equation as
problem. det[({K(n)+R+}.A{K2(n)+Sn fl-a (33)

22n " 2 2(n n,1)0(3
The minimum value of ' which satisfies (33) is the load
multiplier corresponding to the initial stress field.

EULER BUCKLING PROBLEM

Let the incremental potential energy referred to a
certain equilibrium configuration with initial stress
be OPTIMIZATION OF DISCRETIZATION TOPOL

IT =2 Tn(unPu n+l): (Un-WWn) (24) The accuracy of the finite element solution and the
value of the functional obtained deeply, depend upon
the discretization used. Since the solution obtained

where un is the incremental displacement. The by the finite element procedure of Ritz type has the
incremental strain energy Un has the same form as (1a) bounding property of the real solution, the improvement
and the work done by the initial stress is written as of the accuracy of the solution is achieved by
follows: improving the value of the functional obtained with

respect to the disCretization topology. In this
section, the multistage structure of the topological

Wn=(l/2)[un un+1)I K 11(n) K12 (n)l u n (25) optimization problem of the finite element
I 1 11discretization is revealed.

[kL_(n) KG(n)J L uJ
21 2 n+STATIC EUJILIBRIU4 PRBLMM

According to the prinniple of minimum potential energy,The newly introduced functional hriand its recurrence the solution of finite element displacement method
expression, gives the upper-bound of the exact one. Then, the

improvement of the solution is done by minimizing the
hn ) uj(Jzn+l,..,N) Wi(ui,ui+i) (26) total potential energy, J with respect to the

discretization topology, d, that is,

hn(un)=minun 1 [T n(un ,un+l)+hn+ (u+ I)] (27) J mrmin. (34)

give the dynamic programming formulation of the Noting that the external force vector at the column n,
problem. The necessary condition of the minimization Po,and the internal force vector transferred to the
is written by strip n-i, PN(n-1) are related by
-67 u/U + dh /du 0 (28) P2(n-1)=Pn-Pl(n)

n n+1 n+1 n.1 2 n
Since the problem is concerned with the linear elastic Pn+K2 (n)K 2 2 (n)R ]lr° "P2 (n)]r (3 5
system subject to sall displacement, we can assume a n - n
quadratic form for hn: and the stiffness matrices of the strip n, Kij(n)

i,J=1,2 are assumed to depend upon the finitA element

hn n n n n nUnn-n]+(1/2)Tn  (29) dicretization topology dn, then (35) may be fbrmally
described as

Thus the necessary condition (28) becomes

C(K2(n) + 1 'A{KG(n) r1 U P2 2(n-1)=P2(n-1)(d,P(n)) (36)

22 n+1 22 n-i ]n-i
Similarly, ti. potential energy for the strip n, J" is

.CK21 (n)-,KG- (n)lun [F ri- + 0 I(30) written as
Substitution (29) and (30) into (27) and narison of Jn=Jn(dnP2(n))  (37)
the coefficients lead the fbllowing governing
equations: In order to formulate the optimization process as
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multistage process, the following functional is
introduced: R( Rn+ S n+1 ):min ...dn Pdivl ,dn, Rn+ 1 ,S n+1)

SJ (d ()) ( mind(i=1"N-)RN)(Rn+'Sn+)
F n (38in jJ=l,..,n= 2

Applying this decomposition to each step successively,
which can be rewritten in the recurrence form, the multistage decision process which minimizes the

Rayleigh quotient with respect to discretization

Fn(P2(n))=min dn[J n(d n,P 2(n))+F n1(P 2(n-i))] (39) topology is written as

The initial condition of the subproblems (39) is d (R2,S2 )=argmin dR)(d1,R2, S2

FI (P2 (1))=mind 1 J1 (dilP 2( )) (40a) ....

and the initial condition of the transformation (36) dnl(Rn+1 ,S 4 )=argmind RO(d* ,..,d 11 d R ',d) (
is

P2 (N)PN (40b) d l(RN,SN)=argmind Ra(d-,...,d ; 2,dNI,RN,SN)
- N-i

The mathematical structure expressed by (36) to (40) is
a serial multistage decision process so that the s.t.

dynamic programming procedure can be easily applied. Rn=Rn(Rn+1, Sn+ , dn),(48O

FREE VIBRATION PROBLEM ,S (R S dO (48)
Though the functional L is regarded as a functional for Sn= n n+1'n+)' n)
the free vibration analysis, an alternative functional The precise expressions of (48) are the first and the
referred as Rayleigh quotient is suitable for the second equations of (32). This problem has the
optimization problem[8]. The value of minimized multistage structure of serial type and is easily
Rayleigh quotient gives the square of fundamental solved by the dynamic programming procedure.
circular frequency and its approximated version This multistage decision problem (47) and (48) has
obtained by finite element procedure ensures the state variables R"i , S ¢t and the growth of their
upper-bound of the exact one. It is reasonable in this dimension pulls up the computational effort of the
context that the further Rayleigh quotient is dynamic programming procedure rapidly. To overcome
minimized, the more accurate solution is obtained. The this trouble, a tactical simplification technique is
principle for the Rayleigh quotient is written as proposed. Consider the modified two-stage decision
follows: process which puts the additional constraint u" =0

mn (41) onto the original problem (46). Denoting the
R U /T d -- eigenvalue of the original problem a) and of modified

problemi, then it is known that the following
where relations exists[9]:

n W Tn M>() (49)

Ut U n =1 TThis additional constraint is equivalent to the

restriction of the state variables into Rw ! =
0
, Sn,=O

Since the matrix K6(n) is the function of the and the original problem is modified into the simpler
discretization toplogy of the strip n, dn, and the problem.
strain energy U is decomposed as

(42)i~d! d1-=argmind dn(dl,.. dn ,0,0)=U I . N =Un+  (42) t9n iPOdnnP(50)

tn11, ,N-ar ind (j=n+1,.,N-I) 1R', ,n' n+1, n

The second term of (42) can be assued to be the Applying this technique successively, the simplified
quadratic form of R I multistage decision process is given.

nU=2_ Ui(d) + j1'L lU Rn~u (43) dlnagidP(1,,n 1,d,0,) (51)

41 nin n

Similarly, the kinetic energy can be expressed as EULER BUCKLING PROBLEM

The minimum load multiplier can be expressed as the

T:? Ti(di) + n.1 ' 1n+1= n+1'4.iun+1 (44) minimum value of the energy quotient Rt,

RW : U / W (52)

Then, the Rayleigh quotient has the form
with respect to the displacement vector. It is

%^Jdl,..,d nRr 1 ,Sn+ I)  reasonable that the minimum load multiplier, that is,
n .n eigenvalue should be as low as possible, since the

2'[1TT 1] T (45) eigenvalue due to the approximate eigenvector is proved
= /+1 A041to be always an upper-bound to the true one in the

displacement method.
where matrices R%+j, S ow are dependent on the From the viewpoint of finite element analysis,
discretizatlon topologies dw.., ... ,d*4 implicitely. Euler buckling problem has formally the same
The minimization problem of the fumtional (45) is mathematical structure as to the free vibration problem
easily transformed into two-stage decision process as when replacing the mass matrix with the geometrical
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stiffness matrix. But it is easily shown that the Since Au'r,,d oticued, d
relation between the geometrical stiffness matrix and the mii~zion R 1,r,.e dof ntg i qcuen can be ,

the discretization topology is more complicated than deopsdnotw-ag dcion rce;
that of mass matrix. While the mass matrices Nij (n) dcmoe notosaedcso rcs*

deedonly on the discretization topology ?fthe strip W A(UO R 0  ,r0  ,Rn 1,r+
n,4, the geometrical stiffness matrices K4 (n) depend no.11 n+1 n+1 1 n+

not only on the topology dI but also on the initial m 0 r

stress field in the strip n corresponding to the stable =mnd1'..d ,%dl,, nl n+ 1',n+l'n. Snl

equilibrium configuration,ti,, . This stress field is mi A(59)
calculated frcm the stable displacement vectors of the mid (izl,.,N1)
strip n, um, u. I which are governed by (8) so that the Sie u ., 0R R 0

geometrical stiffness matrices may be expressed d io pe yn n +1

formally as follows:

. 0 0 0 The successive application of this decomposition gives

KG (n)=KGj (n)(dn,un R n+ rn1 i,j=1,2 (53) the multistage expression of the optimal discretization
ii iiproblem';

The incremental strain energy U and the work W may 0 u 0 o 0  1

be described by m(n ri'n+l' n+lrn+1'Rn+1'Sn+l)

noU (d =argmin R7,(d* Id* ,d U 1 , o -, i --
s n n n 0 0 () d n n" n n+n'n+ nn+1'Rn+1 ( )

WnWrn (d ,n fiuuaRio-1  T) s.t. srsil s(60)
aEqs.(8) and (9) are also rewritten as follows: n+ (61)

nhn nucssv npplatin ofS. (61)eopsiin ie
9,- (d d o ;=o

Kn+f zni (nt( n n'. nr+ )  
(55a)5 and the equations (55a',bc).

R0 R0  , 0  ) This multistage decision process has too many
n;= n dn'R+1) (55b) state variables to be solved directly and, similar to

ro o 0 0 the free vibration problem, we employ the state

r inr(dn Ral+ rn+ 1) (55c) variables reduction strategyenrg. The topologies which

Accrdng o he ecmpsitonuse i th feeare implicitely included in the state variables uf*j'~~
Aoh+ 1 are replaced by the initial estimate
vibration problem, U and W are modified into dd) , ... 4 anthe second estimate is derived

1) ,

from the simplifed multistage decision process;
U =U (d + (5b)U s(dt (2 lya

- -n-- -J d*(2)argmind RPA(d1l (2 . idn #

N- (56) n
0 0 0 0 0 0 0r0u~), Ro(') ,001) n-' ne0 (62)

W=rn I(an, iR +1 , 
ril n+1 W(55ej+,r+ ) varible reui n 1 stratey l] The1 topi eswhc

Although the strain energy U is decomposed into two The simplified problem is solved iteratively by

parts, one part which includes di, ... ,dn and the replacing the previous estimate with current one. As

other part which does not, the work W is not decomposed the solution obtained by the simplified problem depends

in such manner. Then, the energy quotient Rdn can not upon the initial estimate, it is required to start this

have the same form as the Rayleigh quotient Rein (4)5). process from the several initials and pick up the best

Thus, it is clarified that the Euler buckling problem one.
has not the same structure as the free vibration
problem in the optimal discretization problem.

The reason why the Euler buckling problem has the NUMERICAL EXAM PLES
more complicated mathematical structure is in the In order to demonstrate the improvement of the accuracy
existence of the two kind of the state transition; one o o,

isho~ the tin f r n to n ad e o he is the ofthe sluion byobe topooglv oiizeatiely sipl

psth e direction. o onue d the anheruis the numerical examples of two-dimensional system are
inverse transformation of state variables uR is pnted.

oppoethe direction. o conh e r tyl is diulty R the() proesn mted seeajntasadpc ptebs

introduced:

0 0 0 0OO0
un~un(dn u~,V.~n1 (55a') STATIC EQUILIBRIUM PROBLE hwni ig2 hConsider the cantilever beas

discretization shown in Fig.3 (A) is the regular
Tbis Is a formal presentation of inverse transformation topology and (B) is the symmetric topology with respect
of (55a) and the more details is found in Ref.[1O). to the neutral axis. Fig.3 (C) and (D) show the
The state transition rules (55a',bc) modify the discretization topologies attained the maximum and
expression of work Wi and energy quotient R7 . minimum potential energy levels, respectively. The

00 dicretization with optimal topology (D) gives the
W W i p. ' (56r 16.7% lower potential energy level than that of (C),

Sthough the popular discretizations (A) and (B) give the
potential level fairly close to that of (C). To

is t (di Xnn a ( t illustrate the improvement of the solution, Fig.4 and
oppst ir . n nushow the deflection curve at the neutral axis and the

rid 0 ,R 1 r 1 .- (57) bending stress on the surface obtained with the
( d ,+u (37 discretization (A), (D), and the finer discretization

ine i fs 1, fl which has twice the number of the elements (E). These

where- jU j1.Un results show that the topological optimization leads
Un=Un fn 1 n en ne-ithe remarkable improvement of the accuracy in the

(58) coarse discretization.

This is a f rmal resntaino nes rnfrain tplg nd()i h ymti1oooywt epc

of(5a)an te or dtalsIsfun i Rf.10. o henetrlaxs.Fi.3(C ad3D)shw7h

Th sat tasiio rle 55' b~) Modf h ieeiaintploisatie h aiu n
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Fig. 2 Cantilever Beam Under End Load -5
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Fig. 3 Discretization for
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1.0 -Fig. 7 Discretizatin for Free Vibration Analysis

2.0 0.

3.0 -0.6- I

,.0 0.4 ,
-SERIES SOLUTION

0 CONVENTIONAL MODEL 0.2-

• 10I .FIN MODEL J 00 02 O, 06 O, 10%5.0 *OPTIMAL MODEL

*FINE MODEL

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 4 Deflection Curve Fig. 5 Bending Stress EXACT

of the Neutral Axis on the Surface
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Consider the In-plane vibration of two-dimensional Fig. 8 Fundamental Vibration Mode
model shown in Fig.6. The discretization shown in
Fig.7 (A), (B), and (C) are the coarse models with 18
nodes and 20 elements. Fig.7 (A) is the regular
topology and (B) is the symmetric topology. Fig.7 (C)
is the optimal topology of the coarse model. The
discretizations Fig.7 (A) and (B) give the 5.6% and
6.6% higher eigenfrequencies than the optimal one of Table 1 Natural Frequency Ratio
(C), respectively. The discretization Fig.7 (D), (E), of Camped-Free Uniform Structure
and (F) are the finer models with twice the number of Oscretization (A) (0) (C) (0) (E) (F) Exact
t h e e l e m e n t s a n d t h e d i s c r e t i z a t i o n ( F ) w h i c h h a s t h e -...

similar topology to the optimal one of the coarse model Nunbe 20 20 20 40 40 40
gives the most accurate solution aon r the three. The n: er o1 is 1 18 30 30 0
r e s u l t s b y t h e s e m o d e l s a r e s u m m a r i z e d i n t h e T a b l e 1 , N o e
wher 13 calculated by the beam theory. Fig.8 Frequency w 1.390 1.403 1.316 1.251 1.260 1.224 1.176

shows t%"X% = n ,tal vibration mode of the 
W a/W c 1.056 1.066 i. .951 .957 .930

discretizations (B), (C) and the exact solution. / 1.12 11T1.119 1.064 1.071 1.04 1 1.
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EULER BUCKLING PROBLEM Table 2 Buckling Load Ratio
An in-plane buckling for the same structure as the of Uniform Structure
previous example subjected to the uniform load at the
free end as shown in Fig.9 is discussed. The DISCRE- A R I I n E THEORY
discretization Fig.10 (A), (B), (C), and (D) are coarse AON, .ENTS 0 E TS DNO I
models with the 18 nodes and 20 elements. Fig.10 (A) P x19 .2104 .21341 .2066 .1900 .17071.17221.16891.1639.13821.14 .131.88i -893T '906 .8891 .8631
is the regular topology and (B), (C) are the symmetric . 4 i 1123 1.08 -
regular topologies. Fig.1O (D) is the optimal topology PE/P 1.2 1 1.302 1.261 1.159 1.0,i1 1.0511031 1. -
for the coarse model. The regular and symmetric P/ Lo, 1.522I 154411.49S 1.375 1.235 1.2 4611.222 1.186 1.
regular discretization (A), (B), and (C) give the
11.4%, 12.3%, and 8.8% higher buckling load than that
of the optimal topology (D). It is interesting that CONCLUSIONS
one of the symmetric regular topology (B) is more
discouraging than the regular one (A) and (C) is more This paper presents the basic investigation concerning
encouraging than (A). The discretization (E), (F), the relation between the accuracy of the finite element
(G), and (H) are the fine models with 30 nodes and 40 solution and the discretization topology which has not
elements and these models have the topologies similar discussed enough in the p;st. In order to clarify the
to the coarse models (A), (B), (C), and (D), relation between the functional to be minimized and the
respectively. In this case, the fine model similar to discretization topology, the dynamic programing
the optimal one in the coarse model is also the optimal procedure for the finite element analysis proposed by
topology in the fine model. The results by these Distefano et al. is extended to the free vibrationmodels are summarized in the Table 2, where Por i

Thrw e o is analysis and the Euler buckling analysis. It iselementary solution. revealed that the optimal discretization problem for
the static stress analysis has the structure of simple

--- serial multistage decision process and the problem for
-Y -- L the free vibration and the Euler buckling problem haveSalso the structure of multistage decision process which

,L/5 are not so simple as the statical stress analysis.

. 5 X Though these eigenvalue problems have the same form for
t finite element analysis problem, they are
essentially different in mathematical structures for
the optimal discretization problem. Some numericalFig. 9 Uniform Structure Under Uniform Axial Load examples illustrate the remarkable improvement of the
accuracy of the solution by the topological
optimization showing that the importance of the
topology in the finite element modeling.
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Sumr Optimization Problems and Design Variables

This study deals with the problem optimising grain For the composite material structures, we can
dispersed and fiber reinforced material structures. take into account the following design problems
The optimization procedure is presented for the cases (i) Minimum weight design problem.
of the minimum weight and the maximum stiffness de- (ii) Maximum stiffness design problem.
signs of structures. In these cases the design varia- On the other hand, many factors as illustrated in Table
bles are volume percents of grain or fiber in several 1 influence to the weight or stiffness of the compos-
parts of structure and it is subjected to strength or ite material structures. That is, all the factor7 in
volume constraint. The relations between the design Table 1 will be considered as the design variable3 in
variables and the mechanical properties of composite the above mentioned problems.
materials are very important to formulate the design On the design constraint conditions, we can con-
problems. To obtain the relations, a new simulation sider the following conditions :
technique'plying the Monte Carlo method is introduced (1) Constraint condition of strength : This means that
to the gfai dispersed materials and the well-known an equivalent stress o at an optional point in struc-

law of mixtutt used for the fiber reinforced materials. ture must be smaller than a given stress limit o.
The procedure is applied to triangular and canti- a - c

lever beams made of SAP ( Sintered Aluminum Powder ) or (2) Constraint condition of stiffness : this means
GFRP ( Glass Fiber Reinforced Plastic). The finite el- that a displacement 6 at an optional point instructure
ement method is used to obtain the stress distribu- must be smaller than a displacement limit Sc
tions and the strain energies of these structures, and 6 g 6c
furthermore several non-linear programming techniques (3) Constraint condition of weight : This means that a

are used to search a numerical optimum value of volume total weight W of structure must be smaller than a
percent. It is shown that the results obtained for the given weight limit We :
grain dispersed mateial are very similar to those of W --5 WC
the fiber reinforced materials for the same design (4) Other constraint conditions, e.g. limitations on

problem, cost of structure or volume percent and orientation of
second phase in composite material.

Introduction Thus, the design problems optimising the compos-
ite material structures are to optimise the previously

In recent years, considerable attention has been presented problems (i) and (ii), of which the design
focused on the use of composite materials in several variables must be chosen from one shown in Table 1,
structures as airplane or automobile. Therefore, if subjected to the constraint conditions (1) to (4). We
effective design procedures are applied for these com- can, however, consider a large number of cases for
posite structures, the weights will be saved due to such problems. Then, in this paper, though a procerure
their high strength to weight ratio. optimising structure is considered for the design

Kicher and Chao (1) developed an optimum design problems (i) and (ii), the structure is made of only
method for the fiber reinforcer composite cylindrical the grain dispersed or the continuous fiber reinforced
shells, that are designed to satisfy the limiting material. Furthermore, the second phase content or fi-
stress and instability constraints. Cairo and Hadcock ber orientation is considered as the design variables.
(2), and Cairo (3) have presented a procedure to se- In the folrowing chapters, the formulation for such
lect an optimum layup of preselected orientations of problems will be presented in detail for the struc-
boron epoxy laminates for a single element. The tech- tures'of grain dispersed and fiber reinforced cnmpos-
nique was applied by Lansing et al. (C4) to design wing ite materials, respectively.
and empennage structures. Khot et aZ. (5) presented an
optimization method for the minimum weight design of Structure of Grain Dispersed Composite Material
structures made from fiber reinforced composite mate-
rials. McKeown C6) developed a technique optimising Formulation of Design Problems
multilaminar fiber-reinforced continua with object of
maximum stiffness. In these techniqu-s, however, the As shown in Fig. 1, a structure is divided into
analysed structures are only made of fiber reinforced many finite elements and each of them is made of the
materills and furthermore the load conditions or the grain dispersed material of grain content Vgi . For
shapes are specified for the special cases, this structure, if the shape and the load condition

In this paper, an effective optimization method are fixed, the previously presented design problems
is presented for the minimum weight or the maximum (i) and (ii) will be formulated concrelely as follows
stiffness design problem of structures, which are made (i) Minimum weight design problemn
of grain dispersed or fiber reinforced composite mate- min W = n gi +T( i-yVgi )0 (1)
rial and the shapes are optional but excepted from the
design variables. The design variables are the con- subject to oi 1 

0Bi (2)
tents of second phase materials and the optimization ii) Maximum stiffness design problem
technique is based on the finite element method and i 1 T
several non-linear programming methods. By using the m =(
presented technique, the material compositions in tri- subject to oi - aBi or W .4 Wc (4)
angular and cantilever beams are optimized and the re- :: re, W and U are total weight and strain energy of
sults presented. structure, respectively. Eq.(3) is due to the fact (7)

that the maximum stiffness design problem is equal to
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Table 1. Factors Influencing mechanical properties
of composite materials

Q Mechanical Properties of matrix and second phase 0
Young's modulus, Poisson's ratio, Tensile strength, etc.

O Shapes of second phase
Micro-balloon, Grain, Fiber, Flake, etc.

( Construction types of second phase in matrix 9

Uniform or unidirectional distribution, Random distribution,

Laminate type, etc.

Q Volume percent of second phase

Boundary conditions between matrix and second phase, Effect

of void and crack, etc. B

Fig. 1 Grain dispersed composite material
minimize the total strain energy of structure. ym and
yg are specific weights of matrix and grain. ai , OBi
{Oj} and {tj} indicate equivalent stress, critical dx
strength, stress and strain vectors in element i, re- q
spectively. Vi is volume of element i I I

Furthermore, the constraint condition of weight
in Eq. (4) can be rewritten to the following form by .. .-* - -...... t
using grain volume percent : ' - -

n n V"E Vi Vg /i Z - Vgc (5) -< // /, I -

1 > V i = (6)/ /
Where, V& is ?he volume limit of grain corresponding - -
to Wc . nthe other hand, the constraint condition of // / -

strength in Eq. (2) or (4) is given by using the von
Mises criterion and the equation is~ 2+ a .2_ (77711, 2i - i %

0
2 i. = Bi (77)

Where, lij anc 02i are two principal stresses in el- - - - -

ement i.

Formulation of Material Properties

In order to analyse the design problems (i) and
(ii) presented in the previous section, the two-dimen- 

-sional finite element method is used, and in the for- /
mulas the well-known stress-strain matrix, which con- - - - 7

tains the material properties, is introduced. There-
fore, the mechanical properties as Young's modulus E,
Poisson's ratio v and 'ritical strength OB of compos- r Dispersed phase material, Matrix material
ite material must bc determined in the closed form of
grain volume percent Vg. That is, the following equa-
tions must be formulated concretely f(Vg) ),) Fig. 2 Simulation model of grain dispersed
But, to determine theoretically these equations for composite materials
the several composite materials is very difficult for
the present. Then, a model simulating grain dispersed
material is used here C8). The Monte Carlo method and
the finite element method are applied to the model. Optimization Techniques
From the analytical result the above mentioned elastic
properties E and v are estimated numerically. Figure 2 Previously presented problems (i) and (ii) are
shows the simulation model, in which matrix and grain non-linear optimization problems with constraint con-
are corresponding to the small square elements. These ditions on the design variables Vg2. For such prob-
locations in the model are determined by using the lems, many useful non-linear optimization methods C9)
random numbers generateu by computer and the number of are studied. In this paper, the sequential linear pro-
grain elements is limited by Vgc. If this model is granming (SLP), the reduced gradient method (R G meth-
loaded uniformly as shown in Fig.2 and the correspond- od) and the Rosenbrock method using the sequential un-
ing displacements iny andx directions are calculated, constrained minimization technique are used. From the
Eand v of the model will be obtained easily from these results obtained by these methods, the effectiveness
values. Thus, from the many estimated values f, and f2  will be compared each other.
can be determined. On the other hand, the equation f,
for aB can be estimated by using the repeated experi- Numerical Examples
mental data of oB for the grain dispersed composite
materials. By using the above mentioned technique, the com-

posite material structures made from SAP (Sinted Alu-
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minium Powder Product ) are optimized. The grain and
Table 2. Mecianical properties of aluminium grain the matrix composing SAP have the mechanical proper-

and alumina constructing SAP ties as shown in Table 2. These values are used for
the simulation model in Fig.2 and the mechanical prop-
erties E and v of SAP are estimated. Figure 3 shows

VOU g $ Ul 'S ISo-$ 'at.*e Sptcric *eghl the results. In this figure, continuous lines are the
OPO Mot/,,2) N- I,,,

3
) curves approximated by using the least square method

IAlurnmrum 70.61 [7200) 0-33 12.16M1O (2.7x10-
6

) for the estimated values and given as
Alumina (A1204) 393 25 (40i00) 0.20 __3.9z10- (4.0,o10 f, (Vg ) = 7200 + 89.95 V!g+ 2. 39lVg 2  

(11)

f2 (V) = 0.33 -2.675 X10-2Vg +1. 357 .l0-Vg
2 (12)

Similarly, f 3 is determined from the reported data as
shown in Fig.4 and expressed in the form:

.10'! .10 f, (Vg) = 9.759 +5.402 Vg12+ . 4
6
13V (13)

40 I 40104V
-E Example 1 As the first example, a triangular beam
Eas shown in Fi.5, that is subdivided to two elements

W and loaded by a load P at the end, is considered. Fig-

LL) E ures 6 and 7 show the results for the minimum vw.itift

3.0- 30 0.3 design problem. The former figure is correspond to the

3.0 3.0 i03

10. 1. 0. element 2

equation
elelment I

0 0 0.2 0. q06 0.8 1.09
V9

Fig. 3 Estimated E v and these equation

Fig. 5 Triangular beam subjected to load P

X10 i xld Br(Vg) 9.759 5.402 Vg"' *O.4613Vg SUMT-Rosenbrock
4.0- 4.0F PPM7 SLP

E APP-M27

1-1.0 :rue -. iil onM(''In equations -

3 0.0 0.10 00.2 Otiu pit

Fig. 6 Design plane, constadsouin o

jL 03- 3 . .
0 0.05--- 0.1 0.A .15 ~ V9- I-p m on



0.06.073 S \

Zm 6 "0 
14

1 1

Fig. i0 Cantilever beam subjected to load PP

Fig.7 Grain contents for minimum weight design problem y#

- SUMT-Rosenbrock 0

SLP

0.2 -RG 0__ 0266 __._ 1 \0.
0 00206 0.0221 0,0118 0.001.6

Objective function 
P

U corlst

Fig. 11 Grain contents for minimum weight design

(Optimum point) problem

I nit 0.1 0.250.2 0y0251 005915a

(Initial point) Vgl 0.017 77,

Fig. 6 Design plane, constraints and solutions for 0
maximum stiffness design problem 010050 0.0065 0 .0S2

0 00630 0.0566 0.0563 00562

01300 0.015 0.0793

Fig. 12 Grain contents for maximum stiffness

design problem

Vg 1 0.0

process seeking an optimum solution and the latter is

the graphically presented result of the solution. Sim-

ilarly, figures 8and9 show the seeking process of so-
0. 2 lution and the result for the maximum stiffness design

problem. In this problem, Vgc is limited as 0.2.

0 From Figs.6 and 8, it is recognized that all the seek-

ing techniques (SLP, RG and Rosenbrock methods ) seek
exactly the optimum solution, but the number of seek-
ing steps are very different among these techniques.

Fig.9 Grain contents for maximum stiffness design Furthermore, it is obvious from Figs. 7 and 9 that the
problem grains distribute in high density in the element sub-

jected to high stress. This tendensy is remarkable for
the solution of maximum stiffness design.
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Example 2 The second example isa cantilever beam rion for anisotropic material. In the form, { r}iT=
as shown in Fig.lO, that is subdivided to 16 elements. [o'L ,oTi , TLmi. O i ,oTi and %T i are the normal and
All the conditions to calculate this example are equal shearing stresses in the principal directions L and T
to those of the first example. Figures 11 and 12 show in element i , respectively. These stresses can be
graphically the optimum solutions for the minimum presented as the following form by using the x-y coor-
weight andthe maximum stiffness designs, respectively. dinate stresses {xY}i :
From these results, we can also recognized the tenden- {OLT}I = [M1{o1C I (21)
cy presented previously for the grain distribution of where
the first example. w Z2 1.

2  
-2Z- 1

Structure of Fiber Reinforced Composite Materials [ M) = lim 1i I i = cosenZL mv -Lm (lij inJ , m= sinOi

Formulation of Design Problems Furthermore, Fi and Fri are the tensile strengths in
the directions L and T in element i . F.i indicates

Consider a two-dimensional structure reinforced the shearing strength between matrix and fiber. All
by fibers as shown in Fig. 13. If the shape and the the values depend on the fiber volume percent Vfi and
load condition of the structure are fixed, the previ- will be formulated in detail at the next section.
ously mentioned minimum weight and the maximum stiff-
ness design problems will be formulated as follows : Formulation of Material Properties

(i) Minimum weight design problem
n Let's consider to formulate the material proper-

min W =J1 u{Yf Vfj+Y(l-Vf-)} (14) ties as young's modulus, Poisson's ratio and breaking
strength of the fiber reinforced composite materials.

subject to oG - OBi (15) These properties depend not only the material proper-
ties of matrix and fiber but also Vf. On the elastic(it) Maximum stiffness design problem properties, the following formulas are known, that

n1 T were considered by Yaawaki 10 )min U E1 Vi {i] i) (16)F,(l-Vf)

subject to Gi 
< 
OBi or W =W (17) Ef mF

where, f is specific weight of fiber and Vfi is fiber E = (-c) Vf
content in element i. On the constraint condition of E, -fEf(I-Vf)
weight in Eq. (17), the following formulas will be
given by using Vfi : + {fVf + E (l-Vf

n n
*V Vfi / Evi < Vf, (18) VLT = (1c)(\fVf+ Vm(l-Vf) I (22)

l vfEfVf + %BEM ( 1 -Vf)
1>Vfj = 0 (19) +c

where, Vfc is the volume limit of fiber corresponding EfVf + FM II-VfI

to Wc. On the other hand, the constraint condition of
strength in Eq.(15) or (17) will be given as follow: OL (-c) OfOm

Hi(Vfi, S ) 6 - 0 (20) GMVf + Gf(l-Vf

- (Li 
2 

(FV)( oi OTj +Cf Cfqf+ Gm(I-Vf)
i(Vf{ , V) . . . . F ) where, _, G, , \,, Gf and Gm are the longitudinal

,i i F i /  elastic moduli, Poisson's ratio and transverse elastic

+ (FTi + ( r F- -iist moduli of fiber and matri , respectively. Moreover,
i is the coefficient depe ding on the distance between
fibers. For example, the val4e Por the composite ma-

This is an application form of the Hill's yield crite- terial of glass and epoxy resin is given as

c = o.4Vf - 0.025 (23)

D On the other hand, the breaking strength FLi, Friq and FL1-j in Eq. (20) are not formulated theoretically
qup to the present. Then, the following equations are

assumed here :

FL = oft Vf + 0, (1-Vf) ,(2)

(FT)M

SVfi L " where, the first equation is an application form of
the well-known law of mixture for the strength of com-
posite material. aft and am are the tensile strength
of fiber and the yielding point of matrix, respective-

- _ Xly. Tm  is the shearing strength at the boundary be-
0 tween fiber and matrix.

Optimization Techniques

B All the problems formulated in Eqs. (l4) to (17)
are non-linear optimum problems with the constraint
conditions. Therefore, the optimization techniques
discribed previously for the grain dispersed composite

Fig. 13 Fiber reinforced composite material materials can be used also for these problems. But the
number of design variables, which indicate the fiber
volume percent Vfi and the orientation ei , are twice
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of those of the grain dispersed composite material, results, it is obvious that the fibers distribute in
Then, consider the following assumption to decrease high density in the elements subjected to high stress-
the design variables : es. This tendency is seen for all the examples present-

Reinforceing fiber alway distributes in the di- ed previously. Therefore, it will be concluded that
rection of maximum stress in the etement. the solution for the minimum weight design is nearly

Up to the present, this has been verified nearly from equal to one of the maximum stiffness design.
the phenomenal fact ll) for the fiber distributions
in the biomaterials as bone or wood. If this assump- Conclusion
tion is applied to the design problem, the number of
design variables will be decreased because 6i is de- It has been demonstrated in this paper that a op-
cided only by the stress distributions. Figure l4 shows timization procedure based on the finite element meth-
the computational process for the design problems by od and numerical search techniques can be used suc-
using the assumption. cessfully to optimize practical structures with com-

posite materials. The optimization procedure is pre-
Numerical Examples

Example I The first example is the same triangu-
lar beam as shown in Fig. 5. The beam is composed of
epoxy resin and glass fiber with the composition in

Table 3. Figures 15 and 16 show the seeking process,
in which the Rosenbrock method only is used, to obtain I point)
the solution for the minimum weight design and the re- 0.4-ntlt
sult. On the other hand, figures 17 and 18 show those
of the maximum stiffness design, where Vfc is given as
0.4. From Figs. 16 and 18, it is recognized that the
fiber distributions are very similar each other. The
results also are similar to those of grain dispersed
composite material as shown in Figs. 7 and 9 A, "xI/ \\ "W const . ,

Example 2 As the second example, the cantilever HI ,
beam as shown in Fig.10 is considered. All the condi- X

tions to calculate this example are equal to those of / /
the first example. Figures 19 and 20 show graphically / int)
the optimum solutions for the minimum weight and the p
maximum stiffness designs, respectively. From these / / /2 0 ,

0 0.2 0.4 0.6

Calcu lation of s t~ I  (a)
distribution of a
isotropic material

Determination of i 1 Region A
maximum stress directioni 

0.2 R

Calculation of Vf. by
minimum optimization of WT

Re-calculation of stress 0.15-

distibution by using 
ew

4odification of '
Yea

"o 0.11

STOP Hi

Fig. 14 Computational process for fiber reinforced
composite material structure 0.05,

00H20

Table 3. Mechanical properties of glass fiber and !
epoxy resin constructing GFRP (Optnmumi

"G.44)0.05 . 0.15 Vii
Mrix it,. 343 O,,wt IS , f0l/,. iSog

x___ r ! ! . atswO: 270 !,- 3 & - 2 00 & -0 , l jxt$ 1.,r "  (b )

Fibe Jd,72.7 y 22 M , -19. 1120 I 2SSP '?.
_ -u ( -16 10 260.0 Fig.15 Design plane, constraints and solutions for

minimum weight design problem
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scale - Vf = 0.01 Y scale: - VO O.01
y'

0\ "

/ Fig. 19 Fiber contents for minimum weight
-X design problem

0

Fig.1
6 

Fiber contents for minimum weight design 
Composite model , --- Isotropic model

problem scale Vt 0.1. a OilPtl) 1.0

08 /, UIU.. 01

06 01483

V" c U

0.inall p.point) Fig. 20 Fiber contents for maximum stiffness

design problem

0.6 sented for the cases of minimum weight and maximum

stiffness design of structures, which are made of

grain dispersed and fiber reinforced materials . In
these cases the design variables are the volume per-

0 02 04 06 01 cent of grain or fiber and the structures are sub-
jected to the strength or the weight constraints.

Fig. 17 Design plane, constraints and solutions The presented procedure is applied to triangular
for maximum stiffness design problem and cantilever beams made from SAP (Sintered Aluminum

Powder ) or GFRP ( Glass Fiber Reinforced Plastic ) .

scale - V1 = 0.1 From these results, it is shown that the solutions ob-
tained for the grain dispersed material are very simi-
lar to those of fiber reinforced materials for the
same design problems, and also the solution of minimum

h weight design is nearly equal to one of the maximum
stiffness design.

Acknowledgement

The numerical examples presented in this paper
are performed by the help of Y. Kido and T. Nayuki.
The writer wishes to thank for their help.

Reference

() Kicher, T. P. and Chao, T., Minimum Weight De-
sign of Stiffened Fiber Composite Cylinders
J. Aircraft 8, 562, 1971.

(2) Cairo, R. P. and Hadcock, R. N., "Optimum Design

A X and Strength Analysis of Boron Epoxy Laminates,
O TR AC-SM-8084, Grumman Aircraft Engineering

A Corporation, Bethpage, New York, 1968.
Fig. 18 Fiber contents for maximum Stiffness C3) Cairo, R. P., " Optimum Design of Boron Epoxy

design problem Laminares,I TR AC-SM-80O9, Grumman Aircraft
Engineering Corporation, Bethpage, New York,
1970.

4 13-27

ILl



(4) Lansing, W., Dwyer, W., Emerton, R. and Rannalli, of Young's modulus and Poisson's Ratio of Sphe-
E., Application of Fully Stressed Design Proce- roidal Graphite Cast Iron. Jour. n
dures to Wing and Empennage Structures. J. Air- Mech. Engra. ( in Japanese) , 77, l46, 197.
craft 8, 683, 1971. C9) Gallagher, R. H. and Zienkiewicz, 0. C., 0pti-

C5) Khot, N. S., Venkayya, V. B., Johnson, C. D. and mum Structural Design, John Wiley & Sons, Lon-
Tischler, V. A., Application of Optimality Cri- don, 1973.
terion to Fiber Reinforced Composites, AFFDL-TR Cl0) Yamawaki, K. and Uemura, M., "An Analysis for
-73-6. Elastic Moduli of Unidirectional Fiber-Rein-

(6) McKeown, J. J., Optimal Composite Structures by forced and Multilayered Composite Materials,"
Deflection-Variable Programming, Comp. Meth. Rep. Inst. Space and Aeronautical Sci. Univ.
Appl. Mech. Engng. 12, 155, 1977. Tokyo, 7, 315, 1971.

C7) Hemp, W. S., Optimum Structures, Oxford Univer- C1) Liebowitz, H., Fracture, VIE, Academic Press,
sity Press, Oxford, 1973. New York, 1968.

(8) Miyamoto, H., Oda, J. and Saiata, S., Simulation

/

13-28



SOME SMEAR-OUT MODELS FOR INTEGRALLY STIFFENED PLATES WITH APPLICATIONS TO OPTIMAL DESIGN*)

g o077 Martin Philip Bendsoe**)

Mathematical Institute

The Technical University of Denmark
DK-2800 Lyngby

- VDenmark
/

Summary model described in this paper contains the axisymmetric
models of the papers [1], (2] and [3] as special cases,

I
t 

has been recognized for some time that in many the superiority of the model is already established.

cases rib stiffened plates are more efficient than un-
stiffened ones. We consider a plate optimization It should be noted that a model similar to that
problem where the plate thickness and the direction and considered in this paper has been used by Rozvany
concentration of two mutually orthogonal fields of et al. [6] to study the problem of optimal design of
integral stiffeners are used as design variables. In plastic plates, and that K.A. Lurie et al. [7,8,9] have
order to perform a structural analysis for the elastic also used the model with one field of stiffeners for
case, a smear-out process is carried out, and the finding the G-closure for optimization problems in tor-
rigidity tensor for an anisotropic plate is obtained. sion, plate bending and conductivity.
Optimality conditions for minimum compliance under
fixed total plate volume are derived by variational As this paper is concerned with shell-theory usual
analysis. Necessary conditions for different types of\ tensor-notation is used throughout; the Einstein-
local designs are also developed and compared to very conventions apply where indices appear but a
recent results obtained for plastic design. Finally, coordinate-free notation is also used to some extent
numerical results for the special case of axisymmetric (see e.g. [10] or [11]).
plates are discussed.

2. The Optimization Problem
Introduction

We consider the problem of finding a plate model
In the recent papers [] and [2] integrally which can provide an appropriate basis for optimal

stiffened plates have been considered for solving the design of thin, elastic, solid plates, whose thickness
problem of minimum compliance for thin, elastic plates h is variable and identifies the distance between the
with given material volume and constraints on the upper and lower plate surface, which are assumed to be
thickness variation. The papers are concerning axi- disposed symmetrically with respect to the plate mid-
symmetric plates equipped with a field of infinitely plane. The total plate volume is assumed to be speci-
many, infinitely thin circumferential stiffeners of fied, as well as material properties, the plate domain
rectangular cross-section, and the density of U and thickness constraint values h . and h
stiffeners (and the thickness of the solid plate) is min max

(are) used as design variable(s). The results obtained h .n< h < h
clearly show the superiority of this new model, as
compared to the traditionally continuous model where For exemplification the design objective is taken
only thickness is considered as a design variable. The to be minimum compliance, i.e. maximum integral
paper [1] also shows that for practical purposes a stiffness, for a given static load distribution p
lumping of the infinitely many, infinitely thin
stiffeners will not significantly alter the performance We shall use Kirchhoff plate theory as the basis
index obtained from this idealized model. Of other for the structural analysis, and since it is our
recent papers concerned with stiffened plates [3] and conjecture that the optimal plate will be equipped with
the survey [4] shall be mentioned, many thin ribs, a smear-out process is necessary in

order to obtain a continuous effective plate bending
The present paper deals with a generalization of rigidity tensor D Ky

the model described above to an arbitrary plate without
symmetry properties. The model considered consists of 2.1. The Model
an integrally stiffened plate of variable thickness. It
is stiffened by two orthogonal fields of infinitely The generalized plate model proposed here consists
many, infinitely thin integral stiffeners of rectangu- of a solid part of variable thickness h , 0 < hnin _<
lar section and of fixed maximum height. The structural h hmax  that is equipped with two systems of inini-
analysis is based on Kirchhoff plate theory and a tely thin integral stiffeners of variable concentra-
smear-out bending rigidity tensor is obtained by using tions p , y and directions t , n , where t and n
the methods of [3]. The minimum compliance design are orthogonal unit vectors, see Fig. 1.
problem for the plate has four design variables: two
densities of stiffeners, an angle describing the direc- The concentrations are defined by
tion of the stiffeners and the thickness of the solid
plate. Each of the independent design variable depend i 1
on two spatial veriables. Necessary conditions for = lim iX
optimality are ottained in Section 2.3, using varia- Ax- 0 dx
tional analysis, see for example [5]. These equations
provide the basis for a (future) numerical analysis, where Ax is the extent of an element in the direction
and are used in this paper to obtain necessary condi- of n and Aci -is the width of the i'th stiffener
tions for the existence of solid subregions of inter- directed along t in the element. Each stiffener has
mediate thickness in the optimal plate. Since the plate a rectangular cross-section of height h -h

max

Work supported by the Danish Council for Scientific and Industrial Research, grant no. 16-0189, and suggested
*.) by N. Olhoff, Dept. of Solid Mechanics, The Technical University of Denmark.

Presently with The Division of Applied Mathematics, Brown University, Providence, R.I. 02912, USA.
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_The compliance IT in (1) can be rewritten as

JJI~d1~iiIIT~- in DOOKY e ,e, dn 6

A .using the plate equations (3)-(5) and apprQpriate
homogeneous boundary conditions, see Refs. 12] or [13].
Using this form of the compliance, we can construct an

ax augmented functional IT* defined by

Fig. 1. * = J DeK eIT eY e~ dQ

reduces to the solid plate of variable thickness h - Al h + (I - 1)max  V

used traditionally for plate optimization, and for
V a 0 or y a 0 the model comprises that used in - nl[h-h +O2 ]dO - r n[h .- h+a2 ]dQ
Refs. [1,2,3] to obtain numerical results for optimiza- l max 1 2 mn 2
tion of axisymmetric plates. - i -l+ 2]dQ - a[UidO

The new plate model has four design variables: the 1 1 1

thickness h , the concentrations 1i y and the direc- - 6Iy-l+ 2
]
d  -  0 [2[-Y]dQ (7)

tion of the stiffeners given by an angle 6 , so that 1 1] n 2(

n = (cose , sine) t = (- sine , cose) where the constraints (2) are adjoined to the func-
tional IT in (6) by the Lagrangian multipliers

in a fixed Cartesian coordinate system. The plate is A - n1 , n2 , cI , c2 ,01 , 02 , and where the real slack-
geometrically anisotropic, so it is necessary to variables 0l ,02 ,Cl , C2 &l C •2 converts the in-
consider the plate bending rigidity as a tensor in the equality constraints on h , vi and y into equality
moment-curvature relationships (Hooke's law). 7his constraints.
tensor DaOKy will depend on the design variables
h , v y 6 , which in turn are functions of the two Alternatively, an augmented functional, say i
independent spatial variables for the plate, can be constructed from the original form (1) of the

compliance IT , but then the plate equation (3) has to
2.2. Formulation of the Problem be adjoined. Stationarity requirements for ; lead to

the same Euler-Lagrange equations as those following
If we denote the plate deflection function by w from stationarity of w* in Eq. (7). The variational

the plate optimization problem can be formulated as analysis of IT can be found in the Appendix of Ref.
follows: [12], where the plate boundary conditions are used

during the calculation; the calculations are based on
With h Uj , y , 6 as design variables, minimize the assumption that the plate is isotropic, but a care-

ful investigation of the calculations shows that the
IT pwdQ (1) result applies to any linearly elastic plate problem.

n
The stationarity conditions for it with respectsubject to the constraints to the design variables h , , and 6 , respective-

Volume - J(Ah + (1 - )hmax)d - V, ly, are found to be

e e__ e_ = A(I- p)(I-y) + ni - (8)

h mi <h <h max n , (2) ab Q0K 1 2mln - - max

0 < < I , 0 < y<. in 0, aOaY e e = A(l-y)(h h+ (9)ap e16c 
=

Y A -)(max-h (1i 2 ()

where A = (l-)(i-y) is the area-density of OD y
plate of intermediate thickness h e e A(l-u)(h -h) + - 6 (10)
hmin <h<h max . a M Al )max 61 2

The load p and the deflection w are connected aDa(1

through the plate equation, Hooke's law and the defini- ae eC e ey 0 (11)

tion of curvatures, i.e.,
These equations constitute the four optimality condi-

divdiv A a p (3) tions in our problem.

= = DOKY e (4) Stationarity of it* with respect to the slack
variables leads to switching conditions which when

e = e,6 . d(dw) (5) combined with Eqs. (8)-(11) and the appropriate Kuhn-
Tucker equations, lead to

where A is the contravariant moment tensor and e is
the covariant curvature tensor. dT denotes the co- a 1 0 a 2  0 if 0
variant derivative of a tensor T . Note that D 1L0fY
is a function D (h , y,) . 91  0 a if 0 < V < (12)

2.3. Necessary Conditions for Optimality a > , 2  0 if . I

Following the path of Refs. [1], [2], (3], we find
the governing optimality equations for the design 01 . 0 , 2 10 if Y - 0
problem (1), (2), by variational analysis. In this
analysis the plate equations (3)-(5) can be included in a1 = 0 , a2 0 O if 0 < Y < 1 (13)
two different ways, both leading to the same stationa-
rity equations. al >0 , 82  0 if Ys1
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I =if h hin  this small element. Using the continuity equations
(15), we have (see [3])

nI =0 , n2 0 if h. < <h m (14) A B

e = (lI-J)M + en , > 0 , n 2  
= 0 if h h Mah M M

Stationarity of 'T* with respect to the Lagrengian A
multipliers leads to the corresponding constraint equa- e = e + Anon
tions.

B
e = e + Bnon

The equations (8) to (14) will be used in Section a
3.1 for derivation of specific conditions for purely M - A MB =D +  B
solid sub-regions of intermediate thickness uccurring a =DSKY eKY M Ky eKY
in the optimal plate. But first we need to establish p(M

A ) 
=p(M

B )

the tensor D.OK, for our plate model. +
where D and D are the (isotropic) bending rigidi-

3. The Smear-out Process ty tensors for plate of heights h and h
respectively.

3.1. Continuity Considerations

Combining these equations, we obtain
et two subdomains A and B of a plate have a

common boundary curve 0 . D (l- l)Day + PD +

Let e
A  respectively eB  and MA respectively _ a - + - (19)

MB denote the homogeneous curvatures (bending tensors) - (D 8 -Da )(D D+ -D'? y)n n nn
and bending moments (tensors) in A respectively B . D afte noe ( ~ryc4- a

Along the curve * we define a uait tangential vector with
t and a unit normal vector n , so that (n ,t) is
positively oriented. The continuity conditions across (i- v)D 8KY +pDmoK, nnon n (20)
0 must express continuity of the normal component of K Y
the bending mument and the tangential components of the (For an alternative calculation, see [2]).
curvatures, and can, with reference to the coordinate
system (n t) , be written as (see [3], [7], [2]): 3.3. The General Case

MA8 nn 8 = NP nn 8  or p(MA) - p(MB) (15) In the general case the basic small element of the
A B A B plate has the form as illustrated in Fig. 3, where C
e An t8 = e B nat or q(eA  = q(e ) (16)

eA t, to = eB't tB or r(e ) = r(e ) (17)

along * .

(Here only subscripts are used as we work in an A
orthogonal frame; repeated indices still imply summa-
tion). 4
3.2. One Field of Stiffeners C

C~-sider the model described in Section 2.1 with FL
just o,', field of stiffeners, such that, e.g., y a 0
We sh,.!i now describe in brief how we obtain an average
bendii.j ensor D OKY that describes the properties of
this plate:

Fig. 3.
M MKY ( is plate of intermediate thickness h and A, B, D

where M and e are the average bending moment tensor indicate stiffeners of height hmax . In the regions
and the average curvature tensor, respectively, for the A , B , C D we have bending tensors eA eB , eC ,eD

(anisotropic) plate. The basic infinitesimal element of and bending moment tensors MA , MB ,MC ,MD , and the
the plate has the form shown in fig. 2, where A is average curvature tensor e and average bending moment
plate of height h and B the stiffener of height tensor M are defined by
hmax  and width uA .We consider the tensors eA, A  A B C D
and e ,M to be constant and defined everywhere in e = y(l- )e + u(l-Y)e + (l-p)(l-y)e + pye (21)

M = Y(1- )MA + ,J(IY)MB + (1_J)(IY)MC + yMD (22)

M and e are connected via the smear-out bending
tensor DO,, (cf. (18)). As for the case with just
one field of stiffeners we will consider all the
tensors as being constant within the small standardelement. This puts severe constraints on the number ofA S continuity conditions of the form (15)-(17) one can
require to be satisfied, as one is very likely to end
up with conditions for isotropy. In the following we
will require the conditions (15)-(IW) to be satisfied
between A and C and between B and C , while we
will only require (16) and (17) to be satisfied between

Fig. 2. the regions A and D and between the regions B and D.
j13-31
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As the curvature tensors are symmetric, the condi- to D = D+ , i.e. D is the bending rigidity tensor
tion (16) for these tensors together with the relation for a plate of constant thickness hmax . So the tensor
(21) imply that the curvatures can be written in the given by (27) reduces to the correct, known rigidity
form tensors in the limits of no stiffeners, one field of

A stiffeners and solid plate of maximum allowable thick-

e O e.8 + A nn 8 + A2 t t8  ness. Finally one should note that the formula is

B symmetric in the sence that if ( , t) and (y , n)
= e. 8 + B1 non 8 + B tat are formally interchanged in the formula one ends upa 2 a (23) with the same formula, so the modeling does not

C = e + 8 + C ta t 8 introduce any unique direction.

8 =e e 8 + D1 nan8 + D2 tt 8  For practical applications we have to rewrite the
formula (27) applying the well-known expressions for
D
+  

and D- (see e.g. [3]), and using that

The condition (17) and the formula (21) now gives n = (cosS , sine) , t = (- sine , cose)
that the constants Ai , Bi , Ci , Di  , i =1,2 are
connected as follows: in a given orthogonal frame of reference. For reasons

of brevity the resulting large and messy formulas will
A1  = 2 B B2 = C2  not be stated here.

and 1 1 1 D ;A 2 2  2 2 ( 24)
(1 - u)A1 +B 1 = 0 ; yA2 + (1-y)B = 0 If the assumption of mutually orthogonal stiffeners

2A 2 is dropped a similar smear-out process can still be

Finally the condition (15) for the regions A and C performed by imposing the same conditions of continui-
and B and C gives ty, but the calculations become very messy.

p(M
B
) = p(MC ) and r(M

A
) = r(Mc ) (25) The authors of Refs. [7], [8], [9] have used a

A) B model as described in Section 3.2 to obtain a solution
Using the fact that the pairs (M

A
, e

A
) , (M

B
, e

B
) and to the G -closure problem for torsional bars [7], for

(M
D 

, eD) are connected via the tensor D
+ 

, and that conducting media [8] and for some special cases of thin
M
C  

and e
C  

are connected via D- , the equations plates (9]. They call this model for a mixing of the
(23), (24), (25) can be reduced to two equations in the first order, and introduce a mixing of the second order
two unknowns A1  and A2 . Solving for A1 , A2  and as a mixing of the first order of two materials obtain-
rewriting (22) using tensors eA , ... e

D  
and D

+ 
, D- , ed themselves as mixing of the first order. An averaged

one gets an expiession bending rigidity tensor for the mixing of the second
order is of the form (19) where the tensor D

+  
and D-

Ma = DaOK, e (26) now denote the bending rigidity tensors for the two
components of the first order; D

+  
and D- are then

where also of the form (19). If, for example, y <- v and y

+ _ is very small in the model described in Section 3.3,
Dc = A)Da + D y (27) one could regard this as being composed of a mixing ofE1 - the second order with a density p of material with

+ )(-i(l-v) Tl (D+ -D ) £ nn(D
+ 
-D

- )  Y 
n~n bending rigidity tensor D

+  
and a density (l-p) of

ace flCyK a first order mixing of a plate stiffened with
2 + D-~ ~ ( _stiffeners of density y . Calculating the resulting

+ y(l --y)(-P) -r (D - D)a t t (D -D t t average bending rigidity tensor using the method of
D c[7], one obtains a formula that in the given limit

- E3(l-p)(l-y)y (D+-ID) n D
+ 

- ) t t (y small, y << p) is identical to the formula (27).

+ 4. Some Results
D OEO-t)te-;v (Combining the results of Section 2.3 and Section

with 3.3 one has a basis for a numerical analysis, as well
as it is possible to derive certain analytic expres-

A = (1-i)(1-v) (28) sions of necessary conditions for special types of sub-
regions.E1 = [(l-y)D+

+
y

-
] t

K  
t t tt (29)

1 =c aI 8 K t(29 4.1. Necessary Condition for Purely Solid Sro-Regions

E2 . [(l-v)D
+ + pD -

],
K
, nnon Kn (30) of Intermediate Thickness

= [D- -D*] nnt t (31) A purely solid sub-region of intermediate thick-
= E2 + y (3 ness is characterized byE = EE  + myE (32)

a 0 , y w 0 , h . < h < h (33)
It should be noted that in this calculation it has min max

been used that Equations (8)- (11) then reduce to

D + nnt t7 = D + tt n rDO
K 7

(m0K v 08Kvh 8aKve Y 
= 
A (34)

for the plate regions A to D . aDaSKY

Comparing with the result in Section 3.2 for one p edsO Ky - max
field of stiffeners, one notes that the equation (27)
for y 0 0 or V a 0 reduces exactly to the smear-out D< -h(
tensor given by (19) for one field of stiffeners. For 3y sO0eKY max
(y ,p) - (0 ,0) the formula (27) reduces to D = D7 ,
i.e. D is the tensor for an isotropic plate of _D

a  
e 3

thickness h ,and for y I or M 11 (27) reduces ae mO ry
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where the conditions (33) have been introduced via Eqs. 1+ 21 (

(12)- (14). 2v(IIA)+(1/X)2 ( 2 2)2 (46)

It is noted that for v a 0 and y a 0 we have where
D = D- , i.e. it is independent of the angle 6 . This
implies that (37) is trivially satisfied and that (34) a = h and A =rn/ (47)

can be reduced to (see Section 3.2 in [I]): max

2 222 2(l- v)e2 2ve = A (38) (mll, m22  are the values of the principal moments).
3h[e11 22 12 +21e 2 2 ] 3, i 1

where v is Poisson's ratio for the isotropic, linear- The inequalities (45), (46) divide the (A ,a)-

!y elastic plate material, plane into two separate regions, see Fig. 4. Combina-
tions of A and a calculated for the thickness and

As the tensor Dco,, reduces to the form of (19) moments at points in an intermediate, purely solid sub-
for P a 0 or y a 0 , it is again possible to apply region in an optimal design must be within the unhatch-
the results of [1]. Using the coordinate system ed region of Fig. 4. For further discussion the reader
(n , t) Eqs. (35) and (36) reduce to is referred to Ref. [i].

(h max-D)r . _ )e 22 +2(l v)e 2 +D (e +Ve 2 ] f Ao.

max max 9 k , _ _

(Dax- ) 2)e2 . (l- ~e2 ( 2 <A ------------- 10 --------- v
hD a - D 1 (~ 1 1 2 D m x 2 2 + v e 1 1 ) 

2  
.- AI I '

(40) OA~I I
where D =h and Dmax = qax (to be exact
D = Eh

3
/12(l-v

2
) where E is Young's modulus, but NO PURELY SD DES[ON No PUELY SOLID Of iIG-

for convenience we use just D = h3 ). .. ILELI __ -.-- -LL LLLA

Equation (38) can be rewritten as

+2(l-v)e12 +(e +ve 2 2 )2] A (41) Fig. 4.:.3h2[(l-v2)e22  12 e1ll1

or It should be noted that the unhatched region of

2[r 2  2 +2 2 + e 2] Fig. 4 is found from necessary conditions where
3h (+-v )el 2(l -v)e + (e 22+ve1 ) = A (42) stationarity with respect to the direction of the1 22stiffeners is trivially satisfied. If this is taken in-

Combining (39) and (41) and (4O) and (42) we to consideration one should expect a much larger

obtain the inequalities hatched region, see Ref. [2].

(2h+ha)[ (lv2)e 2 +2(l-v)e12 <2 3.2. Numerical Results

h2 2 +2h h2 +e)2 (43) Numerical results have been obtained by the
h 3+mhxmax 1 1 e 2 2  authors of Ref. [1] for the model discussed in this

5max paper for the special case of an axisymmetric plate,
and which means that there is just one (circumferential)

field of stiffeners. These results clearly show the

(2h+he) (1v)e l+2(1-v)el 2 2 2 < superiority of the new model.

h2  2 2 2 (44) For practical purposes the designs under discussion
+2h h +3h mxe +ve 1 must be considered as limiting designs, resulting from

h ma idealized mathematical formulation. In practice an
optimal design obtained from the model described in

which constitute the necessary conditions for a purely this paper can be used if the systems of the infinitely
solid sub-region of intermediate thickness in the many, infinitely thin stiffeners are lumped into a
optimal plate. finite number of stiffeners of finite width (to meet

buckling requirements etc.). This will of course move
Equations (43) and (44) are valid in any the performance index from its optimal value, but the

orthogonal frame of reference, as (n , t) was fixed calculations of [1] show that the optimal designs are
but arbitrarily chosen. We can thus extend the results rather insensitive to reasonable modifications of the
of [1] on the configuration of the optimal plate at its type described.
edge by using a coordinate-system (; , t) with
n (or i) directed along the plate edge. We are then 3.3. Plastic Design
able to conclude that a purely solid sub-region of
intermediate thickness will never appear at a simply A plate model with the same geometry as that con-
supported or free edge of an optimally designed plate. sidered here has recently been used (see Ref. (6]) as

the basis for obtaining minimum weight designs for
Following (1] once more one can by using coordi- solid plastic plates. The static determinancy of

nates where the bending moment tensor is represented plastic plates implies that exhaustive analytic
by a diagonal matrix (i.e. the principal directions of developments are possible. It is of special interest
the moment tensor) rewrite (43) and (44) to for our paper that it is shown in [6] that two fields

S1+ 20 of stiffeners will be orthogonal in an optimal,
> 2 (45) plastically designed plate. This has been assumed

I-2vX+A (1-v 2 )(l+m+a 2 )2  a priori for elastic plates in this paper, but the
author has encountered great difficulty in establishing
a proof of this conjecture. It is however fairly easy,
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using a min-min formulation as in Ref. [2], Section
2(e), to show that stiffeners directed along the
principal directions of the moment tensor (and thus
orthogonal stiffeners) is a stationary situation.

Acknowledgement: The author wishes to thank Prof., dr.
K.A. Lurie and Prof., dr.techn. Niels Olhoff for
valuable discussions.
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Summnary

A mathematical programmning formulation is presented F lkl=s(2.2a)
for the elastic synthesis of truss structures with spe- -i-
cified topographic and mechanical properties, under- (2.2b)
going finite displacements. k .J2.b

The description for Statics and Kinematics, valid valid for arbitrarily large displacements and defor-
for arbitrarily large displacements and deformations, mations can be expressed in dual form
is expressed in either mesh or nodal formats, according
to the connectivity properties of the fundamental sub- E = _ (2.3)
structura selected to describe the assembled structu-
re. F if additional, self-equilibrating forces 1 are applied

)\The non-linear elastic constitutive relations, to each member and the strain-resultant - field u is
accop.nting for member instability and initial imper- corrected by additional deformations u
fection effects, are expressed in the alternative fle-
xibility and stiffness formats.

Four alternative formulations, generated through
an automatic solution procedure, are obtained to des-
cribe the minimization of a design objective subject 'KIm
to the fundamental conditions of equilibrium, compati- 3 12
bility and elastic causality within the domain of -
allowable stresses and/or displacements. 7t3 5

Reference is made to a perturbation technique I \,? .2M ltm
based gradient method, designed to guarantee a mono- ,,,* /,m
tonical improvement of the design object of the result-
ing non-linear mathematical programming problem.

1. Introduction Il4

The problem of minimizing a (not necessarily
linear) cost function W on the cross-sectional areas A______
of anelastic space truss manifesting a non-linearF R
behaviour at the working load level X, c,, be stated in
the form

Min W(A): A c A (.) The use of additional or ficticious forces in
linear formulations to simulate non-linear structural

The feasible region A in the above non-linear behaviour can be traced back to Denke (1). The same
mathematical program represents the domain of the concept was adopted by Smith (2) to preserve Static-
A-space wherein the design constraints on stresses, Kinematic Duality (3,4) in first-order non-linear
aisplacemeats and cross-sectional areas elastoplastic frame analysis and later extended (5)

to model the response of elastic, elastoplastic and
+ • & (1.2a) rigid-plastic planar skeletal structures undergoing

€l - arbitrarily large displacements; the definition of
6' (1.2b) the additional forces and deformations in the context

A A 'A T  
(l.2c) of space trusses (6) is given in the Appendix.* i Summarized in Table I are the variables s and k

and the state conditions on equilibrium, compatibility selected to describe the static and kinematic fields,
and elastic causality are simultaneously satisfied, depending on whether the structure, idealized as a

connected graph, is interpreted as an assemblage of
2. Statics and Kinematics mesh or nodal substructures; p (q) collects the a {B

1 indeterminate forces( { 0splacements })And v 'Q) the
Let a {B) represent the static (kinematic) indeter-

minacy of the structure and corresponding displacements (forces) , 6 grouping the

a - aL6 (2.1) displacements associated with the loading X, and 6

i those with the additional forces w.
the number of independent stress- and corresponding
strain-resultants X and u.

The lagrangian description of equilibrium (2.2a)
and compatibility (2.2b)
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Table I  Description 4. Iterative Solution Programs

Operator Mesh Nodal Depending on the description adopted for the state

equations, the optimization program (1.1)
Sl x Q=O0

min W(A): {(l.2),(2.2),(3.)} (4.1)

can be expressed in four alternative formats, namely,
2' ' X, -iT-X} nodal-stiffness, nodal-flexibility, mesh-stiffness and

mesh-flexibility, the former and latter of which
k 2 V 7 .' O 6 , {u+-u,,6n 6} correspond to the displacement and force methods

: Bformulations.
E=C B-0 LA Non-linearity is inherent in programs (4.1) even

when infinitesimal displacements (w-u =O) and deformat-

ions (f m=km-1) are assumed, and it is aggravated when
The state operators (2.3), the entries of whichmm

are constant as they are solely dependent on the equilibrium is performed on the displaced structure

initial topography of the structure, can be assembled (ff # 0), large displacements are accounted for in the

manually or by implementation of automatic assemblage compatibility equations (u. 0 0) and finite deformat-
procedures, as indicated in the Appendix.

The linear description for Statics and Kinematics, ions are accepted in the elastic constitutive relat-

valid for infinitesimal displacements and deformations, ions.

is recovered by setting ii and u to zero and removing The qualitatively identical structure presented by
- -T the optimization programs (4.1) for both inrear and

from (2.2b) the definition for 6 , thus rendered non-linear structural behaviour, suggests the utilizat-
irrelevant, ion of a solution procedure consisting in coupling an

iterative routine on the additional forces and
3. Elastic Constitutive Relations deformations to any of the currently used algorithms

to solve structural optimization under linear response.
The relationship of causality associating stress-

and strain-resultants, in both flexibility (3.la) and 5. Incremental Formulations
stiffness (3.1b) formats

F X , X K u (3.1ab) The incremental description of equilibrium (5.1a)
S, X u(and compatibility (5.1b)

is obtained by quantifying the behaviour of the _I___ ___ __]

finite-elements embodying the geometric and mechanical L* As2  k2] I IkJ (S.b)
properties of the structural members, the simply
supported bar loaded by the member stress-resultant XM - wherein Static-Kinematic Duality

= . (5.2)

.Lis preserved, is obtained (6,7) by taking finize in-
S-crements on every variable

Is - s + AS , k = k + Ak (5.3a.b)

-L describing the static and kinematic fields, as indicat-
R ed in the Appendix, the intervening operators being

L summari -d in Table 2.C M

Um Table 2 Description

Operator Mesh Nodal

As 6X

_FIGURE 2 AAu Aq

A 2  {Ap, A, AX) {AX, -A6}

Initial deflections E and residual end-momenta can Ak (0 0, A6} {Au, 66}

be incorporated in the non-linear definition of the - (0, - - -
member flexibility and stiffness functions A]

f )Fm,(I)mfm(X,u, Km . (EA) km(X,u,y) (3.2a,b) F P PD

to simulate the effect of manufacture imperfections; in K P
the above, Em represents the m--th member modulus of RS 0 A R

elasticity and y. its slenderness ratio. -s - + u I
}

ft it +~f {-R.
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Matrices P and Q are block-diagonal with entries ing problem.
defined by (A715) ard (A.9), respectively, and

7. Numerical Applications

A comparative analysis of the optimal solutions
provided by the linear and "exact" formulations, as

Taking in (3.1.2) finite increments (5.3), while non-linear structural behaviour sets in, is presented
letting in the following.

A. = Ai  (I-Aa.) I iti • S (5.5) =

for the cross-sectional area variations, the increment- -90 k 0 , o,
al version of the flexibility and stiffness descript- =0.401
ions of the elastic constitutive relations become -80 ...

Au = F AX + G Aa + Ru  (56a) -7 0

and

AX = K Au + H Aa + Rx (5.6b) -60. .. . . x A= * ,1 sin= (inear appr,

-50
respectively. Aa,= L/ o) sin 0 (exact)

The design constraints (1.2) can be treated
similarly to yield -40 C P=100 (1-AIAsl

a- a-I AX +EAa + Ro o+  (5.7a) "30

a a- IAat (5.7b,c) 20 F UE3

the superscripted quantities representing the current 10 I
potentials for the variables in question; S and E are€ 6O 4e°---
diagonal matrices the entries of which are-the current
cross-sectional areas and stresses, respectively, and
ft a non-linear residual vector of the form

o e The structures shown in Figs 3 and 4 were selected
a f {Aa i Aai}, 1 -6 1 9 B (5.8) to illustrate the effect of non-linear behaviour in
-0 I the stress-constrained weight optimization of shallow
Similarly, fR , R , R and R , the latter being arches; the graphs shown represent the variation in

-u -x -ur - the error c relating the optimal cross-sectional
defined in (A.16) and (A.17), respectively, collect areas predicted by the linear and non-linear models,
all non-linear terms present in the incremental state A and A., respectively.
equations (5.1,6). - I

The definition of F, K - F , G, H - -K G, R and

Rx -K ft depends on the adopted member stability FIGURE ' -

functions, several definitions of which are presented 
iR

in the literature.

6. Incremental Solution Programs

* Let v representa generic program variable satisfy-

ing the state equations (2.2) and (3.1) at the design
load level X. 00

Problem (1.1) can now be restated as to find a
finite variation Av so that v + Av is an optimal --- t s L--- -- a" s L---
solution for the required load carrying capacity
(A - 0) and expressed as max

Max &Z I a + R :1(0.1,5,6)1 (6.1) 50

- - z40 C*- 10 -A1/Aie)
wherein R collects the non-linear terms present In
the objective function, If any. 30 1 Cox Iin (8i-)20.2

As all non-linear terms present In the constraint
set of problem (6.1) are collected In the residuals
R the analitical expressions of which are known at the 20

onset, program (6.1) can be generated automatically I
and noirically processed using a non-lInear program- 'i
ing el orithm; in particular, just by treating the 0.1 0.2 0..------.4-..------,s i pI
residual termis as constants, the solution of program ----
(6.1) can be reduced to a sequential linear programm-
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The cantilever shown in Fig. 5 was used to illus- the step length is dictated, for a given truncation
trate the effect of non-linear behaviour caused by the error, by the number of terms taken in the series
development of large displacements; point load dis- expansion, the higher order terms of which become
placements of the order of half of the basis span were increasingly significant as the degree of non-
induced by accepting very high o./E ratios, linearity in the objective and constraint functions

increases.

F1 02 linear non- linear

model model
-2.0

3 L - -OW - - 3 L --- 1.6,
1.8 W"

Ile 1st order nonlineamd 1.2 ,

"30 l:iner sodat .'~ .0 IFGR
-1.6

WI

-10 02 A

-G1 A 14.

1000 (1 1O !.2 11. 1.6 t8

According to our experience, the essential role
of the non-linear model consists in redistributing the The displacement method (incremental) formulation
structural member weights provided by the linear model was adopted since it is associated with the most
optimization procedure; despite the significant errors compact of the alternative descriptions for the
that could be found in the allocation of the members system governing equations.
cross-sectional areas, the difference in the estimate In what concerns the numerical implementation
for the total weight of the structure, provided by the efficiency, the advantage that the force method
linear and non-linear models, would seldom exceed 10%. enjoys over the displacement method, when a linear

The redistribution of weight is particularly approximation in the state equations is adopted, can
evident in the displacement-constrained weight only be regained under non-linear behaviour if the
optimization problem shown in Fig. 6, wherein an error topography of the structure is such and the members
of about 2% is found in the optimal structural weight, numbering sequence so devised as to induce a quasi-
despite differences exceeding 25 and 65% in the diagonal format for the geometric flexibility sub-
optimum cross-sectional area estimates. matrix associated with the additional forces. The

force method reassumes its competitiveness when aThe numerical results presented below were obtain- frtodrnnlna prxmto
ed using Schwefelevolution strategies algorithm (7) first-order non-linear approximation
and the perturbation technique based gradient method 6 ,1
(8) briefly described in the Appendix. u ,, 1 " 0 , i - 2,3

The results obtained using Schwefel's algorithm
proved to be significantly dependent on the initial to the exact description of Statics and Kinematics is
estimates provided for the design variables; however, admissible, as it usually happens in practical
as it is extremely simple to encode and requires very applications.
little computer core, It is thought that this
algorithm Is particularly well suited to perform the Acknowledgements
shake-down of the provided Initial solution, thus
stabilizing the solution sequence. This research has been sponsored by the National

The perturbation technique based algorithm gene- (Portuguese) Institute of Scientific Research (INIC)
rates stable solution sequences by guaranteeing a through the Mechanics and Structural Engineering
monotonical improvement of the objective function. The Centre (CMEST), Technical University of Lisbon.
rules to detect the activation and releasing of
constraints and to determine the optimum step length References
at each iteration, are accurate and of simple Imple-
mentation. The core It requires is significant due to (1) Denke, P.M., "Non-linear and Thermal Effects on
the necessity of saving n+l allocations for each Eastic Vibrations", Tech. Rept. SM-30s26, Douglas
varible, n representing the number of terms taken in Aircraft Company, 1960.
the series expansion (n-3, in general); execution time
and core requirements are strongly Interdependent as
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APPENDIX

Al. Nodal Description of Statics and Kinematics qJ

Assume that a nodal sub-structure, a (not necessa- qi final
rily straight) prismatic bar m limited by end nodes i - position
and j, is dissected from a discretized space truss initial
just prior and immediately after the loading is position 2
applied. 

X

X3,LR

or The additional force displacements -mo illustrat-

-a) "ed in Fig. A.2 for the planar case, are related with
the member deformations um through the following

qi through1the followin
1w 2w +3(.7compatibility condition

- -L- 2 2 2
; a CM m m 31m

FURE"A.' Collecting the nodal forces in vector

Let the displacement field be defined by vector - {Qi' QJ} (A.8)

q-m {q' , qj} (A.l) and defining the stress field by the member end-forces

X , the exact description for the nodal substructure
which collects the displacements suffered by nodes I euillbrlum condition can be expressed in an explicitly
and J, measured in the global system of reference x*, linear form, preserving Static-Kinematic Duality,

and let the deformation field be characterized by the Q (A.9)
difference -L- = r  L_ J(

um a Lm - L€  (A.2) m

m

between the Initial and final member chord lengths. If If use is made of ficticlous or additional forces
fictitious deformations

!,- ., x. (A.10)
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wherein let X' and X" collect 0 and a of the B I a+0 elements
2(A.1) of X, respectively, so that the nodal equilibrium

Cm Lc c]m equation (2.2a) can be written in the equivalent,

partitioned, form

A' X' - -A" X" + A 0x + A r (A.12)

7 SssThe mesh state operators

2,B All 11 0 [j I 
B . 

- [ A/ x,, . - -m
X -

wherein C A A' ( or C'- A' ". to guarantee positive
definiteness),are obtained by identifying X" with the
indeterminate forces Pandsolving (A.12) for X'.

A3. Incremental Additional Forces and Deformations

Im ]FIGURE A.31 Taking finite increments (5.3) in (A.3) and
(A. 10,11) and eliminating in the resulting equation

Let the B nodal substructure displacement vectors the incremental member deformation resulting from the
(A.) be collected in q. and q group the 13 indetermina- incremental version of (A.7), the following definit-

te structure displacements. ions are found for the incremental additional forces

Nodal connectivity and the structure kinematic - + Q X + R (A.13)
boundary conditions are implemented by defining the -m -_ -i -m T
incidence

* j and deformations

Af- Qm AS 7 + Ru (A.14)
which substituted into system (A.4), extended to m m m
embrace all B nodal sub-structures compatibility
conditions, yields definition (2.2b) for the structure wherein
nodal description of Kinematics, wherein X 2 3

A -A, A -A e.J i'n' '2m! Q 1Q)21("iQ (.m -- 1 ) % , l-- 2  0. 

..,,4,,.,J,,n o2- _ -- :----

and A *f being the block-diagonal matrices -I I 2
~~)i 2 Q

and A an incidence matrix relating the applied load I 3 2w  AU)-o R -W r ( 1 66..i  s (A.16)

displacements 6 with the independent nodal displace- u cm iI

ments q.
and

The nodal description of Statics (2.2a), requiring
nodal equilibrium along the indeterminate displacement R - (ATW Au + A AX - ) +
directions, Is obtained by implementing a similar "m c " LAW m
assemblage procedure on the nodal substructure m

equilibrium conditions (A.9): I
+ L 1 R AU uAX (A.17)

A2. Mesh Description of Statics and Kinematics [
The fundamental mesh substructure , particularly

well suited for framed structures, is by definition a A4. A Perturbation Technique Ble Solution Procedure
ring of arbitrary topography; more appropriate to
planar (space) truss structures are however statically Assuming that at the current solution point (v, A)
Indeterminate assemblages of triangular {tethaedrical t
pin-Jointed substructures. the structure is stable, all but the design variables

Statics and Kinematics of the mesh substructure A.can be eliminated from program (6.1) by simple

can be set up through a similar procedure (5) and pivoting on the non-slngular state operators present
assembled automatically to obtain the structure in the equality constraint set (5.1,6) thus reducing
equilibrium and compatibility conditions (2.2), using the optimization problem to form
either cut-cycle bases or regional cycle bases.

An alternative procedure consists In obtaining the
mesh description by transforming the nodal descriptions
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Max Aw (A.18a) C , x -R , (n • 2) (A.24a,b)

subject to:- when all constraints are inactive and
Aw = E ia + R (A.18b)

- W
= (c + ' B) a (A.25a)

Ay = C Aa + R (A.18c) -

Ay + c b 0 (A.18d) x
(n
) = Rn (c R' + Rn) k (n ' 2) (A.25b)

- - - -n n - n -

wherein R (RI collects the non-linear residuals when a subset of constraints are active, c' = 0 in
w -

-O -

present in the objective-function (constraint set}; it (A.18d); C' and R' represent the structural matrix and

is assumed that, after a suitable transformation, the the residual terms associated with such constraints.

gradients present in constraints (A. 18bc) are unit Vector B represents the deviation f-om the steepest
modulus vectors.

Expanding all variables, say Ax, in a power series ascent direction c and is evaluated by solving the

on a perturbation parameter E following linear programming problem

Ax= (n) nn! (A.19) Min 5 0: B B I b (A.26)

and equating the same order terms, system (A.18b,c) is wherein b- -C' c and B - C' '

replaced by the equivalent infinite set of equations

(n) ca(n) + R (A.20a) requiring the maximization of the objective gradient
- a i+ 61n wn in form i = av, where, according to (A.20a) and

(n) - (n) b (A.25a) v = i-b and a>0, while satisfying the

y C an) 6In R n (A.0b) currently potencTally active constraints

i C' k 1 0
(6, m-1l, representing the kronecker symbol), which are

linear and rec-ursive as the n-th order residual terms Self-duality in programs (A.26) enables its direct

are functions of lower than the n-th order design resolution, from which are derived the tests on

variable coefficients, eg unboundedness (B.-'O) and optimality (unique if v<0,

a (n-1)1  multiple if v-0); if neither of these situations arise,

n (, " v>O, e is set to a-I/v to regain an objective function

cont;oling procedure (A.21).

Identification of the perturbation parameter with
the objective function, -Aw, implying, according to
(A.20a), that

w(n) 
6
In (A.21)

enhances the substitution of the non-linear programming
problem (A.18) by an equivalent problem , consisting
in finding feasible directions Aa satisfying the
linear system

a (n) + 
6  

Rn 6 n  1 d n A (A.22)
Inwn I

and non-negative step lengths c (thus guaranteeing the
monotonical improvement of the objective function w)
which are determined either by bounding the series

(A.19) truncation error e

C - mn { men!la n) i/1n (A.23a)

or by the activation of the i-th constraint

(n)coi + 1  n a In' - 0

yielding/

C mrin (C{ nl-o1/Y)} (A.23b)

where in

#2 3 2-l = I, 2 -Yi/2! ' *3 = 
2*2 - V 1/bi' ...

The general expression for the feasible direction
is
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DERIVATION AND CONVERGENCE OF POWER SERIES IN STRUCTURAL DESIGN

N Joseph Whitesell
Department of Mechanical Engineering

and Applied Mechanics
Ann Arbor, MI 48109

Abstract u k01 [f Z k us] (5)
uik 0  f 1  -0 E k ul(5

Design sensitivity analysis plays a important role O
in the optimal design of structures but usually only
first order derivatives are computed. When high order In applications, it is important to consider the

derivatives are used substantial reductions in compute- relative computational effort involved in determining

tional effort can result but a question of convergence k;
1 

as compared with the operation of multiplication
of the resulting power series in the design variable -1
arises. If the change n the design parameter is smal- implied in (5). If computing ko and the multiplica-

ler than the radius of convergence of the series then tion operation require comparable effort, then computing
the model's response can be approximated to arbitrary each ui will require a significant effort relative to
accuracy b) the series without reanalysis. If the de-
sign change is larger then the series is - rs-eful. the inversion of kO . However, if a relatively large

In this paper the computation and convergnc proper- effort is required to find ko
1 
then determining uocould

ties of power series for static responses nd\eIgen-
systems are discussed. A technique for enlarg.g the cost significantly more than the additional cost re-
region of convergence is presented along with several quired to determine its successors ui. In other words,

example problems, computing higher order coefficients u becomes relative-

I. The Efficiency of Power Series ly less expensive when division (inversion) is more
costly than multiplication. Such is the case when the

The effert required to compute a function's higher objects ki are matrices in Rnx n and the objects u I and
order derivatives often discourages their use in numer-
ical analysis. There are important cases however, where fi are vectors in R n. 

(When the coefficients k i must

high order infor-mation can be determined at an operating also be computed, then the cost of determining the co-
point of a le independent variable with considerably efficients u is ncreased accordingly.,
less efforc tnan that required to carry out a function
evaluation at a different operating point. Convergence rate is also important in numerical

work. We shall see that it is not necessarily sensi-
To illustrate this, suppose tive to system size. It depends instead on the sizes

2 +of crtain igenvalues related to the system. So the
k - I. + k 2 +. number of terms need not be large even if the model is

2  large. This makes using power series an attractive
u -0 + u 1 x + u2x2 + a.elterative to directly re-solving the structural model.

f - f 0 + f1 x + f2 x + " + Unfortunately, sometimes the convergence radius is
not large enough. To remedy this, a method which can

are formal power series [1] and we wish to solve the effectively enlarge the radius of convergence is pre-
problem sented in the next section.

ku - f (2) 11. Power Series for SOatic Response

for the coefficients ui . This problem can be solved This section begins with a simple example.
using matrix notation y representing each of the series
in (1) by a matrix of special structure called a semi- Example 1
circulant matrix 11]. --

Suppose that structure AD is composed of two com-
We re-write (2) in terms of semicirculant matrices ponents A and B each with stiffness matrices KA and

and let the stiffness matrix [2] of stro'cture AB be

Ik n2 uk3. 1 [ lu2u "'1 f" ff2fjkoklk, 2-~ uouu2.. 2  ... KA I A 1A*K (6)
k 0 k 1 ... uel... r l ... Then the matrx-valued function I(x) - tA+ x l satisfies

k " o . . uo..J. f J 1(0) - XA and K(1) - A3. Now consider the p blem

or K(u(x - f (7)

K U - rwhere f is a knot constant force and x[0,1]. A power

series for the vector-valued function u(x) can be ob-

ond determine the coefficients uI by solving the finite tafted from (5) as

dimensional triangular system constructed from the first -a 1

Irov and coluus of the matrices , U and . Uo *A

Tbs coefficenmts umI my be witten a and
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u, .-K
1 

KB ui_ 1  (8) Let

If the power series representing u(x) converges [% 1]d f 1(7
for x-I then the effect of adding component B to corn- KA I KBI (17)
ponent A on the displacement u can be evaluated with- 1 l 0out inverting the matrix K.AB To evaluate the radius

of convergence of the series we make use of a theorem and consider the problem
from comnlex variRhle thwory rl] .which states that the
radius of convergence of the power series representing [KA + x K] u(x) - f (18)
a function f near some point x0 is equal to the radius

of the largest disk in the complex plane centered at x0  Using (15) we determine a power series for u(x)

inside of which f or an analytic continuation of f is 3
analytic. For problem (7) the points for which the
function u(x) is not analytic are the points p which u(x) -
satisfy 1 8

det(K(p)) = 0 (9) The radius of convergence for (19) is found from

or det (KA + p KB ) - 0 (20)

(KA + p%)v = 0 (10) as r - 1pl " 1/2.

Equation (10) amounts to a generalized elgenvalue
problem whose roots are negative since KA may be assumed The effective convergence radius can be greatly improved

in this case by considering the following modification
to be positive definite (K>O) and K1 positive (semi) de- of (18)

finite (K>0). The eigenvalue p of smallest absolute
value then is the radius of convergence for the series 2 [(l-x/2)KA + x/2 KBI u(x) - f (21)
representing u(x). We extend these i4sas to more gen-
eral problems through the following theorem Now the radius of convergence is found by solving

Theorem 1. det[KA + 1
/2(KB - KA)q] - 0 (22)

Let K(x): C+O
xn 

be an analytic matrix-valued
function with power series for q of smallest modulus and we find that r - 2.

2 The eigenvalue& p of (20) and q of (22) can be
K(x) = K0 + Klx . 2  + (11) directly compared if both problems are converted to

standard form f3l. We arrive at
and let f(x): C-C

n 
be an analytic vector-valued function

with power series [K;l KB - (1 - 2/q) I]v 0 (23)
f(x)- fO + fl x +f 2x

2 
+ . . . (12) -

I-1  KS + l/p I]v -0 
(24)

Then u(x) in

K(x)u(x) - f(x) (13) showing that

1 - 2/q - -l/p (25)
may be represented by the power series

u(x) -u0 + u x+ u2x2 +. (14) or
0 l 2q -

2p/(p+l) (26)

where the coefficients uiart given by from which we find that

I-I
ui . K0 1 [ i- Z (15) q > 1 for p < -1/3. (27)

J.0 - We conclude this discussion by deriving bounds for (27).

Series (14) is convergent within a disk centered at the Again we asume KA>O and K,2O. Let AA be the smallest

origin with radius equal to the modulus of the smallest eigenvalue of KA and let A be the largest eigenvalue
(in modulus)p satisfying the nonlinear eiganvalue prob- of . Then ifIem

(K 0 + p K1 + p2 K2 +. . .)v -0 (16) AA B'
/ 3  (28)

then

-p < 1/3, (29)

This follows since the elenvalues of K A can be shifted
by no more than v1, by the addition of
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p% to KA 13]. Now where X0 is a non-repeated eigenvalue o" Koand u0 isthe corresponding eigenvector satisfying u u 0  and

XA _>I IK2111 1  
(30) where the coefficients A and ut are given by

and 
U i-1

A -K{ Z i-i (39)<jK~ (31) ia i-X.: l~

and
where I I is a suitable matrix norm. So if

-- E u K u(40)

iK Xl 11-1 1/3 lKBI (32) 0JO K _ Uj

then (28) and therefore (29) hold and (27) is guaranteed The matrix K is a generalized inverse [6] of the matrixfor values of x as large as Ixi = 1. (Failure of (32)
does not necessarily imply failure of convergence for (K0 - AOI) satisfying
x 304

K_ _ u 0 . (4 1 )fxampl bedfnda3neape2 aisgetrta reult
Let KA, % and f be defined as in example 2. Furthermore (51 if Ki - 0, i > 2 then the series are

From (15) and (21) we have convergent within a disk centered at the origin with- radius greater than or equal to

uO = 1/2 KA1 f (33) d/(211K1 I1) (42)

u, = 1/2 E1 - KA 
1 Y ui- l  (34) where d is the distance between X0 and the nearest

rl 1 r,' r o r.1,-eigenvalue of K-0.
112 141 11"' 1/6 l/3

jj , J 2 3 4 5 Remark: Note that the bound (42) is attainable in

1/2 4 1/ 1 I x 0 1This series converges at x - 1 to. 
K() - but in l(x) -

r2/3
u(1) = j ]it is a severe underestimate,

L1/31 III. Summary and Conclusions

which is the exact solution of the problem (K uThe simple properties of power series have made
Athem fundamental to mathematical analysis. Theirof example 2. actual use in numerical work however has often bean

discouraged due to the difficulty of computing highIII. Power Series for Egensystems order derivatives. This objection does not apply to
work involving linear systems where algorithms forThe derivation of power series for eigenvalues and computing power series are aimple and efficient.

eigenvectors is similar to the above but the detailsare more complicated. Since the problem is treated This paper has presented methods for computingelsewhere t4,51, we will only quote the following result, power series for linear system responses and for
estimating convergence rate. At this time, theseTheorem 2. methods have not been applied to large structural
models but their use for line searches in structuralLet K(x) be an analytic matrix-valued function of optimization and for other design sensitivity appli-x c C which is real symtric for x C R and let K(x) cations appears promising.

have power series
Kebferatees

K(x) - K0 + + Kx+ . . . (35)
0 K + K 2 +(35 (1) Renrici, P., Applied and Computational Complex Anal-

Then A(x) and u(x) in Ztes, Vol. 1, wiley Insterecience, 'ew York, 174.
(2) Zienkiewicz, O.C., The Finite Element Method, McGraw-

K(x)u(x) - A(x)u(x) (36) Rill, New York, 1978.

(3) Wilkinson, J.R., The Algebraic Eienvalue Problem,may be represented by the power series Clarendon Press, London, 1965.
u(z) - u0 + Ulx + u x2 

+ (37) (4) Whiteell, Joseph I., Desig Sansitivity in Dami-
C "aystems, Ph.D. Thesis, Nichisn State Univerity,

and (5) Kato, T., Perturbation Theory for Llnear Operators,i ()- 1 22  
(38) ) Springer-Verla*, New York, 1976, 2nid E-,-

0 (6) Bn-Israel, A, and Greville, T.N.E., Onneralized Iu-
vrs: Theory and Applications, John Wiley & Sons,

13-45 New York, 1974.

• . . . i




